gp: [N,k,chi] = [245,2,Mod(29,245)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("245.29");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(245, base_ring=CyclotomicField(14))
chi = DirichletCharacter(H, H._module([7, 6]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [144]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{144} - 32 T_{2}^{142} + 613 T_{2}^{140} - 9114 T_{2}^{138} + 115945 T_{2}^{136} + \cdots + 8208541201 \)
T2^144 - 32*T2^142 + 613*T2^140 - 9114*T2^138 + 115945*T2^136 - 1326318*T2^134 + 14008060*T2^132 - 137174144*T2^130 + 1252925124*T2^128 - 10757568805*T2^126 + 87396165814*T2^124 - 674693668772*T2^122 + 4960170478788*T2^120 - 34750062080104*T2^118 + 232421218542372*T2^116 - 1486888441610414*T2^114 + 9108721934816297*T2^112 - 53447051574873446*T2^110 + 300310340632835067*T2^108 - 1615568758541471503*T2^106 + 8324348014131703544*T2^104 - 41083153866429687572*T2^102 + 194088290732084966817*T2^100 - 876748216999198861881*T2^98 + 3782697530580228228018*T2^96 - 15576696565564454719627*T2^94 + 61200253321187329791071*T2^92 - 229228022963664278419865*T2^90 + 817247212438042682799457*T2^88 - 2768313614335894425938307*T2^86 + 8898454865959753200943414*T2^84 - 27148065956518690233257156*T2^82 + 78732726148070666595718834*T2^80 - 217346775078981197993799316*T2^78 + 571384517883037172352126701*T2^76 - 1429412611731084228482776172*T2^74 + 3399658494251190412793542503*T2^72 - 7689293018609368618777166017*T2^70 + 16556440365749541278127655753*T2^68 - 33907940931480366392618818864*T2^66 + 65900359096190647369814763297*T2^64 - 121086520822011463432673130061*T2^62 + 209832910632835597649802422428*T2^60 - 343189283972196591176576264221*T2^58 + 529074536839194274314140526739*T2^56 - 760944126779807448210469296025*T2^54 + 1011368294982728913398552093481*T2^52 - 1233334055148107012700962241901*T2^50 + 1380274917706418305840643682506*T2^48 - 1431014281766289249980854916191*T2^46 + 1380968718007224575556452413068*T2^44 - 1203111321382207363228551163643*T2^42 + 923624089084580482217161891865*T2^40 - 580698807635980845035784515170*T2^38 + 289106264316783268243536733155*T2^36 - 126005224146391975654847028387*T2^34 + 56267494154040551835965786474*T2^32 - 23456278238469347357132297005*T2^30 + 7830900532280777495575909256*T2^28 - 2004162415054862010609636071*T2^26 + 386342043794197923932196383*T2^24 - 49342331562568136516963336*T2^22 + 5250271279855697189929303*T2^20 - 571576307673828711081345*T2^18 + 59107670997852901711910*T2^16 - 4997039068837404017926*T2^14 + 382405906232568070034*T2^12 - 17605612299219340837*T2^10 + 736570434058898943*T2^8 - 11373307713826513*T2^6 + 28562374109332*T2^4 + 369135744901*T2^2 + 8208541201
acting on \(S_{2}^{\mathrm{new}}(245, [\chi])\).