Defining parameters
Level: | \( N \) | \(=\) | \( 245 = 5 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 245.j (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 35 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(56\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(2\), \(3\), \(31\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(245, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 72 | 48 | 24 |
Cusp forms | 40 | 32 | 8 |
Eisenstein series | 32 | 16 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(245, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(245, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(245, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 2}\)