Properties

Label 2450.4.a.da.1.8
Level $2450$
Weight $4$
Character 2450.1
Self dual yes
Analytic conductor $144.555$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2450,4,Mod(1,2450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2450.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2450 = 2 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,16,0,32,0,0,0,64,76,0,36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(144.554679514\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 146x^{6} + 4997x^{4} - 4646x^{2} + 676 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2\cdot 7^{2}\cdot 11^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(7.24569\) of defining polynomial
Character \(\chi\) \(=\) 2450.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +8.65990 q^{3} +4.00000 q^{4} +17.3198 q^{6} +8.00000 q^{8} +47.9939 q^{9} +22.1723 q^{11} +34.6396 q^{12} +66.1544 q^{13} +16.0000 q^{16} +132.325 q^{17} +95.9878 q^{18} -56.5761 q^{19} +44.3445 q^{22} +21.9085 q^{23} +69.2792 q^{24} +132.309 q^{26} +181.805 q^{27} -93.9344 q^{29} -299.832 q^{31} +32.0000 q^{32} +192.010 q^{33} +264.650 q^{34} +191.976 q^{36} -170.797 q^{37} -113.152 q^{38} +572.890 q^{39} +137.875 q^{41} +275.761 q^{43} +88.6891 q^{44} +43.8170 q^{46} +100.717 q^{47} +138.558 q^{48} +1145.92 q^{51} +264.617 q^{52} +36.2240 q^{53} +363.610 q^{54} -489.944 q^{57} -187.869 q^{58} +717.346 q^{59} -722.798 q^{61} -599.663 q^{62} +64.0000 q^{64} +384.019 q^{66} +123.976 q^{67} +529.300 q^{68} +189.726 q^{69} -907.172 q^{71} +383.951 q^{72} -794.370 q^{73} -341.594 q^{74} -226.304 q^{76} +1145.78 q^{78} -1163.27 q^{79} +278.579 q^{81} +275.750 q^{82} +1130.09 q^{83} +551.521 q^{86} -813.463 q^{87} +177.378 q^{88} +897.342 q^{89} +87.6340 q^{92} -2596.51 q^{93} +201.435 q^{94} +277.117 q^{96} +1517.68 q^{97} +1064.13 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{2} + 32 q^{4} + 64 q^{8} + 76 q^{9} + 36 q^{11} + 128 q^{16} + 152 q^{18} + 72 q^{22} + 164 q^{23} + 392 q^{29} + 256 q^{32} + 304 q^{36} + 32 q^{37} + 832 q^{39} + 752 q^{43} + 144 q^{44} + 328 q^{46}+ \cdots + 2892 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 8.65990 1.66660 0.833299 0.552822i \(-0.186449\pi\)
0.833299 + 0.552822i \(0.186449\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) 17.3198 1.17846
\(7\) 0 0
\(8\) 8.00000 0.353553
\(9\) 47.9939 1.77755
\(10\) 0 0
\(11\) 22.1723 0.607745 0.303872 0.952713i \(-0.401720\pi\)
0.303872 + 0.952713i \(0.401720\pi\)
\(12\) 34.6396 0.833299
\(13\) 66.1544 1.41138 0.705689 0.708522i \(-0.250638\pi\)
0.705689 + 0.708522i \(0.250638\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 132.325 1.88785 0.943927 0.330155i \(-0.107101\pi\)
0.943927 + 0.330155i \(0.107101\pi\)
\(18\) 95.9878 1.25692
\(19\) −56.5761 −0.683129 −0.341565 0.939858i \(-0.610957\pi\)
−0.341565 + 0.939858i \(0.610957\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 44.3445 0.429740
\(23\) 21.9085 0.198619 0.0993096 0.995057i \(-0.468337\pi\)
0.0993096 + 0.995057i \(0.468337\pi\)
\(24\) 69.2792 0.589232
\(25\) 0 0
\(26\) 132.309 0.997995
\(27\) 181.805 1.29587
\(28\) 0 0
\(29\) −93.9344 −0.601489 −0.300744 0.953705i \(-0.597235\pi\)
−0.300744 + 0.953705i \(0.597235\pi\)
\(30\) 0 0
\(31\) −299.832 −1.73714 −0.868570 0.495566i \(-0.834961\pi\)
−0.868570 + 0.495566i \(0.834961\pi\)
\(32\) 32.0000 0.176777
\(33\) 192.010 1.01287
\(34\) 264.650 1.33491
\(35\) 0 0
\(36\) 191.976 0.888776
\(37\) −170.797 −0.758889 −0.379445 0.925214i \(-0.623885\pi\)
−0.379445 + 0.925214i \(0.623885\pi\)
\(38\) −113.152 −0.483045
\(39\) 572.890 2.35220
\(40\) 0 0
\(41\) 137.875 0.525182 0.262591 0.964907i \(-0.415423\pi\)
0.262591 + 0.964907i \(0.415423\pi\)
\(42\) 0 0
\(43\) 275.761 0.977979 0.488990 0.872290i \(-0.337366\pi\)
0.488990 + 0.872290i \(0.337366\pi\)
\(44\) 88.6891 0.303872
\(45\) 0 0
\(46\) 43.8170 0.140445
\(47\) 100.717 0.312577 0.156289 0.987711i \(-0.450047\pi\)
0.156289 + 0.987711i \(0.450047\pi\)
\(48\) 138.558 0.416650
\(49\) 0 0
\(50\) 0 0
\(51\) 1145.92 3.14629
\(52\) 264.617 0.705689
\(53\) 36.2240 0.0938822 0.0469411 0.998898i \(-0.485053\pi\)
0.0469411 + 0.998898i \(0.485053\pi\)
\(54\) 363.610 0.916316
\(55\) 0 0
\(56\) 0 0
\(57\) −489.944 −1.13850
\(58\) −187.869 −0.425317
\(59\) 717.346 1.58289 0.791445 0.611241i \(-0.209329\pi\)
0.791445 + 0.611241i \(0.209329\pi\)
\(60\) 0 0
\(61\) −722.798 −1.51713 −0.758564 0.651599i \(-0.774099\pi\)
−0.758564 + 0.651599i \(0.774099\pi\)
\(62\) −599.663 −1.22834
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 384.019 0.716205
\(67\) 123.976 0.226060 0.113030 0.993592i \(-0.463944\pi\)
0.113030 + 0.993592i \(0.463944\pi\)
\(68\) 529.300 0.943927
\(69\) 189.726 0.331018
\(70\) 0 0
\(71\) −907.172 −1.51636 −0.758180 0.652046i \(-0.773911\pi\)
−0.758180 + 0.652046i \(0.773911\pi\)
\(72\) 383.951 0.628460
\(73\) −794.370 −1.27362 −0.636808 0.771023i \(-0.719745\pi\)
−0.636808 + 0.771023i \(0.719745\pi\)
\(74\) −341.594 −0.536616
\(75\) 0 0
\(76\) −226.304 −0.341565
\(77\) 0 0
\(78\) 1145.78 1.66326
\(79\) −1163.27 −1.65669 −0.828346 0.560217i \(-0.810718\pi\)
−0.828346 + 0.560217i \(0.810718\pi\)
\(80\) 0 0
\(81\) 278.579 0.382139
\(82\) 275.750 0.371360
\(83\) 1130.09 1.49450 0.747249 0.664544i \(-0.231374\pi\)
0.747249 + 0.664544i \(0.231374\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 551.521 0.691536
\(87\) −813.463 −1.00244
\(88\) 177.378 0.214870
\(89\) 897.342 1.06874 0.534371 0.845250i \(-0.320548\pi\)
0.534371 + 0.845250i \(0.320548\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 87.6340 0.0993096
\(93\) −2596.51 −2.89512
\(94\) 201.435 0.221026
\(95\) 0 0
\(96\) 277.117 0.294616
\(97\) 1517.68 1.58863 0.794315 0.607506i \(-0.207830\pi\)
0.794315 + 0.607506i \(0.207830\pi\)
\(98\) 0 0
\(99\) 1064.13 1.08030
\(100\) 0 0
\(101\) 45.5877 0.0449123 0.0224562 0.999748i \(-0.492851\pi\)
0.0224562 + 0.999748i \(0.492851\pi\)
\(102\) 2291.84 2.22477
\(103\) −1063.01 −1.01691 −0.508456 0.861088i \(-0.669784\pi\)
−0.508456 + 0.861088i \(0.669784\pi\)
\(104\) 529.235 0.498998
\(105\) 0 0
\(106\) 72.4481 0.0663847
\(107\) −264.881 −0.239318 −0.119659 0.992815i \(-0.538180\pi\)
−0.119659 + 0.992815i \(0.538180\pi\)
\(108\) 727.221 0.647934
\(109\) 885.061 0.777738 0.388869 0.921293i \(-0.372866\pi\)
0.388869 + 0.921293i \(0.372866\pi\)
\(110\) 0 0
\(111\) −1479.09 −1.26476
\(112\) 0 0
\(113\) 1605.55 1.33661 0.668305 0.743887i \(-0.267020\pi\)
0.668305 + 0.743887i \(0.267020\pi\)
\(114\) −979.887 −0.805043
\(115\) 0 0
\(116\) −375.738 −0.300744
\(117\) 3175.01 2.50880
\(118\) 1434.69 1.11927
\(119\) 0 0
\(120\) 0 0
\(121\) −839.390 −0.630646
\(122\) −1445.60 −1.07277
\(123\) 1193.98 0.875268
\(124\) −1199.33 −0.868570
\(125\) 0 0
\(126\) 0 0
\(127\) 2468.88 1.72502 0.862511 0.506038i \(-0.168890\pi\)
0.862511 + 0.506038i \(0.168890\pi\)
\(128\) 128.000 0.0883883
\(129\) 2388.06 1.62990
\(130\) 0 0
\(131\) −2763.11 −1.84285 −0.921427 0.388551i \(-0.872976\pi\)
−0.921427 + 0.388551i \(0.872976\pi\)
\(132\) 768.039 0.506433
\(133\) 0 0
\(134\) 247.951 0.159849
\(135\) 0 0
\(136\) 1058.60 0.667457
\(137\) 337.270 0.210328 0.105164 0.994455i \(-0.466463\pi\)
0.105164 + 0.994455i \(0.466463\pi\)
\(138\) 379.451 0.234065
\(139\) −1644.19 −1.00329 −0.501647 0.865072i \(-0.667272\pi\)
−0.501647 + 0.865072i \(0.667272\pi\)
\(140\) 0 0
\(141\) 872.203 0.520941
\(142\) −1814.34 −1.07223
\(143\) 1466.79 0.857758
\(144\) 767.902 0.444388
\(145\) 0 0
\(146\) −1588.74 −0.900582
\(147\) 0 0
\(148\) −683.189 −0.379445
\(149\) −1894.41 −1.04158 −0.520792 0.853683i \(-0.674363\pi\)
−0.520792 + 0.853683i \(0.674363\pi\)
\(150\) 0 0
\(151\) 859.608 0.463271 0.231635 0.972803i \(-0.425592\pi\)
0.231635 + 0.972803i \(0.425592\pi\)
\(152\) −452.609 −0.241523
\(153\) 6350.79 3.35576
\(154\) 0 0
\(155\) 0 0
\(156\) 2291.56 1.17610
\(157\) −1389.94 −0.706554 −0.353277 0.935519i \(-0.614933\pi\)
−0.353277 + 0.935519i \(0.614933\pi\)
\(158\) −2326.55 −1.17146
\(159\) 313.697 0.156464
\(160\) 0 0
\(161\) 0 0
\(162\) 557.159 0.270213
\(163\) −3170.43 −1.52348 −0.761740 0.647883i \(-0.775655\pi\)
−0.761740 + 0.647883i \(0.775655\pi\)
\(164\) 551.500 0.262591
\(165\) 0 0
\(166\) 2260.18 1.05677
\(167\) −497.526 −0.230537 −0.115269 0.993334i \(-0.536773\pi\)
−0.115269 + 0.993334i \(0.536773\pi\)
\(168\) 0 0
\(169\) 2179.40 0.991988
\(170\) 0 0
\(171\) −2715.31 −1.21430
\(172\) 1103.04 0.488990
\(173\) 4231.03 1.85942 0.929709 0.368294i \(-0.120058\pi\)
0.929709 + 0.368294i \(0.120058\pi\)
\(174\) −1626.93 −0.708833
\(175\) 0 0
\(176\) 354.756 0.151936
\(177\) 6212.14 2.63804
\(178\) 1794.68 0.755715
\(179\) 797.157 0.332862 0.166431 0.986053i \(-0.446776\pi\)
0.166431 + 0.986053i \(0.446776\pi\)
\(180\) 0 0
\(181\) −1893.79 −0.777703 −0.388851 0.921301i \(-0.627128\pi\)
−0.388851 + 0.921301i \(0.627128\pi\)
\(182\) 0 0
\(183\) −6259.36 −2.52844
\(184\) 175.268 0.0702225
\(185\) 0 0
\(186\) −5193.02 −2.04716
\(187\) 2933.94 1.14733
\(188\) 402.870 0.156289
\(189\) 0 0
\(190\) 0 0
\(191\) 3988.00 1.51079 0.755397 0.655268i \(-0.227444\pi\)
0.755397 + 0.655268i \(0.227444\pi\)
\(192\) 554.234 0.208325
\(193\) 4051.43 1.51103 0.755513 0.655134i \(-0.227388\pi\)
0.755513 + 0.655134i \(0.227388\pi\)
\(194\) 3035.36 1.12333
\(195\) 0 0
\(196\) 0 0
\(197\) 1749.83 0.632842 0.316421 0.948619i \(-0.397519\pi\)
0.316421 + 0.948619i \(0.397519\pi\)
\(198\) 2128.27 0.763886
\(199\) −2317.90 −0.825685 −0.412843 0.910802i \(-0.635464\pi\)
−0.412843 + 0.910802i \(0.635464\pi\)
\(200\) 0 0
\(201\) 1073.62 0.376752
\(202\) 91.1753 0.0317578
\(203\) 0 0
\(204\) 4583.68 1.57315
\(205\) 0 0
\(206\) −2126.03 −0.719065
\(207\) 1051.47 0.353056
\(208\) 1058.47 0.352845
\(209\) −1254.42 −0.415168
\(210\) 0 0
\(211\) 2196.02 0.716493 0.358246 0.933627i \(-0.383375\pi\)
0.358246 + 0.933627i \(0.383375\pi\)
\(212\) 144.896 0.0469411
\(213\) −7856.02 −2.52716
\(214\) −529.762 −0.169223
\(215\) 0 0
\(216\) 1454.44 0.458158
\(217\) 0 0
\(218\) 1770.12 0.549944
\(219\) −6879.16 −2.12261
\(220\) 0 0
\(221\) 8753.87 2.66447
\(222\) −2958.17 −0.894323
\(223\) −2111.54 −0.634077 −0.317038 0.948413i \(-0.602688\pi\)
−0.317038 + 0.948413i \(0.602688\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 3211.09 0.945127
\(227\) 3728.06 1.09004 0.545022 0.838422i \(-0.316521\pi\)
0.545022 + 0.838422i \(0.316521\pi\)
\(228\) −1959.77 −0.569251
\(229\) −700.918 −0.202262 −0.101131 0.994873i \(-0.532246\pi\)
−0.101131 + 0.994873i \(0.532246\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −751.475 −0.212658
\(233\) 4355.40 1.22460 0.612300 0.790625i \(-0.290244\pi\)
0.612300 + 0.790625i \(0.290244\pi\)
\(234\) 6350.01 1.77399
\(235\) 0 0
\(236\) 2869.38 0.791445
\(237\) −10073.8 −2.76104
\(238\) 0 0
\(239\) 2722.45 0.736823 0.368412 0.929663i \(-0.379902\pi\)
0.368412 + 0.929663i \(0.379902\pi\)
\(240\) 0 0
\(241\) −2477.11 −0.662094 −0.331047 0.943614i \(-0.607402\pi\)
−0.331047 + 0.943614i \(0.607402\pi\)
\(242\) −1678.78 −0.445934
\(243\) −2496.27 −0.658995
\(244\) −2891.19 −0.758564
\(245\) 0 0
\(246\) 2387.97 0.618908
\(247\) −3742.76 −0.964153
\(248\) −2398.65 −0.614172
\(249\) 9786.45 2.49073
\(250\) 0 0
\(251\) −249.512 −0.0627453 −0.0313727 0.999508i \(-0.509988\pi\)
−0.0313727 + 0.999508i \(0.509988\pi\)
\(252\) 0 0
\(253\) 485.761 0.120710
\(254\) 4937.77 1.21978
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 960.811 0.233205 0.116603 0.993179i \(-0.462800\pi\)
0.116603 + 0.993179i \(0.462800\pi\)
\(258\) 4776.12 1.15251
\(259\) 0 0
\(260\) 0 0
\(261\) −4508.28 −1.06918
\(262\) −5526.22 −1.30309
\(263\) −3956.63 −0.927665 −0.463833 0.885923i \(-0.653526\pi\)
−0.463833 + 0.885923i \(0.653526\pi\)
\(264\) 1536.08 0.358102
\(265\) 0 0
\(266\) 0 0
\(267\) 7770.90 1.78117
\(268\) 495.902 0.113030
\(269\) −1832.93 −0.415449 −0.207725 0.978187i \(-0.566606\pi\)
−0.207725 + 0.978187i \(0.566606\pi\)
\(270\) 0 0
\(271\) 1907.68 0.427614 0.213807 0.976876i \(-0.431414\pi\)
0.213807 + 0.976876i \(0.431414\pi\)
\(272\) 2117.20 0.471963
\(273\) 0 0
\(274\) 674.539 0.148724
\(275\) 0 0
\(276\) 758.902 0.165509
\(277\) 7418.68 1.60919 0.804594 0.593825i \(-0.202383\pi\)
0.804594 + 0.593825i \(0.202383\pi\)
\(278\) −3288.37 −0.709436
\(279\) −14390.1 −3.08786
\(280\) 0 0
\(281\) −7297.51 −1.54923 −0.774614 0.632435i \(-0.782056\pi\)
−0.774614 + 0.632435i \(0.782056\pi\)
\(282\) 1744.41 0.368361
\(283\) −4034.47 −0.847435 −0.423718 0.905794i \(-0.639275\pi\)
−0.423718 + 0.905794i \(0.639275\pi\)
\(284\) −3628.69 −0.758180
\(285\) 0 0
\(286\) 2933.58 0.606526
\(287\) 0 0
\(288\) 1535.80 0.314230
\(289\) 12596.9 2.56399
\(290\) 0 0
\(291\) 13143.0 2.64761
\(292\) −3177.48 −0.636808
\(293\) −5854.31 −1.16728 −0.583639 0.812013i \(-0.698372\pi\)
−0.583639 + 0.812013i \(0.698372\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −1366.38 −0.268308
\(297\) 4031.03 0.787556
\(298\) −3788.82 −0.736511
\(299\) 1449.34 0.280327
\(300\) 0 0
\(301\) 0 0
\(302\) 1719.22 0.327582
\(303\) 394.785 0.0748508
\(304\) −905.218 −0.170782
\(305\) 0 0
\(306\) 12701.6 2.37288
\(307\) 2659.84 0.494479 0.247240 0.968954i \(-0.420476\pi\)
0.247240 + 0.968954i \(0.420476\pi\)
\(308\) 0 0
\(309\) −9205.60 −1.69478
\(310\) 0 0
\(311\) −4574.29 −0.834032 −0.417016 0.908899i \(-0.636924\pi\)
−0.417016 + 0.908899i \(0.636924\pi\)
\(312\) 4583.12 0.831629
\(313\) −4987.46 −0.900665 −0.450332 0.892861i \(-0.648694\pi\)
−0.450332 + 0.892861i \(0.648694\pi\)
\(314\) −2779.87 −0.499609
\(315\) 0 0
\(316\) −4653.10 −0.828346
\(317\) 5692.82 1.00865 0.504323 0.863515i \(-0.331742\pi\)
0.504323 + 0.863515i \(0.331742\pi\)
\(318\) 627.393 0.110637
\(319\) −2082.74 −0.365552
\(320\) 0 0
\(321\) −2293.85 −0.398847
\(322\) 0 0
\(323\) −7486.43 −1.28965
\(324\) 1114.32 0.191069
\(325\) 0 0
\(326\) −6340.86 −1.07726
\(327\) 7664.54 1.29618
\(328\) 1103.00 0.185680
\(329\) 0 0
\(330\) 0 0
\(331\) −6368.23 −1.05749 −0.528746 0.848780i \(-0.677338\pi\)
−0.528746 + 0.848780i \(0.677338\pi\)
\(332\) 4520.35 0.747249
\(333\) −8197.23 −1.34896
\(334\) −995.051 −0.163014
\(335\) 0 0
\(336\) 0 0
\(337\) −6228.66 −1.00682 −0.503408 0.864049i \(-0.667921\pi\)
−0.503408 + 0.864049i \(0.667921\pi\)
\(338\) 4358.80 0.701442
\(339\) 13903.9 2.22759
\(340\) 0 0
\(341\) −6647.95 −1.05574
\(342\) −5430.62 −0.858638
\(343\) 0 0
\(344\) 2206.09 0.345768
\(345\) 0 0
\(346\) 8462.06 1.31481
\(347\) 3405.25 0.526812 0.263406 0.964685i \(-0.415154\pi\)
0.263406 + 0.964685i \(0.415154\pi\)
\(348\) −3253.85 −0.501220
\(349\) −11985.4 −1.83829 −0.919143 0.393925i \(-0.871117\pi\)
−0.919143 + 0.393925i \(0.871117\pi\)
\(350\) 0 0
\(351\) 12027.2 1.82896
\(352\) 709.513 0.107435
\(353\) −8400.71 −1.26664 −0.633321 0.773889i \(-0.718309\pi\)
−0.633321 + 0.773889i \(0.718309\pi\)
\(354\) 12424.3 1.86538
\(355\) 0 0
\(356\) 3589.37 0.534371
\(357\) 0 0
\(358\) 1594.31 0.235369
\(359\) −716.465 −0.105330 −0.0526652 0.998612i \(-0.516772\pi\)
−0.0526652 + 0.998612i \(0.516772\pi\)
\(360\) 0 0
\(361\) −3658.14 −0.533335
\(362\) −3787.58 −0.549919
\(363\) −7269.04 −1.05103
\(364\) 0 0
\(365\) 0 0
\(366\) −12518.7 −1.78788
\(367\) 2509.69 0.356962 0.178481 0.983943i \(-0.442882\pi\)
0.178481 + 0.983943i \(0.442882\pi\)
\(368\) 350.536 0.0496548
\(369\) 6617.16 0.933539
\(370\) 0 0
\(371\) 0 0
\(372\) −10386.0 −1.44756
\(373\) 802.750 0.111434 0.0557169 0.998447i \(-0.482256\pi\)
0.0557169 + 0.998447i \(0.482256\pi\)
\(374\) 5867.89 0.811287
\(375\) 0 0
\(376\) 805.739 0.110513
\(377\) −6214.17 −0.848928
\(378\) 0 0
\(379\) −5322.77 −0.721404 −0.360702 0.932681i \(-0.617463\pi\)
−0.360702 + 0.932681i \(0.617463\pi\)
\(380\) 0 0
\(381\) 21380.3 2.87492
\(382\) 7976.00 1.06829
\(383\) −13490.7 −1.79985 −0.899923 0.436049i \(-0.856377\pi\)
−0.899923 + 0.436049i \(0.856377\pi\)
\(384\) 1108.47 0.147308
\(385\) 0 0
\(386\) 8102.85 1.06846
\(387\) 13234.8 1.73841
\(388\) 6070.72 0.794315
\(389\) 5129.21 0.668538 0.334269 0.942478i \(-0.391511\pi\)
0.334269 + 0.942478i \(0.391511\pi\)
\(390\) 0 0
\(391\) 2899.04 0.374964
\(392\) 0 0
\(393\) −23928.2 −3.07130
\(394\) 3499.65 0.447487
\(395\) 0 0
\(396\) 4256.54 0.540149
\(397\) 6546.69 0.827630 0.413815 0.910361i \(-0.364196\pi\)
0.413815 + 0.910361i \(0.364196\pi\)
\(398\) −4635.79 −0.583848
\(399\) 0 0
\(400\) 0 0
\(401\) 26.4671 0.00329602 0.00164801 0.999999i \(-0.499475\pi\)
0.00164801 + 0.999999i \(0.499475\pi\)
\(402\) 2147.23 0.266404
\(403\) −19835.2 −2.45176
\(404\) 182.351 0.0224562
\(405\) 0 0
\(406\) 0 0
\(407\) −3786.96 −0.461211
\(408\) 9167.37 1.11238
\(409\) 5918.35 0.715510 0.357755 0.933816i \(-0.383542\pi\)
0.357755 + 0.933816i \(0.383542\pi\)
\(410\) 0 0
\(411\) 2920.72 0.350532
\(412\) −4252.06 −0.508456
\(413\) 0 0
\(414\) 2102.95 0.249648
\(415\) 0 0
\(416\) 2116.94 0.249499
\(417\) −14238.5 −1.67209
\(418\) −2508.84 −0.293568
\(419\) −4228.31 −0.492999 −0.246499 0.969143i \(-0.579280\pi\)
−0.246499 + 0.969143i \(0.579280\pi\)
\(420\) 0 0
\(421\) 4466.68 0.517084 0.258542 0.966000i \(-0.416758\pi\)
0.258542 + 0.966000i \(0.416758\pi\)
\(422\) 4392.03 0.506637
\(423\) 4833.82 0.555623
\(424\) 289.792 0.0331924
\(425\) 0 0
\(426\) −15712.0 −1.78697
\(427\) 0 0
\(428\) −1059.52 −0.119659
\(429\) 12702.3 1.42954
\(430\) 0 0
\(431\) −1962.97 −0.219381 −0.109690 0.993966i \(-0.534986\pi\)
−0.109690 + 0.993966i \(0.534986\pi\)
\(432\) 2908.88 0.323967
\(433\) −2734.59 −0.303501 −0.151751 0.988419i \(-0.548491\pi\)
−0.151751 + 0.988419i \(0.548491\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 3540.24 0.388869
\(437\) −1239.50 −0.135682
\(438\) −13758.3 −1.50091
\(439\) 8595.68 0.934509 0.467255 0.884123i \(-0.345243\pi\)
0.467255 + 0.884123i \(0.345243\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 17507.7 1.88407
\(443\) −1284.76 −0.137790 −0.0688951 0.997624i \(-0.521947\pi\)
−0.0688951 + 0.997624i \(0.521947\pi\)
\(444\) −5916.35 −0.632382
\(445\) 0 0
\(446\) −4223.08 −0.448360
\(447\) −16405.4 −1.73590
\(448\) 0 0
\(449\) −2633.49 −0.276798 −0.138399 0.990377i \(-0.544196\pi\)
−0.138399 + 0.990377i \(0.544196\pi\)
\(450\) 0 0
\(451\) 3057.00 0.319177
\(452\) 6422.18 0.668305
\(453\) 7444.12 0.772087
\(454\) 7456.12 0.770778
\(455\) 0 0
\(456\) −3919.55 −0.402521
\(457\) −687.957 −0.0704185 −0.0352093 0.999380i \(-0.511210\pi\)
−0.0352093 + 0.999380i \(0.511210\pi\)
\(458\) −1401.84 −0.143021
\(459\) 24057.3 2.44641
\(460\) 0 0
\(461\) −4355.06 −0.439989 −0.219995 0.975501i \(-0.570604\pi\)
−0.219995 + 0.975501i \(0.570604\pi\)
\(462\) 0 0
\(463\) −10900.6 −1.09416 −0.547080 0.837081i \(-0.684260\pi\)
−0.547080 + 0.837081i \(0.684260\pi\)
\(464\) −1502.95 −0.150372
\(465\) 0 0
\(466\) 8710.81 0.865923
\(467\) −15746.8 −1.56033 −0.780166 0.625572i \(-0.784866\pi\)
−0.780166 + 0.625572i \(0.784866\pi\)
\(468\) 12700.0 1.25440
\(469\) 0 0
\(470\) 0 0
\(471\) −12036.7 −1.17754
\(472\) 5738.77 0.559636
\(473\) 6114.24 0.594362
\(474\) −20147.7 −1.95235
\(475\) 0 0
\(476\) 0 0
\(477\) 1738.53 0.166880
\(478\) 5444.90 0.521013
\(479\) 3752.10 0.357907 0.178954 0.983857i \(-0.442729\pi\)
0.178954 + 0.983857i \(0.442729\pi\)
\(480\) 0 0
\(481\) −11299.0 −1.07108
\(482\) −4954.22 −0.468171
\(483\) 0 0
\(484\) −3357.56 −0.315323
\(485\) 0 0
\(486\) −4992.54 −0.465980
\(487\) −7497.49 −0.697625 −0.348813 0.937192i \(-0.613415\pi\)
−0.348813 + 0.937192i \(0.613415\pi\)
\(488\) −5782.38 −0.536386
\(489\) −27455.6 −2.53903
\(490\) 0 0
\(491\) 2364.21 0.217302 0.108651 0.994080i \(-0.465347\pi\)
0.108651 + 0.994080i \(0.465347\pi\)
\(492\) 4775.94 0.437634
\(493\) −12429.9 −1.13552
\(494\) −7485.51 −0.681759
\(495\) 0 0
\(496\) −4797.31 −0.434285
\(497\) 0 0
\(498\) 19572.9 1.76121
\(499\) −2964.11 −0.265916 −0.132958 0.991122i \(-0.542448\pi\)
−0.132958 + 0.991122i \(0.542448\pi\)
\(500\) 0 0
\(501\) −4308.52 −0.384213
\(502\) −499.025 −0.0443677
\(503\) 2777.43 0.246202 0.123101 0.992394i \(-0.460716\pi\)
0.123101 + 0.992394i \(0.460716\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 971.523 0.0853547
\(507\) 18873.4 1.65325
\(508\) 9875.53 0.862511
\(509\) −6479.21 −0.564216 −0.282108 0.959383i \(-0.591034\pi\)
−0.282108 + 0.959383i \(0.591034\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 512.000 0.0441942
\(513\) −10285.8 −0.885245
\(514\) 1921.62 0.164901
\(515\) 0 0
\(516\) 9552.24 0.814950
\(517\) 2233.13 0.189967
\(518\) 0 0
\(519\) 36640.3 3.09891
\(520\) 0 0
\(521\) −1303.17 −0.109584 −0.0547919 0.998498i \(-0.517450\pi\)
−0.0547919 + 0.998498i \(0.517450\pi\)
\(522\) −9016.56 −0.756023
\(523\) −6088.73 −0.509066 −0.254533 0.967064i \(-0.581922\pi\)
−0.254533 + 0.967064i \(0.581922\pi\)
\(524\) −11052.4 −0.921427
\(525\) 0 0
\(526\) −7913.25 −0.655958
\(527\) −39675.2 −3.27947
\(528\) 3072.16 0.253217
\(529\) −11687.0 −0.960550
\(530\) 0 0
\(531\) 34428.2 2.81367
\(532\) 0 0
\(533\) 9121.04 0.741231
\(534\) 15541.8 1.25947
\(535\) 0 0
\(536\) 991.805 0.0799243
\(537\) 6903.30 0.554748
\(538\) −3665.86 −0.293767
\(539\) 0 0
\(540\) 0 0
\(541\) 18411.9 1.46320 0.731598 0.681736i \(-0.238775\pi\)
0.731598 + 0.681736i \(0.238775\pi\)
\(542\) 3815.36 0.302368
\(543\) −16400.0 −1.29612
\(544\) 4234.40 0.333728
\(545\) 0 0
\(546\) 0 0
\(547\) −14541.5 −1.13666 −0.568328 0.822802i \(-0.692409\pi\)
−0.568328 + 0.822802i \(0.692409\pi\)
\(548\) 1349.08 0.105164
\(549\) −34689.9 −2.69677
\(550\) 0 0
\(551\) 5314.44 0.410895
\(552\) 1517.80 0.117033
\(553\) 0 0
\(554\) 14837.4 1.13787
\(555\) 0 0
\(556\) −6576.74 −0.501647
\(557\) 19433.6 1.47833 0.739164 0.673525i \(-0.235221\pi\)
0.739164 + 0.673525i \(0.235221\pi\)
\(558\) −28780.2 −2.18344
\(559\) 18242.8 1.38030
\(560\) 0 0
\(561\) 25407.7 1.91214
\(562\) −14595.0 −1.09547
\(563\) −3896.11 −0.291654 −0.145827 0.989310i \(-0.546584\pi\)
−0.145827 + 0.989310i \(0.546584\pi\)
\(564\) 3488.81 0.260471
\(565\) 0 0
\(566\) −8068.93 −0.599227
\(567\) 0 0
\(568\) −7257.38 −0.536114
\(569\) 8980.15 0.661630 0.330815 0.943696i \(-0.392676\pi\)
0.330815 + 0.943696i \(0.392676\pi\)
\(570\) 0 0
\(571\) 18716.1 1.37170 0.685851 0.727742i \(-0.259430\pi\)
0.685851 + 0.727742i \(0.259430\pi\)
\(572\) 5867.17 0.428879
\(573\) 34535.7 2.51789
\(574\) 0 0
\(575\) 0 0
\(576\) 3071.61 0.222194
\(577\) −9696.89 −0.699631 −0.349815 0.936819i \(-0.613756\pi\)
−0.349815 + 0.936819i \(0.613756\pi\)
\(578\) 25193.8 1.81301
\(579\) 35085.0 2.51827
\(580\) 0 0
\(581\) 0 0
\(582\) 26285.9 1.87214
\(583\) 803.169 0.0570564
\(584\) −6354.96 −0.450291
\(585\) 0 0
\(586\) −11708.6 −0.825390
\(587\) −73.3324 −0.00515631 −0.00257815 0.999997i \(-0.500821\pi\)
−0.00257815 + 0.999997i \(0.500821\pi\)
\(588\) 0 0
\(589\) 16963.3 1.18669
\(590\) 0 0
\(591\) 15153.3 1.05469
\(592\) −2732.76 −0.189722
\(593\) 27701.9 1.91835 0.959174 0.282816i \(-0.0912685\pi\)
0.959174 + 0.282816i \(0.0912685\pi\)
\(594\) 8062.07 0.556886
\(595\) 0 0
\(596\) −7577.64 −0.520792
\(597\) −20072.8 −1.37609
\(598\) 2898.69 0.198221
\(599\) 15982.2 1.09018 0.545088 0.838379i \(-0.316496\pi\)
0.545088 + 0.838379i \(0.316496\pi\)
\(600\) 0 0
\(601\) −17877.9 −1.21340 −0.606700 0.794931i \(-0.707507\pi\)
−0.606700 + 0.794931i \(0.707507\pi\)
\(602\) 0 0
\(603\) 5950.07 0.401834
\(604\) 3438.43 0.231635
\(605\) 0 0
\(606\) 789.570 0.0529275
\(607\) −4146.93 −0.277296 −0.138648 0.990342i \(-0.544276\pi\)
−0.138648 + 0.990342i \(0.544276\pi\)
\(608\) −1810.44 −0.120761
\(609\) 0 0
\(610\) 0 0
\(611\) 6662.89 0.441165
\(612\) 25403.2 1.67788
\(613\) 662.364 0.0436421 0.0218211 0.999762i \(-0.493054\pi\)
0.0218211 + 0.999762i \(0.493054\pi\)
\(614\) 5319.68 0.349650
\(615\) 0 0
\(616\) 0 0
\(617\) 8693.21 0.567221 0.283611 0.958940i \(-0.408468\pi\)
0.283611 + 0.958940i \(0.408468\pi\)
\(618\) −18411.2 −1.19839
\(619\) −2914.63 −0.189255 −0.0946275 0.995513i \(-0.530166\pi\)
−0.0946275 + 0.995513i \(0.530166\pi\)
\(620\) 0 0
\(621\) 3983.08 0.257384
\(622\) −9148.58 −0.589750
\(623\) 0 0
\(624\) 9166.24 0.588050
\(625\) 0 0
\(626\) −9974.92 −0.636866
\(627\) −10863.2 −0.691919
\(628\) −5559.75 −0.353277
\(629\) −22600.7 −1.43267
\(630\) 0 0
\(631\) −894.747 −0.0564490 −0.0282245 0.999602i \(-0.508985\pi\)
−0.0282245 + 0.999602i \(0.508985\pi\)
\(632\) −9306.20 −0.585729
\(633\) 19017.3 1.19411
\(634\) 11385.6 0.713221
\(635\) 0 0
\(636\) 1254.79 0.0782320
\(637\) 0 0
\(638\) −4165.48 −0.258484
\(639\) −43538.7 −2.69541
\(640\) 0 0
\(641\) −20085.0 −1.23762 −0.618808 0.785542i \(-0.712384\pi\)
−0.618808 + 0.785542i \(0.712384\pi\)
\(642\) −4587.69 −0.282028
\(643\) −851.943 −0.0522510 −0.0261255 0.999659i \(-0.508317\pi\)
−0.0261255 + 0.999659i \(0.508317\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −14972.9 −0.911918
\(647\) −20767.9 −1.26193 −0.630966 0.775810i \(-0.717341\pi\)
−0.630966 + 0.775810i \(0.717341\pi\)
\(648\) 2228.63 0.135107
\(649\) 15905.2 0.961993
\(650\) 0 0
\(651\) 0 0
\(652\) −12681.7 −0.761740
\(653\) −14705.7 −0.881282 −0.440641 0.897683i \(-0.645249\pi\)
−0.440641 + 0.897683i \(0.645249\pi\)
\(654\) 15329.1 0.916536
\(655\) 0 0
\(656\) 2206.00 0.131296
\(657\) −38124.9 −2.26392
\(658\) 0 0
\(659\) −27657.2 −1.63486 −0.817428 0.576031i \(-0.804601\pi\)
−0.817428 + 0.576031i \(0.804601\pi\)
\(660\) 0 0
\(661\) −19683.3 −1.15823 −0.579117 0.815244i \(-0.696603\pi\)
−0.579117 + 0.815244i \(0.696603\pi\)
\(662\) −12736.5 −0.747760
\(663\) 75807.6 4.44061
\(664\) 9040.71 0.528385
\(665\) 0 0
\(666\) −16394.5 −0.953862
\(667\) −2057.96 −0.119467
\(668\) −1990.10 −0.115269
\(669\) −18285.7 −1.05675
\(670\) 0 0
\(671\) −16026.1 −0.922026
\(672\) 0 0
\(673\) 3443.85 0.197252 0.0986260 0.995125i \(-0.468555\pi\)
0.0986260 + 0.995125i \(0.468555\pi\)
\(674\) −12457.3 −0.711926
\(675\) 0 0
\(676\) 8717.59 0.495994
\(677\) −28254.1 −1.60398 −0.801988 0.597340i \(-0.796224\pi\)
−0.801988 + 0.597340i \(0.796224\pi\)
\(678\) 27807.7 1.57515
\(679\) 0 0
\(680\) 0 0
\(681\) 32284.6 1.81667
\(682\) −13295.9 −0.746519
\(683\) 23937.4 1.34105 0.670525 0.741887i \(-0.266069\pi\)
0.670525 + 0.741887i \(0.266069\pi\)
\(684\) −10861.2 −0.607149
\(685\) 0 0
\(686\) 0 0
\(687\) −6069.88 −0.337089
\(688\) 4412.17 0.244495
\(689\) 2396.38 0.132503
\(690\) 0 0
\(691\) −35157.3 −1.93552 −0.967762 0.251867i \(-0.918956\pi\)
−0.967762 + 0.251867i \(0.918956\pi\)
\(692\) 16924.1 0.929709
\(693\) 0 0
\(694\) 6810.51 0.372512
\(695\) 0 0
\(696\) −6507.70 −0.354416
\(697\) 18244.3 0.991467
\(698\) −23970.7 −1.29986
\(699\) 37717.4 2.04092
\(700\) 0 0
\(701\) −4703.07 −0.253399 −0.126699 0.991941i \(-0.540438\pi\)
−0.126699 + 0.991941i \(0.540438\pi\)
\(702\) 24054.4 1.29327
\(703\) 9663.04 0.518419
\(704\) 1419.03 0.0759681
\(705\) 0 0
\(706\) −16801.4 −0.895651
\(707\) 0 0
\(708\) 24848.6 1.31902
\(709\) 13101.7 0.693997 0.346999 0.937866i \(-0.387201\pi\)
0.346999 + 0.937866i \(0.387201\pi\)
\(710\) 0 0
\(711\) −55830.1 −2.94485
\(712\) 7178.74 0.377858
\(713\) −6568.86 −0.345029
\(714\) 0 0
\(715\) 0 0
\(716\) 3188.63 0.166431
\(717\) 23576.2 1.22799
\(718\) −1432.93 −0.0744798
\(719\) 22401.9 1.16196 0.580981 0.813917i \(-0.302669\pi\)
0.580981 + 0.813917i \(0.302669\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −7316.29 −0.377125
\(723\) −21451.5 −1.10344
\(724\) −7575.15 −0.388851
\(725\) 0 0
\(726\) −14538.1 −0.743194
\(727\) 13870.4 0.707600 0.353800 0.935321i \(-0.384889\pi\)
0.353800 + 0.935321i \(0.384889\pi\)
\(728\) 0 0
\(729\) −29139.1 −1.48042
\(730\) 0 0
\(731\) 36490.0 1.84628
\(732\) −25037.4 −1.26422
\(733\) −10216.2 −0.514791 −0.257396 0.966306i \(-0.582864\pi\)
−0.257396 + 0.966306i \(0.582864\pi\)
\(734\) 5019.39 0.252410
\(735\) 0 0
\(736\) 701.072 0.0351112
\(737\) 2748.82 0.137387
\(738\) 13234.3 0.660112
\(739\) 19171.5 0.954310 0.477155 0.878819i \(-0.341668\pi\)
0.477155 + 0.878819i \(0.341668\pi\)
\(740\) 0 0
\(741\) −32411.9 −1.60686
\(742\) 0 0
\(743\) −19779.8 −0.976650 −0.488325 0.872662i \(-0.662392\pi\)
−0.488325 + 0.872662i \(0.662392\pi\)
\(744\) −20772.1 −1.02358
\(745\) 0 0
\(746\) 1605.50 0.0787956
\(747\) 54237.3 2.65655
\(748\) 11735.8 0.573666
\(749\) 0 0
\(750\) 0 0
\(751\) 20104.8 0.976875 0.488438 0.872599i \(-0.337567\pi\)
0.488438 + 0.872599i \(0.337567\pi\)
\(752\) 1611.48 0.0781444
\(753\) −2160.75 −0.104571
\(754\) −12428.3 −0.600283
\(755\) 0 0
\(756\) 0 0
\(757\) −10958.5 −0.526149 −0.263074 0.964776i \(-0.584736\pi\)
−0.263074 + 0.964776i \(0.584736\pi\)
\(758\) −10645.5 −0.510110
\(759\) 4206.65 0.201175
\(760\) 0 0
\(761\) −16633.4 −0.792327 −0.396164 0.918180i \(-0.629659\pi\)
−0.396164 + 0.918180i \(0.629659\pi\)
\(762\) 42760.6 2.03288
\(763\) 0 0
\(764\) 15952.0 0.755397
\(765\) 0 0
\(766\) −26981.3 −1.27268
\(767\) 47455.6 2.23406
\(768\) 2216.93 0.104162
\(769\) 24813.6 1.16359 0.581796 0.813335i \(-0.302350\pi\)
0.581796 + 0.813335i \(0.302350\pi\)
\(770\) 0 0
\(771\) 8320.53 0.388660
\(772\) 16205.7 0.755513
\(773\) 35576.5 1.65537 0.827683 0.561196i \(-0.189659\pi\)
0.827683 + 0.561196i \(0.189659\pi\)
\(774\) 26469.7 1.22924
\(775\) 0 0
\(776\) 12141.4 0.561666
\(777\) 0 0
\(778\) 10258.4 0.472728
\(779\) −7800.44 −0.358767
\(780\) 0 0
\(781\) −20114.1 −0.921559
\(782\) 5798.08 0.265139
\(783\) −17077.8 −0.779450
\(784\) 0 0
\(785\) 0 0
\(786\) −47856.5 −2.17174
\(787\) −3112.14 −0.140960 −0.0704802 0.997513i \(-0.522453\pi\)
−0.0704802 + 0.997513i \(0.522453\pi\)
\(788\) 6999.30 0.316421
\(789\) −34264.0 −1.54605
\(790\) 0 0
\(791\) 0 0
\(792\) 8513.07 0.381943
\(793\) −47816.2 −2.14124
\(794\) 13093.4 0.585223
\(795\) 0 0
\(796\) −9271.59 −0.412843
\(797\) 4340.97 0.192930 0.0964649 0.995336i \(-0.469246\pi\)
0.0964649 + 0.995336i \(0.469246\pi\)
\(798\) 0 0
\(799\) 13327.4 0.590100
\(800\) 0 0
\(801\) 43067.0 1.89975
\(802\) 52.9342 0.00233064
\(803\) −17613.0 −0.774033
\(804\) 4294.47 0.188376
\(805\) 0 0
\(806\) −39670.3 −1.73366
\(807\) −15873.0 −0.692387
\(808\) 364.701 0.0158789
\(809\) −34714.6 −1.50865 −0.754327 0.656499i \(-0.772037\pi\)
−0.754327 + 0.656499i \(0.772037\pi\)
\(810\) 0 0
\(811\) −8124.96 −0.351795 −0.175898 0.984408i \(-0.556283\pi\)
−0.175898 + 0.984408i \(0.556283\pi\)
\(812\) 0 0
\(813\) 16520.3 0.712660
\(814\) −7573.93 −0.326125
\(815\) 0 0
\(816\) 18334.7 0.786574
\(817\) −15601.5 −0.668086
\(818\) 11836.7 0.505942
\(819\) 0 0
\(820\) 0 0
\(821\) −4762.15 −0.202436 −0.101218 0.994864i \(-0.532274\pi\)
−0.101218 + 0.994864i \(0.532274\pi\)
\(822\) 5841.44 0.247863
\(823\) −13577.1 −0.575051 −0.287526 0.957773i \(-0.592833\pi\)
−0.287526 + 0.957773i \(0.592833\pi\)
\(824\) −8504.12 −0.359533
\(825\) 0 0
\(826\) 0 0
\(827\) 22576.6 0.949294 0.474647 0.880176i \(-0.342576\pi\)
0.474647 + 0.880176i \(0.342576\pi\)
\(828\) 4205.90 0.176528
\(829\) 18235.2 0.763976 0.381988 0.924167i \(-0.375240\pi\)
0.381988 + 0.924167i \(0.375240\pi\)
\(830\) 0 0
\(831\) 64245.0 2.68187
\(832\) 4233.88 0.176422
\(833\) 0 0
\(834\) −28477.0 −1.18235
\(835\) 0 0
\(836\) −5017.68 −0.207584
\(837\) −54510.9 −2.25110
\(838\) −8456.62 −0.348603
\(839\) 34955.5 1.43838 0.719189 0.694815i \(-0.244514\pi\)
0.719189 + 0.694815i \(0.244514\pi\)
\(840\) 0 0
\(841\) −15565.3 −0.638211
\(842\) 8933.35 0.365634
\(843\) −63195.7 −2.58194
\(844\) 8784.06 0.358246
\(845\) 0 0
\(846\) 9667.64 0.392885
\(847\) 0 0
\(848\) 579.585 0.0234705
\(849\) −34938.1 −1.41233
\(850\) 0 0
\(851\) −3741.91 −0.150730
\(852\) −31424.1 −1.26358
\(853\) 8243.14 0.330879 0.165439 0.986220i \(-0.447096\pi\)
0.165439 + 0.986220i \(0.447096\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −2119.05 −0.0846117
\(857\) 6675.90 0.266096 0.133048 0.991110i \(-0.457524\pi\)
0.133048 + 0.991110i \(0.457524\pi\)
\(858\) 25404.6 1.01084
\(859\) 29038.8 1.15342 0.576712 0.816948i \(-0.304336\pi\)
0.576712 + 0.816948i \(0.304336\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −3925.94 −0.155125
\(863\) 9681.42 0.381876 0.190938 0.981602i \(-0.438847\pi\)
0.190938 + 0.981602i \(0.438847\pi\)
\(864\) 5817.76 0.229079
\(865\) 0 0
\(866\) −5469.18 −0.214608
\(867\) 109088. 4.27314
\(868\) 0 0
\(869\) −25792.4 −1.00685
\(870\) 0 0
\(871\) 8201.53 0.319056
\(872\) 7080.49 0.274972
\(873\) 72839.4 2.82387
\(874\) −2479.00 −0.0959420
\(875\) 0 0
\(876\) −27516.7 −1.06130
\(877\) 20310.9 0.782040 0.391020 0.920382i \(-0.372122\pi\)
0.391020 + 0.920382i \(0.372122\pi\)
\(878\) 17191.4 0.660798
\(879\) −50697.7 −1.94538
\(880\) 0 0
\(881\) 25065.3 0.958539 0.479269 0.877668i \(-0.340902\pi\)
0.479269 + 0.877668i \(0.340902\pi\)
\(882\) 0 0
\(883\) 13015.5 0.496045 0.248023 0.968754i \(-0.420219\pi\)
0.248023 + 0.968754i \(0.420219\pi\)
\(884\) 35015.5 1.33224
\(885\) 0 0
\(886\) −2569.53 −0.0974323
\(887\) 31630.5 1.19735 0.598674 0.800992i \(-0.295694\pi\)
0.598674 + 0.800992i \(0.295694\pi\)
\(888\) −11832.7 −0.447161
\(889\) 0 0
\(890\) 0 0
\(891\) 6176.74 0.232243
\(892\) −8446.15 −0.317038
\(893\) −5698.20 −0.213531
\(894\) −32810.8 −1.22747
\(895\) 0 0
\(896\) 0 0
\(897\) 12551.2 0.467192
\(898\) −5266.98 −0.195725
\(899\) 28164.5 1.04487
\(900\) 0 0
\(901\) 4793.34 0.177236
\(902\) 6114.01 0.225692
\(903\) 0 0
\(904\) 12844.4 0.472563
\(905\) 0 0
\(906\) 14888.2 0.545948
\(907\) 48111.3 1.76131 0.880656 0.473757i \(-0.157102\pi\)
0.880656 + 0.473757i \(0.157102\pi\)
\(908\) 14912.2 0.545022
\(909\) 2187.93 0.0798340
\(910\) 0 0
\(911\) −11465.5 −0.416982 −0.208491 0.978024i \(-0.566855\pi\)
−0.208491 + 0.978024i \(0.566855\pi\)
\(912\) −7839.10 −0.284626
\(913\) 25056.6 0.908273
\(914\) −1375.91 −0.0497934
\(915\) 0 0
\(916\) −2803.67 −0.101131
\(917\) 0 0
\(918\) 48114.7 1.72987
\(919\) 26141.9 0.938347 0.469174 0.883106i \(-0.344552\pi\)
0.469174 + 0.883106i \(0.344552\pi\)
\(920\) 0 0
\(921\) 23034.0 0.824099
\(922\) −8710.11 −0.311120
\(923\) −60013.4 −2.14016
\(924\) 0 0
\(925\) 0 0
\(926\) −21801.3 −0.773687
\(927\) −51018.2 −1.80761
\(928\) −3005.90 −0.106329
\(929\) 3155.76 0.111450 0.0557251 0.998446i \(-0.482253\pi\)
0.0557251 + 0.998446i \(0.482253\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 17421.6 0.612300
\(933\) −39612.9 −1.39000
\(934\) −31493.6 −1.10332
\(935\) 0 0
\(936\) 25400.0 0.886994
\(937\) −50554.9 −1.76260 −0.881301 0.472556i \(-0.843331\pi\)
−0.881301 + 0.472556i \(0.843331\pi\)
\(938\) 0 0
\(939\) −43190.9 −1.50105
\(940\) 0 0
\(941\) −53927.4 −1.86821 −0.934104 0.357002i \(-0.883799\pi\)
−0.934104 + 0.357002i \(0.883799\pi\)
\(942\) −24073.4 −0.832648
\(943\) 3020.64 0.104311
\(944\) 11477.5 0.395722
\(945\) 0 0
\(946\) 12228.5 0.420277
\(947\) −29301.0 −1.00544 −0.502722 0.864448i \(-0.667668\pi\)
−0.502722 + 0.864448i \(0.667668\pi\)
\(948\) −40295.4 −1.38052
\(949\) −52551.0 −1.79755
\(950\) 0 0
\(951\) 49299.3 1.68101
\(952\) 0 0
\(953\) 35739.2 1.21480 0.607401 0.794396i \(-0.292212\pi\)
0.607401 + 0.794396i \(0.292212\pi\)
\(954\) 3477.07 0.118002
\(955\) 0 0
\(956\) 10889.8 0.368412
\(957\) −18036.3 −0.609228
\(958\) 7504.19 0.253079
\(959\) 0 0
\(960\) 0 0
\(961\) 60108.0 2.01766
\(962\) −22598.0 −0.757368
\(963\) −12712.7 −0.425400
\(964\) −9908.43 −0.331047
\(965\) 0 0
\(966\) 0 0
\(967\) −47240.9 −1.57101 −0.785503 0.618857i \(-0.787596\pi\)
−0.785503 + 0.618857i \(0.787596\pi\)
\(968\) −6715.12 −0.222967
\(969\) −64831.7 −2.14932
\(970\) 0 0
\(971\) −35861.0 −1.18521 −0.592603 0.805494i \(-0.701900\pi\)
−0.592603 + 0.805494i \(0.701900\pi\)
\(972\) −9985.08 −0.329497
\(973\) 0 0
\(974\) −14995.0 −0.493296
\(975\) 0 0
\(976\) −11564.8 −0.379282
\(977\) 22986.5 0.752714 0.376357 0.926475i \(-0.377177\pi\)
0.376357 + 0.926475i \(0.377177\pi\)
\(978\) −54911.2 −1.79537
\(979\) 19896.1 0.649523
\(980\) 0 0
\(981\) 42477.5 1.38247
\(982\) 4728.41 0.153656
\(983\) −45451.8 −1.47476 −0.737379 0.675479i \(-0.763937\pi\)
−0.737379 + 0.675479i \(0.763937\pi\)
\(984\) 9551.88 0.309454
\(985\) 0 0
\(986\) −24859.7 −0.802936
\(987\) 0 0
\(988\) −14971.0 −0.482077
\(989\) 6041.50 0.194245
\(990\) 0 0
\(991\) 10088.7 0.323389 0.161694 0.986841i \(-0.448304\pi\)
0.161694 + 0.986841i \(0.448304\pi\)
\(992\) −9594.61 −0.307086
\(993\) −55148.3 −1.76241
\(994\) 0 0
\(995\) 0 0
\(996\) 39145.8 1.24536
\(997\) −45887.2 −1.45763 −0.728817 0.684709i \(-0.759929\pi\)
−0.728817 + 0.684709i \(0.759929\pi\)
\(998\) −5928.23 −0.188031
\(999\) −31051.8 −0.983419
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2450.4.a.da.1.8 yes 8
5.4 even 2 2450.4.a.cz.1.1 8
7.6 odd 2 inner 2450.4.a.da.1.1 yes 8
35.34 odd 2 2450.4.a.cz.1.8 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2450.4.a.cz.1.1 8 5.4 even 2
2450.4.a.cz.1.8 yes 8 35.34 odd 2
2450.4.a.da.1.1 yes 8 7.6 odd 2 inner
2450.4.a.da.1.8 yes 8 1.1 even 1 trivial