Properties

Label 2450.4.a.cl
Level $2450$
Weight $4$
Character orbit 2450.a
Self dual yes
Analytic conductor $144.555$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2450,4,Mod(1,2450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2450.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2450 = 2 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-8,0,16,0,0,0,-32,-32,0,-52] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(144.554679514\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{29})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 17x^{2} + 18x + 23 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + (\beta_{2} + 2 \beta_1) q^{3} + 4 q^{4} + ( - 2 \beta_{2} - 4 \beta_1) q^{6} - 8 q^{8} + ( - 3 \beta_{3} - 8) q^{9} + (8 \beta_{3} - 13) q^{11} + (4 \beta_{2} + 8 \beta_1) q^{12} + ( - 3 \beta_{2} + 3 \beta_1) q^{13}+ \cdots + ( - 25 \beta_{3} - 592) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{2} + 16 q^{4} - 32 q^{8} - 32 q^{9} - 52 q^{11} + 64 q^{16} + 64 q^{18} + 104 q^{22} + 44 q^{23} + 184 q^{29} - 128 q^{32} - 128 q^{36} + 264 q^{37} - 120 q^{39} - 208 q^{44} - 88 q^{46} + 264 q^{51}+ \cdots - 2368 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 17x^{2} + 18x + 23 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -2\nu^{3} + 3\nu^{2} + 25\nu - 13 ) / 21 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 9\nu^{2} - 23\nu - 88 ) / 21 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -4\nu^{3} + 6\nu^{2} + 92\nu - 47 ) / 21 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} - 2\beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 4\beta_{2} + 19 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 7\beta_{3} + 3\beta_{2} - 23\beta _1 + 14 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.778369
1.77837
4.60680
−3.60680
−2.00000 −5.92921 4.00000 0 11.8584 0 −8.00000 8.15549 0
1.2 −2.00000 −1.68657 4.00000 0 3.37313 0 −8.00000 −24.1555 0
1.3 −2.00000 1.68657 4.00000 0 −3.37313 0 −8.00000 −24.1555 0
1.4 −2.00000 5.92921 4.00000 0 −11.8584 0 −8.00000 8.15549 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2450.4.a.cl 4
5.b even 2 1 2450.4.a.cr yes 4
7.b odd 2 1 inner 2450.4.a.cl 4
35.c odd 2 1 2450.4.a.cr yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2450.4.a.cl 4 1.a even 1 1 trivial
2450.4.a.cl 4 7.b odd 2 1 inner
2450.4.a.cr yes 4 5.b even 2 1
2450.4.a.cr yes 4 35.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2450))\):

\( T_{3}^{4} - 38T_{3}^{2} + 100 \) Copy content Toggle raw display
\( T_{11}^{2} + 26T_{11} - 1687 \) Copy content Toggle raw display
\( T_{19}^{4} - 9652T_{19}^{2} + 20884900 \) Copy content Toggle raw display
\( T_{23}^{2} - 22T_{23} - 1735 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 38T^{2} + 100 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} + 26 T - 1687)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} - 342T^{2} + 8100 \) Copy content Toggle raw display
$17$ \( T^{4} - 1240 T^{2} + 179776 \) Copy content Toggle raw display
$19$ \( T^{4} - 9652 T^{2} + 20884900 \) Copy content Toggle raw display
$23$ \( (T^{2} - 22 T - 1735)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 92 T - 41993)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} - 54294 T^{2} + 70190884 \) Copy content Toggle raw display
$37$ \( (T^{2} - 132 T - 545)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} - 31630 T^{2} + 248566756 \) Copy content Toggle raw display
$43$ \( (T^{2} - 8381)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} - 3972 T^{2} + 16900 \) Copy content Toggle raw display
$53$ \( (T^{2} - 622 T + 61196)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 123390 T^{2} + 188622756 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 3710028100 \) Copy content Toggle raw display
$67$ \( (T^{2} - 530 T + 70109)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 704 T + 88379)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} - 2430 T^{2} + 1406596 \) Copy content Toggle raw display
$79$ \( (T^{2} + 1326 T + 272065)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 1676512219204 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 2411777940100 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 423022761604 \) Copy content Toggle raw display
show more
show less