Properties

Label 246.2.d.b.163.1
Level $246$
Weight $2$
Character 246.163
Analytic conductor $1.964$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [246,2,Mod(163,246)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("246.163"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(246, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 246 = 2 \cdot 3 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 246.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.96431988972\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{57})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 29x^{2} + 196 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 163.1
Root \(-4.27492i\) of defining polynomial
Character \(\chi\) \(=\) 246.163
Dual form 246.2.d.b.163.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000i q^{3} +1.00000 q^{4} -3.27492 q^{5} +1.00000i q^{6} +2.00000i q^{7} -1.00000 q^{8} -1.00000 q^{9} +3.27492 q^{10} +4.00000i q^{11} -1.00000i q^{12} +3.27492i q^{13} -2.00000i q^{14} +3.27492i q^{15} +1.00000 q^{16} -1.27492i q^{17} +1.00000 q^{18} +1.27492i q^{19} -3.27492 q^{20} +2.00000 q^{21} -4.00000i q^{22} +1.00000i q^{24} +5.72508 q^{25} -3.27492i q^{26} +1.00000i q^{27} +2.00000i q^{28} +8.54983i q^{29} -3.27492i q^{30} -9.27492 q^{31} -1.00000 q^{32} +4.00000 q^{33} +1.27492i q^{34} -6.54983i q^{35} -1.00000 q^{36} -6.00000 q^{37} -1.27492i q^{38} +3.27492 q^{39} +3.27492 q^{40} +(-6.27492 + 1.27492i) q^{41} -2.00000 q^{42} +2.54983 q^{43} +4.00000i q^{44} +3.27492 q^{45} -12.5498i q^{47} -1.00000i q^{48} +3.00000 q^{49} -5.72508 q^{50} -1.27492 q^{51} +3.27492i q^{52} +2.00000i q^{53} -1.00000i q^{54} -13.0997i q^{55} -2.00000i q^{56} +1.27492 q^{57} -8.54983i q^{58} +5.27492 q^{59} +3.27492i q^{60} +8.54983 q^{61} +9.27492 q^{62} -2.00000i q^{63} +1.00000 q^{64} -10.7251i q^{65} -4.00000 q^{66} -9.27492i q^{67} -1.27492i q^{68} +6.54983i q^{70} +11.2749i q^{71} +1.00000 q^{72} -7.27492 q^{73} +6.00000 q^{74} -5.72508i q^{75} +1.27492i q^{76} -8.00000 q^{77} -3.27492 q^{78} -8.54983i q^{79} -3.27492 q^{80} +1.00000 q^{81} +(6.27492 - 1.27492i) q^{82} +1.27492 q^{83} +2.00000 q^{84} +4.17525i q^{85} -2.54983 q^{86} +8.54983 q^{87} -4.00000i q^{88} -7.82475i q^{89} -3.27492 q^{90} -6.54983 q^{91} +9.27492i q^{93} +12.5498i q^{94} -4.17525i q^{95} +1.00000i q^{96} +14.5498i q^{97} -3.00000 q^{98} -4.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 4 q^{4} + 2 q^{5} - 4 q^{8} - 4 q^{9} - 2 q^{10} + 4 q^{16} + 4 q^{18} + 2 q^{20} + 8 q^{21} + 38 q^{25} - 22 q^{31} - 4 q^{32} + 16 q^{33} - 4 q^{36} - 24 q^{37} - 2 q^{39} - 2 q^{40} - 10 q^{41}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/246\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(211\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.00000i 0.577350i
\(4\) 1.00000 0.500000
\(5\) −3.27492 −1.46459 −0.732294 0.680989i \(-0.761550\pi\)
−0.732294 + 0.680989i \(0.761550\pi\)
\(6\) 1.00000i 0.408248i
\(7\) 2.00000i 0.755929i 0.925820 + 0.377964i \(0.123376\pi\)
−0.925820 + 0.377964i \(0.876624\pi\)
\(8\) −1.00000 −0.353553
\(9\) −1.00000 −0.333333
\(10\) 3.27492 1.03562
\(11\) 4.00000i 1.20605i 0.797724 + 0.603023i \(0.206037\pi\)
−0.797724 + 0.603023i \(0.793963\pi\)
\(12\) 1.00000i 0.288675i
\(13\) 3.27492i 0.908299i 0.890926 + 0.454149i \(0.150057\pi\)
−0.890926 + 0.454149i \(0.849943\pi\)
\(14\) 2.00000i 0.534522i
\(15\) 3.27492i 0.845580i
\(16\) 1.00000 0.250000
\(17\) 1.27492i 0.309213i −0.987976 0.154606i \(-0.950589\pi\)
0.987976 0.154606i \(-0.0494109\pi\)
\(18\) 1.00000 0.235702
\(19\) 1.27492i 0.292486i 0.989249 + 0.146243i \(0.0467182\pi\)
−0.989249 + 0.146243i \(0.953282\pi\)
\(20\) −3.27492 −0.732294
\(21\) 2.00000 0.436436
\(22\) 4.00000i 0.852803i
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 1.00000i 0.204124i
\(25\) 5.72508 1.14502
\(26\) 3.27492i 0.642264i
\(27\) 1.00000i 0.192450i
\(28\) 2.00000i 0.377964i
\(29\) 8.54983i 1.58766i 0.608137 + 0.793832i \(0.291917\pi\)
−0.608137 + 0.793832i \(0.708083\pi\)
\(30\) 3.27492i 0.597915i
\(31\) −9.27492 −1.66582 −0.832912 0.553405i \(-0.813328\pi\)
−0.832912 + 0.553405i \(0.813328\pi\)
\(32\) −1.00000 −0.176777
\(33\) 4.00000 0.696311
\(34\) 1.27492i 0.218646i
\(35\) 6.54983i 1.10712i
\(36\) −1.00000 −0.166667
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 1.27492i 0.206819i
\(39\) 3.27492 0.524406
\(40\) 3.27492 0.517810
\(41\) −6.27492 + 1.27492i −0.979977 + 0.199109i
\(42\) −2.00000 −0.308607
\(43\) 2.54983 0.388846 0.194423 0.980918i \(-0.437717\pi\)
0.194423 + 0.980918i \(0.437717\pi\)
\(44\) 4.00000i 0.603023i
\(45\) 3.27492 0.488196
\(46\) 0 0
\(47\) 12.5498i 1.83058i −0.402794 0.915291i \(-0.631961\pi\)
0.402794 0.915291i \(-0.368039\pi\)
\(48\) 1.00000i 0.144338i
\(49\) 3.00000 0.428571
\(50\) −5.72508 −0.809649
\(51\) −1.27492 −0.178524
\(52\) 3.27492i 0.454149i
\(53\) 2.00000i 0.274721i 0.990521 + 0.137361i \(0.0438619\pi\)
−0.990521 + 0.137361i \(0.956138\pi\)
\(54\) 1.00000i 0.136083i
\(55\) 13.0997i 1.76636i
\(56\) 2.00000i 0.267261i
\(57\) 1.27492 0.168867
\(58\) 8.54983i 1.12265i
\(59\) 5.27492 0.686736 0.343368 0.939201i \(-0.388432\pi\)
0.343368 + 0.939201i \(0.388432\pi\)
\(60\) 3.27492i 0.422790i
\(61\) 8.54983 1.09469 0.547347 0.836906i \(-0.315638\pi\)
0.547347 + 0.836906i \(0.315638\pi\)
\(62\) 9.27492 1.17792
\(63\) 2.00000i 0.251976i
\(64\) 1.00000 0.125000
\(65\) 10.7251i 1.33028i
\(66\) −4.00000 −0.492366
\(67\) 9.27492i 1.13311i −0.824023 0.566556i \(-0.808276\pi\)
0.824023 0.566556i \(-0.191724\pi\)
\(68\) 1.27492i 0.154606i
\(69\) 0 0
\(70\) 6.54983i 0.782855i
\(71\) 11.2749i 1.33809i 0.743223 + 0.669043i \(0.233296\pi\)
−0.743223 + 0.669043i \(0.766704\pi\)
\(72\) 1.00000 0.117851
\(73\) −7.27492 −0.851465 −0.425732 0.904849i \(-0.639983\pi\)
−0.425732 + 0.904849i \(0.639983\pi\)
\(74\) 6.00000 0.697486
\(75\) 5.72508i 0.661076i
\(76\) 1.27492i 0.146243i
\(77\) −8.00000 −0.911685
\(78\) −3.27492 −0.370811
\(79\) 8.54983i 0.961932i −0.876739 0.480966i \(-0.840286\pi\)
0.876739 0.480966i \(-0.159714\pi\)
\(80\) −3.27492 −0.366147
\(81\) 1.00000 0.111111
\(82\) 6.27492 1.27492i 0.692949 0.140791i
\(83\) 1.27492 0.139940 0.0699702 0.997549i \(-0.477710\pi\)
0.0699702 + 0.997549i \(0.477710\pi\)
\(84\) 2.00000 0.218218
\(85\) 4.17525i 0.452869i
\(86\) −2.54983 −0.274956
\(87\) 8.54983 0.916638
\(88\) 4.00000i 0.426401i
\(89\) 7.82475i 0.829422i −0.909953 0.414711i \(-0.863883\pi\)
0.909953 0.414711i \(-0.136117\pi\)
\(90\) −3.27492 −0.345207
\(91\) −6.54983 −0.686609
\(92\) 0 0
\(93\) 9.27492i 0.961764i
\(94\) 12.5498i 1.29442i
\(95\) 4.17525i 0.428371i
\(96\) 1.00000i 0.102062i
\(97\) 14.5498i 1.47731i 0.674083 + 0.738656i \(0.264539\pi\)
−0.674083 + 0.738656i \(0.735461\pi\)
\(98\) −3.00000 −0.303046
\(99\) 4.00000i 0.402015i
\(100\) 5.72508 0.572508
\(101\) 16.5498i 1.64677i 0.567483 + 0.823385i \(0.307917\pi\)
−0.567483 + 0.823385i \(0.692083\pi\)
\(102\) 1.27492 0.126236
\(103\) −11.8248 −1.16513 −0.582564 0.812785i \(-0.697950\pi\)
−0.582564 + 0.812785i \(0.697950\pi\)
\(104\) 3.27492i 0.321132i
\(105\) −6.54983 −0.639198
\(106\) 2.00000i 0.194257i
\(107\) 11.8248 1.14314 0.571571 0.820553i \(-0.306334\pi\)
0.571571 + 0.820553i \(0.306334\pi\)
\(108\) 1.00000i 0.0962250i
\(109\) 19.0997i 1.82942i 0.404115 + 0.914708i \(0.367580\pi\)
−0.404115 + 0.914708i \(0.632420\pi\)
\(110\) 13.0997i 1.24900i
\(111\) 6.00000i 0.569495i
\(112\) 2.00000i 0.188982i
\(113\) 4.54983 0.428012 0.214006 0.976832i \(-0.431349\pi\)
0.214006 + 0.976832i \(0.431349\pi\)
\(114\) −1.27492 −0.119407
\(115\) 0 0
\(116\) 8.54983i 0.793832i
\(117\) 3.27492i 0.302766i
\(118\) −5.27492 −0.485595
\(119\) 2.54983 0.233743
\(120\) 3.27492i 0.298958i
\(121\) −5.00000 −0.454545
\(122\) −8.54983 −0.774066
\(123\) 1.27492 + 6.27492i 0.114955 + 0.565790i
\(124\) −9.27492 −0.832912
\(125\) −2.37459 −0.212389
\(126\) 2.00000i 0.178174i
\(127\) 1.27492 0.113131 0.0565653 0.998399i \(-0.481985\pi\)
0.0565653 + 0.998399i \(0.481985\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 2.54983i 0.224500i
\(130\) 10.7251i 0.940652i
\(131\) 16.0000 1.39793 0.698963 0.715158i \(-0.253645\pi\)
0.698963 + 0.715158i \(0.253645\pi\)
\(132\) 4.00000 0.348155
\(133\) −2.54983 −0.221099
\(134\) 9.27492i 0.801231i
\(135\) 3.27492i 0.281860i
\(136\) 1.27492i 0.109323i
\(137\) 10.5498i 0.901333i −0.892692 0.450667i \(-0.851186\pi\)
0.892692 0.450667i \(-0.148814\pi\)
\(138\) 0 0
\(139\) −10.5498 −0.894825 −0.447413 0.894328i \(-0.647654\pi\)
−0.447413 + 0.894328i \(0.647654\pi\)
\(140\) 6.54983i 0.553562i
\(141\) −12.5498 −1.05689
\(142\) 11.2749i 0.946170i
\(143\) −13.0997 −1.09545
\(144\) −1.00000 −0.0833333
\(145\) 28.0000i 2.32527i
\(146\) 7.27492 0.602076
\(147\) 3.00000i 0.247436i
\(148\) −6.00000 −0.493197
\(149\) 16.5498i 1.35582i 0.735147 + 0.677908i \(0.237113\pi\)
−0.735147 + 0.677908i \(0.762887\pi\)
\(150\) 5.72508i 0.467451i
\(151\) 2.00000i 0.162758i −0.996683 0.0813788i \(-0.974068\pi\)
0.996683 0.0813788i \(-0.0259324\pi\)
\(152\) 1.27492i 0.103409i
\(153\) 1.27492i 0.103071i
\(154\) 8.00000 0.644658
\(155\) 30.3746 2.43975
\(156\) 3.27492 0.262203
\(157\) 14.0000i 1.11732i −0.829396 0.558661i \(-0.811315\pi\)
0.829396 0.558661i \(-0.188685\pi\)
\(158\) 8.54983i 0.680188i
\(159\) 2.00000 0.158610
\(160\) 3.27492 0.258905
\(161\) 0 0
\(162\) −1.00000 −0.0785674
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) −6.27492 + 1.27492i −0.489989 + 0.0995543i
\(165\) −13.0997 −1.01981
\(166\) −1.27492 −0.0989528
\(167\) 0.725083i 0.0561086i 0.999606 + 0.0280543i \(0.00893113\pi\)
−0.999606 + 0.0280543i \(0.991069\pi\)
\(168\) −2.00000 −0.154303
\(169\) 2.27492 0.174994
\(170\) 4.17525i 0.320227i
\(171\) 1.27492i 0.0974954i
\(172\) 2.54983 0.194423
\(173\) 23.0997 1.75624 0.878118 0.478445i \(-0.158799\pi\)
0.878118 + 0.478445i \(0.158799\pi\)
\(174\) −8.54983 −0.648161
\(175\) 11.4502i 0.865551i
\(176\) 4.00000i 0.301511i
\(177\) 5.27492i 0.396487i
\(178\) 7.82475i 0.586490i
\(179\) 9.09967i 0.680141i 0.940400 + 0.340071i \(0.110451\pi\)
−0.940400 + 0.340071i \(0.889549\pi\)
\(180\) 3.27492 0.244098
\(181\) 11.2749i 0.838058i 0.907973 + 0.419029i \(0.137629\pi\)
−0.907973 + 0.419029i \(0.862371\pi\)
\(182\) 6.54983 0.485506
\(183\) 8.54983i 0.632022i
\(184\) 0 0
\(185\) 19.6495 1.44466
\(186\) 9.27492i 0.680070i
\(187\) 5.09967 0.372925
\(188\) 12.5498i 0.915291i
\(189\) −2.00000 −0.145479
\(190\) 4.17525i 0.302904i
\(191\) 4.54983i 0.329214i 0.986359 + 0.164607i \(0.0526357\pi\)
−0.986359 + 0.164607i \(0.947364\pi\)
\(192\) 1.00000i 0.0721688i
\(193\) 20.0000i 1.43963i 0.694165 + 0.719816i \(0.255774\pi\)
−0.694165 + 0.719816i \(0.744226\pi\)
\(194\) 14.5498i 1.04462i
\(195\) −10.7251 −0.768039
\(196\) 3.00000 0.214286
\(197\) −23.2749 −1.65827 −0.829135 0.559049i \(-0.811166\pi\)
−0.829135 + 0.559049i \(0.811166\pi\)
\(198\) 4.00000i 0.284268i
\(199\) 2.00000i 0.141776i 0.997484 + 0.0708881i \(0.0225833\pi\)
−0.997484 + 0.0708881i \(0.977417\pi\)
\(200\) −5.72508 −0.404824
\(201\) −9.27492 −0.654202
\(202\) 16.5498i 1.16444i
\(203\) −17.0997 −1.20016
\(204\) −1.27492 −0.0892621
\(205\) 20.5498 4.17525i 1.43526 0.291612i
\(206\) 11.8248 0.823869
\(207\) 0 0
\(208\) 3.27492i 0.227075i
\(209\) −5.09967 −0.352751
\(210\) 6.54983 0.451982
\(211\) 9.27492i 0.638512i −0.947669 0.319256i \(-0.896567\pi\)
0.947669 0.319256i \(-0.103433\pi\)
\(212\) 2.00000i 0.137361i
\(213\) 11.2749 0.772545
\(214\) −11.8248 −0.808323
\(215\) −8.35050 −0.569499
\(216\) 1.00000i 0.0680414i
\(217\) 18.5498i 1.25924i
\(218\) 19.0997i 1.29359i
\(219\) 7.27492i 0.491593i
\(220\) 13.0997i 0.883179i
\(221\) 4.17525 0.280858
\(222\) 6.00000i 0.402694i
\(223\) 25.2749 1.69253 0.846267 0.532759i \(-0.178845\pi\)
0.846267 + 0.532759i \(0.178845\pi\)
\(224\) 2.00000i 0.133631i
\(225\) −5.72508 −0.381672
\(226\) −4.54983 −0.302650
\(227\) 26.5498i 1.76217i −0.472954 0.881087i \(-0.656812\pi\)
0.472954 0.881087i \(-0.343188\pi\)
\(228\) 1.27492 0.0844335
\(229\) 19.0997i 1.26214i −0.775725 0.631071i \(-0.782616\pi\)
0.775725 0.631071i \(-0.217384\pi\)
\(230\) 0 0
\(231\) 8.00000i 0.526361i
\(232\) 8.54983i 0.561324i
\(233\) 7.82475i 0.512617i −0.966595 0.256308i \(-0.917494\pi\)
0.966595 0.256308i \(-0.0825062\pi\)
\(234\) 3.27492i 0.214088i
\(235\) 41.0997i 2.68105i
\(236\) 5.27492 0.343368
\(237\) −8.54983 −0.555371
\(238\) −2.54983 −0.165281
\(239\) 15.2749i 0.988052i −0.869447 0.494026i \(-0.835525\pi\)
0.869447 0.494026i \(-0.164475\pi\)
\(240\) 3.27492i 0.211395i
\(241\) 9.82475 0.632868 0.316434 0.948615i \(-0.397514\pi\)
0.316434 + 0.948615i \(0.397514\pi\)
\(242\) 5.00000 0.321412
\(243\) 1.00000i 0.0641500i
\(244\) 8.54983 0.547347
\(245\) −9.82475 −0.627680
\(246\) −1.27492 6.27492i −0.0812858 0.400074i
\(247\) −4.17525 −0.265665
\(248\) 9.27492 0.588958
\(249\) 1.27492i 0.0807946i
\(250\) 2.37459 0.150182
\(251\) −29.0997 −1.83675 −0.918377 0.395706i \(-0.870500\pi\)
−0.918377 + 0.395706i \(0.870500\pi\)
\(252\) 2.00000i 0.125988i
\(253\) 0 0
\(254\) −1.27492 −0.0799954
\(255\) 4.17525 0.261464
\(256\) 1.00000 0.0625000
\(257\) 1.45017i 0.0904588i 0.998977 + 0.0452294i \(0.0144019\pi\)
−0.998977 + 0.0452294i \(0.985598\pi\)
\(258\) 2.54983i 0.158746i
\(259\) 12.0000i 0.745644i
\(260\) 10.7251i 0.665141i
\(261\) 8.54983i 0.529221i
\(262\) −16.0000 −0.988483
\(263\) 22.9244i 1.41358i 0.707423 + 0.706790i \(0.249858\pi\)
−0.707423 + 0.706790i \(0.750142\pi\)
\(264\) −4.00000 −0.246183
\(265\) 6.54983i 0.402353i
\(266\) 2.54983 0.156340
\(267\) −7.82475 −0.478867
\(268\) 9.27492i 0.566556i
\(269\) 0.725083 0.0442091 0.0221045 0.999756i \(-0.492963\pi\)
0.0221045 + 0.999756i \(0.492963\pi\)
\(270\) 3.27492i 0.199305i
\(271\) −5.09967 −0.309783 −0.154891 0.987932i \(-0.549503\pi\)
−0.154891 + 0.987932i \(0.549503\pi\)
\(272\) 1.27492i 0.0773032i
\(273\) 6.54983i 0.396414i
\(274\) 10.5498i 0.637339i
\(275\) 22.9003i 1.38094i
\(276\) 0 0
\(277\) 15.4502 0.928310 0.464155 0.885754i \(-0.346358\pi\)
0.464155 + 0.885754i \(0.346358\pi\)
\(278\) 10.5498 0.632737
\(279\) 9.27492 0.555275
\(280\) 6.54983i 0.391427i
\(281\) 5.27492i 0.314675i 0.987545 + 0.157338i \(0.0502911\pi\)
−0.987545 + 0.157338i \(0.949709\pi\)
\(282\) 12.5498 0.747332
\(283\) −23.6495 −1.40582 −0.702909 0.711280i \(-0.748116\pi\)
−0.702909 + 0.711280i \(0.748116\pi\)
\(284\) 11.2749i 0.669043i
\(285\) −4.17525 −0.247320
\(286\) 13.0997 0.774600
\(287\) −2.54983 12.5498i −0.150512 0.740793i
\(288\) 1.00000 0.0589256
\(289\) 15.3746 0.904387
\(290\) 28.0000i 1.64422i
\(291\) 14.5498 0.852926
\(292\) −7.27492 −0.425732
\(293\) 2.00000i 0.116841i 0.998292 + 0.0584206i \(0.0186065\pi\)
−0.998292 + 0.0584206i \(0.981394\pi\)
\(294\) 3.00000i 0.174964i
\(295\) −17.2749 −1.00578
\(296\) 6.00000 0.348743
\(297\) −4.00000 −0.232104
\(298\) 16.5498i 0.958706i
\(299\) 0 0
\(300\) 5.72508i 0.330538i
\(301\) 5.09967i 0.293940i
\(302\) 2.00000i 0.115087i
\(303\) 16.5498 0.950763
\(304\) 1.27492i 0.0731215i
\(305\) −28.0000 −1.60328
\(306\) 1.27492i 0.0728822i
\(307\) 33.0997 1.88910 0.944549 0.328371i \(-0.106500\pi\)
0.944549 + 0.328371i \(0.106500\pi\)
\(308\) −8.00000 −0.455842
\(309\) 11.8248i 0.672687i
\(310\) −30.3746 −1.72516
\(311\) 20.7251i 1.17521i −0.809147 0.587606i \(-0.800071\pi\)
0.809147 0.587606i \(-0.199929\pi\)
\(312\) −3.27492 −0.185406
\(313\) 19.6495i 1.11066i 0.831632 + 0.555328i \(0.187407\pi\)
−0.831632 + 0.555328i \(0.812593\pi\)
\(314\) 14.0000i 0.790066i
\(315\) 6.54983i 0.369041i
\(316\) 8.54983i 0.480966i
\(317\) 15.4502i 0.867768i 0.900969 + 0.433884i \(0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(318\) −2.00000 −0.112154
\(319\) −34.1993 −1.91480
\(320\) −3.27492 −0.183073
\(321\) 11.8248i 0.659993i
\(322\) 0 0
\(323\) 1.62541 0.0904404
\(324\) 1.00000 0.0555556
\(325\) 18.7492i 1.04002i
\(326\) 4.00000 0.221540
\(327\) 19.0997 1.05621
\(328\) 6.27492 1.27492i 0.346474 0.0703955i
\(329\) 25.0997 1.38379
\(330\) 13.0997 0.721113
\(331\) 29.0997i 1.59946i 0.600358 + 0.799731i \(0.295025\pi\)
−0.600358 + 0.799731i \(0.704975\pi\)
\(332\) 1.27492 0.0699702
\(333\) 6.00000 0.328798
\(334\) 0.725083i 0.0396748i
\(335\) 30.3746i 1.65954i
\(336\) 2.00000 0.109109
\(337\) 9.82475 0.535188 0.267594 0.963532i \(-0.413771\pi\)
0.267594 + 0.963532i \(0.413771\pi\)
\(338\) −2.27492 −0.123739
\(339\) 4.54983i 0.247113i
\(340\) 4.17525i 0.226435i
\(341\) 37.0997i 2.00906i
\(342\) 1.27492i 0.0689396i
\(343\) 20.0000i 1.07990i
\(344\) −2.54983 −0.137478
\(345\) 0 0
\(346\) −23.0997 −1.24185
\(347\) 13.0997i 0.703227i −0.936145 0.351614i \(-0.885633\pi\)
0.936145 0.351614i \(-0.114367\pi\)
\(348\) 8.54983 0.458319
\(349\) −6.00000 −0.321173 −0.160586 0.987022i \(-0.551338\pi\)
−0.160586 + 0.987022i \(0.551338\pi\)
\(350\) 11.4502i 0.612037i
\(351\) −3.27492 −0.174802
\(352\) 4.00000i 0.213201i
\(353\) −4.54983 −0.242163 −0.121082 0.992643i \(-0.538636\pi\)
−0.121082 + 0.992643i \(0.538636\pi\)
\(354\) 5.27492i 0.280359i
\(355\) 36.9244i 1.95974i
\(356\) 7.82475i 0.414711i
\(357\) 2.54983i 0.134952i
\(358\) 9.09967i 0.480932i
\(359\) −13.0997 −0.691374 −0.345687 0.938350i \(-0.612354\pi\)
−0.345687 + 0.938350i \(0.612354\pi\)
\(360\) −3.27492 −0.172603
\(361\) 17.3746 0.914452
\(362\) 11.2749i 0.592596i
\(363\) 5.00000i 0.262432i
\(364\) −6.54983 −0.343305
\(365\) 23.8248 1.24704
\(366\) 8.54983i 0.446907i
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) 0 0
\(369\) 6.27492 1.27492i 0.326659 0.0663695i
\(370\) −19.6495 −1.02153
\(371\) −4.00000 −0.207670
\(372\) 9.27492i 0.480882i
\(373\) −23.0997 −1.19606 −0.598028 0.801475i \(-0.704049\pi\)
−0.598028 + 0.801475i \(0.704049\pi\)
\(374\) −5.09967 −0.263698
\(375\) 2.37459i 0.122623i
\(376\) 12.5498i 0.647208i
\(377\) −28.0000 −1.44207
\(378\) 2.00000 0.102869
\(379\) 13.4502 0.690889 0.345444 0.938439i \(-0.387728\pi\)
0.345444 + 0.938439i \(0.387728\pi\)
\(380\) 4.17525i 0.214186i
\(381\) 1.27492i 0.0653160i
\(382\) 4.54983i 0.232790i
\(383\) 21.8248i 1.11519i 0.830112 + 0.557596i \(0.188276\pi\)
−0.830112 + 0.557596i \(0.811724\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) 26.1993 1.33524
\(386\) 20.0000i 1.01797i
\(387\) −2.54983 −0.129615
\(388\) 14.5498i 0.738656i
\(389\) −30.9244 −1.56793 −0.783965 0.620805i \(-0.786806\pi\)
−0.783965 + 0.620805i \(0.786806\pi\)
\(390\) 10.7251 0.543086
\(391\) 0 0
\(392\) −3.00000 −0.151523
\(393\) 16.0000i 0.807093i
\(394\) 23.2749 1.17257
\(395\) 28.0000i 1.40883i
\(396\) 4.00000i 0.201008i
\(397\) 29.8248i 1.49686i −0.663213 0.748431i \(-0.730808\pi\)
0.663213 0.748431i \(-0.269192\pi\)
\(398\) 2.00000i 0.100251i
\(399\) 2.54983i 0.127651i
\(400\) 5.72508 0.286254
\(401\) 7.09967 0.354541 0.177270 0.984162i \(-0.443273\pi\)
0.177270 + 0.984162i \(0.443273\pi\)
\(402\) 9.27492 0.462591
\(403\) 30.3746i 1.51307i
\(404\) 16.5498i 0.823385i
\(405\) −3.27492 −0.162732
\(406\) 17.0997 0.848642
\(407\) 24.0000i 1.18964i
\(408\) 1.27492 0.0631178
\(409\) −0.725083 −0.0358530 −0.0179265 0.999839i \(-0.505706\pi\)
−0.0179265 + 0.999839i \(0.505706\pi\)
\(410\) −20.5498 + 4.17525i −1.01488 + 0.206201i
\(411\) −10.5498 −0.520385
\(412\) −11.8248 −0.582564
\(413\) 10.5498i 0.519123i
\(414\) 0 0
\(415\) −4.17525 −0.204955
\(416\) 3.27492i 0.160566i
\(417\) 10.5498i 0.516628i
\(418\) 5.09967 0.249433
\(419\) −26.7251 −1.30561 −0.652803 0.757528i \(-0.726407\pi\)
−0.652803 + 0.757528i \(0.726407\pi\)
\(420\) −6.54983 −0.319599
\(421\) 25.8248i 1.25862i 0.777154 + 0.629311i \(0.216663\pi\)
−0.777154 + 0.629311i \(0.783337\pi\)
\(422\) 9.27492i 0.451496i
\(423\) 12.5498i 0.610194i
\(424\) 2.00000i 0.0971286i
\(425\) 7.29901i 0.354054i
\(426\) −11.2749 −0.546272
\(427\) 17.0997i 0.827511i
\(428\) 11.8248 0.571571
\(429\) 13.0997i 0.632458i
\(430\) 8.35050 0.402697
\(431\) 34.5498 1.66421 0.832103 0.554620i \(-0.187137\pi\)
0.832103 + 0.554620i \(0.187137\pi\)
\(432\) 1.00000i 0.0481125i
\(433\) −8.72508 −0.419301 −0.209650 0.977776i \(-0.567233\pi\)
−0.209650 + 0.977776i \(0.567233\pi\)
\(434\) 18.5498i 0.890421i
\(435\) −28.0000 −1.34250
\(436\) 19.0997i 0.914708i
\(437\) 0 0
\(438\) 7.27492i 0.347609i
\(439\) 8.90033i 0.424790i 0.977184 + 0.212395i \(0.0681263\pi\)
−0.977184 + 0.212395i \(0.931874\pi\)
\(440\) 13.0997i 0.624502i
\(441\) −3.00000 −0.142857
\(442\) −4.17525 −0.198596
\(443\) −14.3746 −0.682957 −0.341479 0.939890i \(-0.610928\pi\)
−0.341479 + 0.939890i \(0.610928\pi\)
\(444\) 6.00000i 0.284747i
\(445\) 25.6254i 1.21476i
\(446\) −25.2749 −1.19680
\(447\) 16.5498 0.782780
\(448\) 2.00000i 0.0944911i
\(449\) 10.0000 0.471929 0.235965 0.971762i \(-0.424175\pi\)
0.235965 + 0.971762i \(0.424175\pi\)
\(450\) 5.72508 0.269883
\(451\) −5.09967 25.0997i −0.240134 1.18190i
\(452\) 4.54983 0.214006
\(453\) −2.00000 −0.0939682
\(454\) 26.5498i 1.24605i
\(455\) 21.4502 1.00560
\(456\) −1.27492 −0.0597035
\(457\) 1.09967i 0.0514403i 0.999669 + 0.0257202i \(0.00818789\pi\)
−0.999669 + 0.0257202i \(0.991812\pi\)
\(458\) 19.0997i 0.892469i
\(459\) 1.27492 0.0595080
\(460\) 0 0
\(461\) 3.09967 0.144366 0.0721830 0.997391i \(-0.477003\pi\)
0.0721830 + 0.997391i \(0.477003\pi\)
\(462\) 8.00000i 0.372194i
\(463\) 11.4502i 0.532134i −0.963954 0.266067i \(-0.914276\pi\)
0.963954 0.266067i \(-0.0857243\pi\)
\(464\) 8.54983i 0.396916i
\(465\) 30.3746i 1.40859i
\(466\) 7.82475i 0.362475i
\(467\) −29.2749 −1.35468 −0.677341 0.735669i \(-0.736868\pi\)
−0.677341 + 0.735669i \(0.736868\pi\)
\(468\) 3.27492i 0.151383i
\(469\) 18.5498 0.856552
\(470\) 41.0997i 1.89579i
\(471\) −14.0000 −0.645086
\(472\) −5.27492 −0.242798
\(473\) 10.1993i 0.468966i
\(474\) 8.54983 0.392707
\(475\) 7.29901i 0.334901i
\(476\) 2.54983 0.116871
\(477\) 2.00000i 0.0915737i
\(478\) 15.2749i 0.698658i
\(479\) 18.9244i 0.864679i −0.901711 0.432339i \(-0.857688\pi\)
0.901711 0.432339i \(-0.142312\pi\)
\(480\) 3.27492i 0.149479i
\(481\) 19.6495i 0.895940i
\(482\) −9.82475 −0.447505
\(483\) 0 0
\(484\) −5.00000 −0.227273
\(485\) 47.6495i 2.16365i
\(486\) 1.00000i 0.0453609i
\(487\) 35.8248 1.62337 0.811687 0.584092i \(-0.198549\pi\)
0.811687 + 0.584092i \(0.198549\pi\)
\(488\) −8.54983 −0.387033
\(489\) 4.00000i 0.180886i
\(490\) 9.82475 0.443837
\(491\) 7.82475 0.353126 0.176563 0.984289i \(-0.443502\pi\)
0.176563 + 0.984289i \(0.443502\pi\)
\(492\) 1.27492 + 6.27492i 0.0574777 + 0.282895i
\(493\) 10.9003 0.490926
\(494\) 4.17525 0.187853
\(495\) 13.0997i 0.588786i
\(496\) −9.27492 −0.416456
\(497\) −22.5498 −1.01150
\(498\) 1.27492i 0.0571304i
\(499\) 14.3746i 0.643495i 0.946826 + 0.321747i \(0.104270\pi\)
−0.946826 + 0.321747i \(0.895730\pi\)
\(500\) −2.37459 −0.106195
\(501\) 0.725083 0.0323943
\(502\) 29.0997 1.29878
\(503\) 12.7251i 0.567383i 0.958916 + 0.283692i \(0.0915592\pi\)
−0.958916 + 0.283692i \(0.908441\pi\)
\(504\) 2.00000i 0.0890871i
\(505\) 54.1993i 2.41184i
\(506\) 0 0
\(507\) 2.27492i 0.101033i
\(508\) 1.27492 0.0565653
\(509\) 37.6495i 1.66878i −0.551171 0.834392i \(-0.685819\pi\)
0.551171 0.834392i \(-0.314181\pi\)
\(510\) −4.17525 −0.184883
\(511\) 14.5498i 0.643647i
\(512\) −1.00000 −0.0441942
\(513\) −1.27492 −0.0562890
\(514\) 1.45017i 0.0639641i
\(515\) 38.7251 1.70643
\(516\) 2.54983i 0.112250i
\(517\) 50.1993 2.20776
\(518\) 12.0000i 0.527250i
\(519\) 23.0997i 1.01396i
\(520\) 10.7251i 0.470326i
\(521\) 25.2749i 1.10731i 0.832745 + 0.553657i \(0.186768\pi\)
−0.832745 + 0.553657i \(0.813232\pi\)
\(522\) 8.54983i 0.374216i
\(523\) 11.6495 0.509397 0.254699 0.967020i \(-0.418024\pi\)
0.254699 + 0.967020i \(0.418024\pi\)
\(524\) 16.0000 0.698963
\(525\) 11.4502 0.499726
\(526\) 22.9244i 0.999552i
\(527\) 11.8248i 0.515094i
\(528\) 4.00000 0.174078
\(529\) −23.0000 −1.00000
\(530\) 6.54983i 0.284507i
\(531\) −5.27492 −0.228912
\(532\) −2.54983 −0.110549
\(533\) −4.17525 20.5498i −0.180850 0.890112i
\(534\) 7.82475 0.338610
\(535\) −38.7251 −1.67423
\(536\) 9.27492i 0.400615i
\(537\) 9.09967 0.392680
\(538\) −0.725083 −0.0312605
\(539\) 12.0000i 0.516877i
\(540\) 3.27492i 0.140930i
\(541\) −34.7492 −1.49398 −0.746992 0.664833i \(-0.768503\pi\)
−0.746992 + 0.664833i \(0.768503\pi\)
\(542\) 5.09967 0.219050
\(543\) 11.2749 0.483853
\(544\) 1.27492i 0.0546616i
\(545\) 62.5498i 2.67934i
\(546\) 6.54983i 0.280307i
\(547\) 5.62541i 0.240525i −0.992742 0.120263i \(-0.961626\pi\)
0.992742 0.120263i \(-0.0383737\pi\)
\(548\) 10.5498i 0.450667i
\(549\) −8.54983 −0.364898
\(550\) 22.9003i 0.976473i
\(551\) −10.9003 −0.464370
\(552\) 0 0
\(553\) 17.0997 0.727152
\(554\) −15.4502 −0.656415
\(555\) 19.6495i 0.834075i
\(556\) −10.5498 −0.447413
\(557\) 12.9003i 0.546605i 0.961928 + 0.273302i \(0.0881159\pi\)
−0.961928 + 0.273302i \(0.911884\pi\)
\(558\) −9.27492 −0.392639
\(559\) 8.35050i 0.353188i
\(560\) 6.54983i 0.276781i
\(561\) 5.09967i 0.215308i
\(562\) 5.27492i 0.222509i
\(563\) 10.5498i 0.444623i 0.974976 + 0.222311i \(0.0713601\pi\)
−0.974976 + 0.222311i \(0.928640\pi\)
\(564\) −12.5498 −0.528443
\(565\) −14.9003 −0.626862
\(566\) 23.6495 0.994063
\(567\) 2.00000i 0.0839921i
\(568\) 11.2749i 0.473085i
\(569\) −19.4502 −0.815393 −0.407697 0.913117i \(-0.633668\pi\)
−0.407697 + 0.913117i \(0.633668\pi\)
\(570\) 4.17525 0.174882
\(571\) 2.90033i 0.121375i 0.998157 + 0.0606875i \(0.0193293\pi\)
−0.998157 + 0.0606875i \(0.980671\pi\)
\(572\) −13.0997 −0.547725
\(573\) 4.54983 0.190072
\(574\) 2.54983 + 12.5498i 0.106428 + 0.523820i
\(575\) 0 0
\(576\) −1.00000 −0.0416667
\(577\) 13.0997i 0.545346i 0.962107 + 0.272673i \(0.0879078\pi\)
−0.962107 + 0.272673i \(0.912092\pi\)
\(578\) −15.3746 −0.639498
\(579\) 20.0000 0.831172
\(580\) 28.0000i 1.16264i
\(581\) 2.54983i 0.105785i
\(582\) −14.5498 −0.603110
\(583\) −8.00000 −0.331326
\(584\) 7.27492 0.301038
\(585\) 10.7251i 0.443428i
\(586\) 2.00000i 0.0826192i
\(587\) 22.5498i 0.930731i 0.885119 + 0.465366i \(0.154077\pi\)
−0.885119 + 0.465366i \(0.845923\pi\)
\(588\) 3.00000i 0.123718i
\(589\) 11.8248i 0.487230i
\(590\) 17.2749 0.711197
\(591\) 23.2749i 0.957402i
\(592\) −6.00000 −0.246598
\(593\) 8.17525i 0.335717i −0.985811 0.167859i \(-0.946315\pi\)
0.985811 0.167859i \(-0.0536852\pi\)
\(594\) 4.00000 0.164122
\(595\) −8.35050 −0.342337
\(596\) 16.5498i 0.677908i
\(597\) 2.00000 0.0818546
\(598\) 0 0
\(599\) 2.54983 0.104183 0.0520917 0.998642i \(-0.483411\pi\)
0.0520917 + 0.998642i \(0.483411\pi\)
\(600\) 5.72508i 0.233726i
\(601\) 26.5498i 1.08299i −0.840704 0.541495i \(-0.817858\pi\)
0.840704 0.541495i \(-0.182142\pi\)
\(602\) 5.09967i 0.207847i
\(603\) 9.27492i 0.377704i
\(604\) 2.00000i 0.0813788i
\(605\) 16.3746 0.665722
\(606\) −16.5498 −0.672291
\(607\) −24.0000 −0.974130 −0.487065 0.873366i \(-0.661933\pi\)
−0.487065 + 0.873366i \(0.661933\pi\)
\(608\) 1.27492i 0.0517047i
\(609\) 17.0997i 0.692914i
\(610\) 28.0000 1.13369
\(611\) 41.0997 1.66271
\(612\) 1.27492i 0.0515355i
\(613\) −8.54983 −0.345325 −0.172662 0.984981i \(-0.555237\pi\)
−0.172662 + 0.984981i \(0.555237\pi\)
\(614\) −33.0997 −1.33579
\(615\) −4.17525 20.5498i −0.168362 0.828649i
\(616\) 8.00000 0.322329
\(617\) 7.45017 0.299932 0.149966 0.988691i \(-0.452084\pi\)
0.149966 + 0.988691i \(0.452084\pi\)
\(618\) 11.8248i 0.475661i
\(619\) 13.0997 0.526520 0.263260 0.964725i \(-0.415202\pi\)
0.263260 + 0.964725i \(0.415202\pi\)
\(620\) 30.3746 1.21987
\(621\) 0 0
\(622\) 20.7251i 0.831000i
\(623\) 15.6495 0.626984
\(624\) 3.27492 0.131102
\(625\) −20.8488 −0.833954
\(626\) 19.6495i 0.785352i
\(627\) 5.09967i 0.203661i
\(628\) 14.0000i 0.558661i
\(629\) 7.64950i 0.305006i
\(630\) 6.54983i 0.260952i
\(631\) 20.1752 0.803164 0.401582 0.915823i \(-0.368460\pi\)
0.401582 + 0.915823i \(0.368460\pi\)
\(632\) 8.54983i 0.340094i
\(633\) −9.27492 −0.368645
\(634\) 15.4502i 0.613604i
\(635\) −4.17525 −0.165690
\(636\) 2.00000 0.0793052
\(637\) 9.82475i 0.389271i
\(638\) 34.1993 1.35396
\(639\) 11.2749i 0.446029i
\(640\) 3.27492 0.129452
\(641\) 5.45017i 0.215269i −0.994191 0.107634i \(-0.965672\pi\)
0.994191 0.107634i \(-0.0343276\pi\)
\(642\) 11.8248i 0.466686i
\(643\) 41.2749i 1.62772i 0.581058 + 0.813862i \(0.302639\pi\)
−0.581058 + 0.813862i \(0.697361\pi\)
\(644\) 0 0
\(645\) 8.35050i 0.328800i
\(646\) −1.62541 −0.0639511
\(647\) 10.9003 0.428536 0.214268 0.976775i \(-0.431263\pi\)
0.214268 + 0.976775i \(0.431263\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 21.0997i 0.828234i
\(650\) 18.7492i 0.735403i
\(651\) −18.5498 −0.727025
\(652\) −4.00000 −0.156652
\(653\) 37.6495i 1.47334i 0.676253 + 0.736669i \(0.263603\pi\)
−0.676253 + 0.736669i \(0.736397\pi\)
\(654\) −19.0997 −0.746856
\(655\) −52.3987 −2.04739
\(656\) −6.27492 + 1.27492i −0.244994 + 0.0497772i
\(657\) 7.27492 0.283822
\(658\) −25.0997 −0.978487
\(659\) 2.54983i 0.0993274i 0.998766 + 0.0496637i \(0.0158150\pi\)
−0.998766 + 0.0496637i \(0.984185\pi\)
\(660\) −13.0997 −0.509904
\(661\) 28.1993 1.09683 0.548414 0.836207i \(-0.315232\pi\)
0.548414 + 0.836207i \(0.315232\pi\)
\(662\) 29.0997i 1.13099i
\(663\) 4.17525i 0.162153i
\(664\) −1.27492 −0.0494764
\(665\) 8.35050 0.323818
\(666\) −6.00000 −0.232495
\(667\) 0 0
\(668\) 0.725083i 0.0280543i
\(669\) 25.2749i 0.977185i
\(670\) 30.3746i 1.17347i
\(671\) 34.1993i 1.32025i
\(672\) −2.00000 −0.0771517
\(673\) 22.1993i 0.855722i −0.903845 0.427861i \(-0.859267\pi\)
0.903845 0.427861i \(-0.140733\pi\)
\(674\) −9.82475 −0.378435
\(675\) 5.72508i 0.220359i
\(676\) 2.27492 0.0874968
\(677\) −37.4743 −1.44025 −0.720126 0.693843i \(-0.755916\pi\)
−0.720126 + 0.693843i \(0.755916\pi\)
\(678\) 4.54983i 0.174735i
\(679\) −29.0997 −1.11674
\(680\) 4.17525i 0.160113i
\(681\) −26.5498 −1.01739
\(682\) 37.0997i 1.42062i
\(683\) 33.0997i 1.26652i −0.773938 0.633262i \(-0.781716\pi\)
0.773938 0.633262i \(-0.218284\pi\)
\(684\) 1.27492i 0.0487477i
\(685\) 34.5498i 1.32008i
\(686\) 20.0000i 0.763604i
\(687\) −19.0997 −0.728698
\(688\) 2.54983 0.0972115
\(689\) −6.54983 −0.249529
\(690\) 0 0
\(691\) 17.0997i 0.650502i 0.945628 + 0.325251i \(0.105449\pi\)
−0.945628 + 0.325251i \(0.894551\pi\)
\(692\) 23.0997 0.878118
\(693\) 8.00000 0.303895
\(694\) 13.0997i 0.497257i
\(695\) 34.5498 1.31055
\(696\) −8.54983 −0.324081
\(697\) 1.62541 + 8.00000i 0.0615669 + 0.303022i
\(698\) 6.00000 0.227103
\(699\) −7.82475 −0.295959
\(700\) 11.4502i 0.432776i
\(701\) 32.1993 1.21615 0.608076 0.793879i \(-0.291942\pi\)
0.608076 + 0.793879i \(0.291942\pi\)
\(702\) 3.27492 0.123604
\(703\) 7.64950i 0.288506i
\(704\) 4.00000i 0.150756i
\(705\) 41.0997 1.54790
\(706\) 4.54983 0.171235
\(707\) −33.0997 −1.24484
\(708\) 5.27492i 0.198244i
\(709\) 3.27492i 0.122992i −0.998107 0.0614960i \(-0.980413\pi\)
0.998107 0.0614960i \(-0.0195872\pi\)
\(710\) 36.9244i 1.38575i
\(711\) 8.54983i 0.320644i
\(712\) 7.82475i 0.293245i
\(713\) 0 0
\(714\) 2.54983i 0.0954252i
\(715\) 42.9003 1.60438
\(716\) 9.09967i 0.340071i
\(717\) −15.2749 −0.570452
\(718\) 13.0997 0.488875
\(719\) 9.82475i 0.366401i −0.983076 0.183201i \(-0.941354\pi\)
0.983076 0.183201i \(-0.0586458\pi\)
\(720\) 3.27492 0.122049
\(721\) 23.6495i 0.880754i
\(722\) −17.3746 −0.646615
\(723\) 9.82475i 0.365386i
\(724\) 11.2749i 0.419029i
\(725\) 48.9485i 1.81790i
\(726\) 5.00000i 0.185567i
\(727\) 16.5498i 0.613799i 0.951742 + 0.306900i \(0.0992916\pi\)
−0.951742 + 0.306900i \(0.900708\pi\)
\(728\) 6.54983 0.242753
\(729\) −1.00000 −0.0370370
\(730\) −23.8248 −0.881794
\(731\) 3.25083i 0.120236i
\(732\) 8.54983i 0.316011i
\(733\) −17.6495 −0.651899 −0.325950 0.945387i \(-0.605684\pi\)
−0.325950 + 0.945387i \(0.605684\pi\)
\(734\) −8.00000 −0.295285
\(735\) 9.82475i 0.362391i
\(736\) 0 0
\(737\) 37.0997 1.36658
\(738\) −6.27492 + 1.27492i −0.230983 + 0.0469304i
\(739\) 20.0000 0.735712 0.367856 0.929883i \(-0.380092\pi\)
0.367856 + 0.929883i \(0.380092\pi\)
\(740\) 19.6495 0.722330
\(741\) 4.17525i 0.153382i
\(742\) 4.00000 0.146845
\(743\) 32.0000 1.17397 0.586983 0.809599i \(-0.300316\pi\)
0.586983 + 0.809599i \(0.300316\pi\)
\(744\) 9.27492i 0.340035i
\(745\) 54.1993i 1.98571i
\(746\) 23.0997 0.845739
\(747\) −1.27492 −0.0466468
\(748\) 5.09967 0.186462
\(749\) 23.6495i 0.864134i
\(750\) 2.37459i 0.0867076i
\(751\) 27.0997i 0.988881i 0.869211 + 0.494440i \(0.164627\pi\)
−0.869211 + 0.494440i \(0.835373\pi\)
\(752\) 12.5498i 0.457645i
\(753\) 29.0997i 1.06045i
\(754\) 28.0000 1.01970
\(755\) 6.54983i 0.238373i
\(756\) −2.00000 −0.0727393
\(757\) 47.0997i 1.71187i 0.517086 + 0.855933i \(0.327017\pi\)
−0.517086 + 0.855933i \(0.672983\pi\)
\(758\) −13.4502 −0.488532
\(759\) 0 0
\(760\) 4.17525i 0.151452i
\(761\) 28.5498 1.03493 0.517465 0.855704i \(-0.326876\pi\)
0.517465 + 0.855704i \(0.326876\pi\)
\(762\) 1.27492i 0.0461854i
\(763\) −38.1993 −1.38291
\(764\) 4.54983i 0.164607i
\(765\) 4.17525i 0.150956i
\(766\) 21.8248i 0.788560i
\(767\) 17.2749i 0.623761i
\(768\) 1.00000i 0.0360844i
\(769\) 6.17525 0.222685 0.111343 0.993782i \(-0.464485\pi\)
0.111343 + 0.993782i \(0.464485\pi\)
\(770\) −26.1993 −0.944159
\(771\) 1.45017 0.0522264
\(772\) 20.0000i 0.719816i
\(773\) 52.5498i 1.89009i 0.326946 + 0.945043i \(0.393981\pi\)
−0.326946 + 0.945043i \(0.606019\pi\)
\(774\) 2.54983 0.0916519
\(775\) −53.0997 −1.90740
\(776\) 14.5498i 0.522309i
\(777\) −12.0000 −0.430498
\(778\) 30.9244 1.10869
\(779\) −1.62541 8.00000i −0.0582365 0.286630i
\(780\) −10.7251 −0.384020
\(781\) −45.0997 −1.61379
\(782\) 0 0
\(783\) −8.54983 −0.305546
\(784\) 3.00000 0.107143
\(785\) 45.8488i 1.63642i
\(786\) 16.0000i 0.570701i
\(787\) 11.6495 0.415260 0.207630 0.978207i \(-0.433425\pi\)
0.207630 + 0.978207i \(0.433425\pi\)
\(788\) −23.2749 −0.829135
\(789\) 22.9244 0.816131
\(790\) 28.0000i 0.996195i
\(791\) 9.09967i 0.323547i
\(792\) 4.00000i 0.142134i
\(793\) 28.0000i 0.994309i
\(794\) 29.8248i 1.05844i
\(795\) −6.54983 −0.232299
\(796\) 2.00000i 0.0708881i
\(797\) −38.9244 −1.37877 −0.689387 0.724393i \(-0.742120\pi\)
−0.689387 + 0.724393i \(0.742120\pi\)
\(798\) 2.54983i 0.0902632i
\(799\) −16.0000 −0.566039
\(800\) −5.72508 −0.202412
\(801\) 7.82475i 0.276474i
\(802\) −7.09967 −0.250698
\(803\) 29.0997i 1.02691i
\(804\) −9.27492 −0.327101
\(805\) 0 0
\(806\) 30.3746i 1.06990i
\(807\) 0.725083i 0.0255241i
\(808\) 16.5498i 0.582221i
\(809\) 9.62541i 0.338412i 0.985581 + 0.169206i \(0.0541202\pi\)
−0.985581 + 0.169206i \(0.945880\pi\)
\(810\) 3.27492 0.115069
\(811\) 6.54983 0.229996 0.114998 0.993366i \(-0.463314\pi\)
0.114998 + 0.993366i \(0.463314\pi\)
\(812\) −17.0997 −0.600081
\(813\) 5.09967i 0.178853i
\(814\) 24.0000i 0.841200i
\(815\) 13.0997 0.458861
\(816\) −1.27492 −0.0446310
\(817\) 3.25083i 0.113732i
\(818\) 0.725083 0.0253519
\(819\) 6.54983 0.228870
\(820\) 20.5498 4.17525i 0.717631 0.145806i
\(821\) −18.9244 −0.660467 −0.330233 0.943899i \(-0.607127\pi\)
−0.330233 + 0.943899i \(0.607127\pi\)
\(822\) 10.5498 0.367968
\(823\) 36.5498i 1.27405i −0.770844 0.637024i \(-0.780165\pi\)
0.770844 0.637024i \(-0.219835\pi\)
\(824\) 11.8248 0.411935
\(825\) 22.9003 0.797287
\(826\) 10.5498i 0.367076i
\(827\) 10.5498i 0.366854i −0.983033 0.183427i \(-0.941281\pi\)
0.983033 0.183427i \(-0.0587190\pi\)
\(828\) 0 0
\(829\) −43.0997 −1.49691 −0.748457 0.663184i \(-0.769205\pi\)
−0.748457 + 0.663184i \(0.769205\pi\)
\(830\) 4.17525 0.144925
\(831\) 15.4502i 0.535960i
\(832\) 3.27492i 0.113537i
\(833\) 3.82475i 0.132520i
\(834\) 10.5498i 0.365311i
\(835\) 2.37459i 0.0821759i
\(836\) −5.09967 −0.176376
\(837\) 9.27492i 0.320588i
\(838\) 26.7251 0.923203
\(839\) 10.9244i 0.377153i −0.982059 0.188576i \(-0.939613\pi\)
0.982059 0.188576i \(-0.0603873\pi\)
\(840\) 6.54983 0.225991
\(841\) −44.0997 −1.52068
\(842\) 25.8248i 0.889980i
\(843\) 5.27492 0.181678
\(844\) 9.27492i 0.319256i
\(845\) −7.45017 −0.256293
\(846\) 12.5498i 0.431472i
\(847\) 10.0000i 0.343604i
\(848\) 2.00000i 0.0686803i
\(849\) 23.6495i 0.811649i
\(850\) 7.29901i 0.250354i
\(851\) 0 0
\(852\) 11.2749 0.386272
\(853\) 24.5498 0.840570 0.420285 0.907392i \(-0.361930\pi\)
0.420285 + 0.907392i \(0.361930\pi\)
\(854\) 17.0997i 0.585139i
\(855\) 4.17525i 0.142790i
\(856\) −11.8248 −0.404162
\(857\) 6.35050 0.216929 0.108464 0.994100i \(-0.465407\pi\)
0.108464 + 0.994100i \(0.465407\pi\)
\(858\) 13.0997i 0.447215i
\(859\) 54.1993 1.84926 0.924629 0.380870i \(-0.124375\pi\)
0.924629 + 0.380870i \(0.124375\pi\)
\(860\) −8.35050 −0.284750
\(861\) −12.5498 + 2.54983i −0.427697 + 0.0868981i
\(862\) −34.5498 −1.17677
\(863\) 26.5498 0.903767 0.451883 0.892077i \(-0.350752\pi\)
0.451883 + 0.892077i \(0.350752\pi\)
\(864\) 1.00000i 0.0340207i
\(865\) −75.6495 −2.57216
\(866\) 8.72508 0.296490
\(867\) 15.3746i 0.522148i
\(868\) 18.5498i 0.629622i
\(869\) 34.1993 1.16013
\(870\) 28.0000 0.949289
\(871\) 30.3746 1.02920
\(872\) 19.0997i 0.646796i
\(873\) 14.5498i 0.492437i
\(874\) 0 0
\(875\) 4.74917i 0.160551i
\(876\) 7.27492i 0.245797i
\(877\) −25.6495 −0.866122 −0.433061 0.901365i \(-0.642567\pi\)
−0.433061 + 0.901365i \(0.642567\pi\)
\(878\) 8.90033i 0.300372i
\(879\) 2.00000 0.0674583
\(880\) 13.0997i 0.441590i
\(881\) 24.1993 0.815296 0.407648 0.913139i \(-0.366349\pi\)
0.407648 + 0.913139i \(0.366349\pi\)
\(882\) 3.00000 0.101015
\(883\) 5.62541i 0.189310i 0.995510 + 0.0946551i \(0.0301748\pi\)
−0.995510 + 0.0946551i \(0.969825\pi\)
\(884\) 4.17525 0.140429
\(885\) 17.2749i 0.580690i
\(886\) 14.3746 0.482924
\(887\) 26.9244i 0.904034i −0.892009 0.452017i \(-0.850705\pi\)
0.892009 0.452017i \(-0.149295\pi\)
\(888\) 6.00000i 0.201347i
\(889\) 2.54983i 0.0855187i
\(890\) 25.6254i 0.858966i
\(891\) 4.00000i 0.134005i
\(892\) 25.2749 0.846267
\(893\) 16.0000 0.535420
\(894\) −16.5498 −0.553509
\(895\) 29.8007i 0.996126i
\(896\) 2.00000i 0.0668153i
\(897\) 0 0
\(898\) −10.0000 −0.333704
\(899\) 79.2990i 2.64477i
\(900\) −5.72508 −0.190836
\(901\) 2.54983 0.0849473
\(902\) 5.09967 + 25.0997i 0.169800 + 0.835728i
\(903\) 5.09967 0.169706
\(904\) −4.54983 −0.151325
\(905\) 36.9244i 1.22741i
\(906\) 2.00000 0.0664455
\(907\) −32.7492 −1.08742 −0.543709 0.839274i \(-0.682981\pi\)
−0.543709 + 0.839274i \(0.682981\pi\)
\(908\) 26.5498i 0.881087i
\(909\) 16.5498i 0.548923i
\(910\) −21.4502 −0.711066
\(911\) 13.4502 0.445624 0.222812 0.974861i \(-0.428476\pi\)
0.222812 + 0.974861i \(0.428476\pi\)
\(912\) 1.27492 0.0422167
\(913\) 5.09967i 0.168774i
\(914\) 1.09967i 0.0363738i
\(915\) 28.0000i 0.925651i
\(916\) 19.0997i 0.631071i
\(917\) 32.0000i 1.05673i
\(918\) −1.27492 −0.0420785
\(919\) 52.5498i 1.73346i −0.498778 0.866730i \(-0.666218\pi\)
0.498778 0.866730i \(-0.333782\pi\)
\(920\) 0 0
\(921\) 33.0997i 1.09067i
\(922\) −3.09967 −0.102082
\(923\) −36.9244 −1.21538
\(924\) 8.00000i 0.263181i
\(925\) −34.3505 −1.12944
\(926\) 11.4502i 0.376276i
\(927\) 11.8248 0.388376
\(928\) 8.54983i 0.280662i
\(929\) 4.17525i 0.136985i −0.997652 0.0684927i \(-0.978181\pi\)
0.997652 0.0684927i \(-0.0218190\pi\)
\(930\) 30.3746i 0.996022i
\(931\) 3.82475i 0.125351i
\(932\) 7.82475i 0.256308i
\(933\) −20.7251 −0.678509
\(934\) 29.2749 0.957905
\(935\) −16.7010 −0.546181
\(936\) 3.27492i 0.107044i
\(937\) 18.1993i 0.594546i 0.954792 + 0.297273i \(0.0960772\pi\)
−0.954792 + 0.297273i \(0.903923\pi\)
\(938\) −18.5498 −0.605674
\(939\) 19.6495 0.641237
\(940\) 41.0997i 1.34052i
\(941\) 40.3746 1.31617 0.658087 0.752942i \(-0.271366\pi\)
0.658087 + 0.752942i \(0.271366\pi\)
\(942\) 14.0000 0.456145
\(943\) 0 0
\(944\) 5.27492 0.171684
\(945\) 6.54983 0.213066
\(946\) 10.1993i 0.331609i
\(947\) −29.2749 −0.951307 −0.475653 0.879633i \(-0.657788\pi\)
−0.475653 + 0.879633i \(0.657788\pi\)
\(948\) −8.54983 −0.277686
\(949\) 23.8248i 0.773384i
\(950\) 7.29901i 0.236811i
\(951\) 15.4502 0.501006
\(952\) −2.54983 −0.0826406
\(953\) −15.4502 −0.500480 −0.250240 0.968184i \(-0.580510\pi\)
−0.250240 + 0.968184i \(0.580510\pi\)
\(954\) 2.00000i 0.0647524i
\(955\) 14.9003i 0.482163i
\(956\) 15.2749i 0.494026i
\(957\) 34.1993i 1.10551i
\(958\) 18.9244i 0.611420i
\(959\) 21.0997 0.681344
\(960\) 3.27492i 0.105697i
\(961\) 55.0241 1.77497
\(962\) 19.6495i 0.633525i
\(963\) −11.8248 −0.381047
\(964\) 9.82475 0.316434
\(965\) 65.4983i 2.10847i
\(966\) 0 0
\(967\) 32.5498i 1.04673i −0.852108 0.523366i \(-0.824676\pi\)
0.852108 0.523366i \(-0.175324\pi\)
\(968\) 5.00000 0.160706
\(969\) 1.62541i 0.0522158i
\(970\) 47.6495i 1.52993i
\(971\) 11.6495i 0.373850i 0.982374 + 0.186925i \(0.0598522\pi\)
−0.982374 + 0.186925i \(0.940148\pi\)
\(972\) 1.00000i 0.0320750i
\(973\) 21.0997i 0.676424i
\(974\) −35.8248 −1.14790
\(975\) 18.7492 0.600454
\(976\) 8.54983 0.273674
\(977\) 46.3746i 1.48365i 0.670591 + 0.741827i \(0.266041\pi\)
−0.670591 + 0.741827i \(0.733959\pi\)
\(978\) 4.00000i 0.127906i
\(979\) 31.2990 1.00032
\(980\) −9.82475 −0.313840
\(981\) 19.0997i 0.609805i
\(982\) −7.82475 −0.249698
\(983\) −10.9003 −0.347667 −0.173833 0.984775i \(-0.555615\pi\)
−0.173833 + 0.984775i \(0.555615\pi\)
\(984\) −1.27492 6.27492i −0.0406429 0.200037i
\(985\) 76.2234 2.42868
\(986\) −10.9003 −0.347137
\(987\) 25.0997i 0.798931i
\(988\) −4.17525 −0.132832
\(989\) 0 0
\(990\) 13.0997i 0.416335i
\(991\) 16.9003i 0.536857i 0.963300 + 0.268428i \(0.0865043\pi\)
−0.963300 + 0.268428i \(0.913496\pi\)
\(992\) 9.27492 0.294479
\(993\) 29.0997 0.923450
\(994\) 22.5498 0.715237
\(995\) 6.54983i 0.207644i
\(996\) 1.27492i 0.0403973i
\(997\) 42.9244i 1.35943i 0.733476 + 0.679715i \(0.237897\pi\)
−0.733476 + 0.679715i \(0.762103\pi\)
\(998\) 14.3746i 0.455020i
\(999\) 6.00000i 0.189832i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 246.2.d.b.163.1 4
3.2 odd 2 738.2.d.h.163.4 4
4.3 odd 2 1968.2.j.c.1393.3 4
41.40 even 2 inner 246.2.d.b.163.3 yes 4
123.122 odd 2 738.2.d.h.163.3 4
164.163 odd 2 1968.2.j.c.1393.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
246.2.d.b.163.1 4 1.1 even 1 trivial
246.2.d.b.163.3 yes 4 41.40 even 2 inner
738.2.d.h.163.3 4 123.122 odd 2
738.2.d.h.163.4 4 3.2 odd 2
1968.2.j.c.1393.1 4 164.163 odd 2
1968.2.j.c.1393.3 4 4.3 odd 2