Properties

Label 2450.4.a.z
Level $2450$
Weight $4$
Character orbit 2450.a
Self dual yes
Analytic conductor $144.555$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2450,4,Mod(1,2450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2450.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2450 = 2 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,2,-4,4,0,-8,0,8,-11,0,30] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(144.554679514\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 350)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 2 q^{2} - 4 q^{3} + 4 q^{4} - 8 q^{6} + 8 q^{8} - 11 q^{9} + 30 q^{11} - 16 q^{12} + 4 q^{13} + 16 q^{16} - 9 q^{17} - 22 q^{18} - 88 q^{19} + 60 q^{22} - 33 q^{23} - 32 q^{24} + 8 q^{26} + 152 q^{27}+ \cdots - 330 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
2.00000 −4.00000 4.00000 0 −8.00000 0 8.00000 −11.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2450.4.a.z 1
5.b even 2 1 2450.4.a.p 1
7.b odd 2 1 2450.4.a.bl 1
7.c even 3 2 350.4.e.c 2
35.c odd 2 1 2450.4.a.f 1
35.j even 6 2 350.4.e.f yes 2
35.l odd 12 4 350.4.j.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
350.4.e.c 2 7.c even 3 2
350.4.e.f yes 2 35.j even 6 2
350.4.j.c 4 35.l odd 12 4
2450.4.a.f 1 35.c odd 2 1
2450.4.a.p 1 5.b even 2 1
2450.4.a.z 1 1.a even 1 1 trivial
2450.4.a.bl 1 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2450))\):

\( T_{3} + 4 \) Copy content Toggle raw display
\( T_{11} - 30 \) Copy content Toggle raw display
\( T_{19} + 88 \) Copy content Toggle raw display
\( T_{23} + 33 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 2 \) Copy content Toggle raw display
$3$ \( T + 4 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T - 30 \) Copy content Toggle raw display
$13$ \( T - 4 \) Copy content Toggle raw display
$17$ \( T + 9 \) Copy content Toggle raw display
$19$ \( T + 88 \) Copy content Toggle raw display
$23$ \( T + 33 \) Copy content Toggle raw display
$29$ \( T - 126 \) Copy content Toggle raw display
$31$ \( T - 155 \) Copy content Toggle raw display
$37$ \( T + 116 \) Copy content Toggle raw display
$41$ \( T + 423 \) Copy content Toggle raw display
$43$ \( T - 340 \) Copy content Toggle raw display
$47$ \( T + 339 \) Copy content Toggle raw display
$53$ \( T - 312 \) Copy content Toggle raw display
$59$ \( T + 462 \) Copy content Toggle raw display
$61$ \( T - 326 \) Copy content Toggle raw display
$67$ \( T + 704 \) Copy content Toggle raw display
$71$ \( T - 621 \) Copy content Toggle raw display
$73$ \( T - 250 \) Copy content Toggle raw display
$79$ \( T + 1105 \) Copy content Toggle raw display
$83$ \( T - 198 \) Copy content Toggle raw display
$89$ \( T + 873 \) Copy content Toggle raw display
$97$ \( T + 905 \) Copy content Toggle raw display
show more
show less