Properties

Label 2442.4.a.n.1.8
Level $2442$
Weight $4$
Character 2442.1
Self dual yes
Analytic conductor $144.083$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2442,4,Mod(1,2442)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2442, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2442.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2442 = 2 \cdot 3 \cdot 11 \cdot 37 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2442.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-24,-36,48,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(144.082664234\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} - 849 x^{10} + 1205 x^{9} + 248360 x^{8} - 397682 x^{7} - 29936318 x^{6} + \cdots - 37088275010 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{4}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(4.07363\) of defining polynomial
Character \(\chi\) \(=\) 2442.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -3.00000 q^{3} +4.00000 q^{4} +3.07363 q^{5} +6.00000 q^{6} +8.18892 q^{7} -8.00000 q^{8} +9.00000 q^{9} -6.14725 q^{10} +11.0000 q^{11} -12.0000 q^{12} -51.2106 q^{13} -16.3778 q^{14} -9.22088 q^{15} +16.0000 q^{16} -38.5247 q^{17} -18.0000 q^{18} +107.074 q^{19} +12.2945 q^{20} -24.5668 q^{21} -22.0000 q^{22} +41.5980 q^{23} +24.0000 q^{24} -115.553 q^{25} +102.421 q^{26} -27.0000 q^{27} +32.7557 q^{28} +182.883 q^{29} +18.4418 q^{30} -142.745 q^{31} -32.0000 q^{32} -33.0000 q^{33} +77.0495 q^{34} +25.1697 q^{35} +36.0000 q^{36} -37.0000 q^{37} -214.149 q^{38} +153.632 q^{39} -24.5890 q^{40} +142.251 q^{41} +49.1335 q^{42} +452.690 q^{43} +44.0000 q^{44} +27.6626 q^{45} -83.1960 q^{46} -600.587 q^{47} -48.0000 q^{48} -275.942 q^{49} +231.106 q^{50} +115.574 q^{51} -204.842 q^{52} -194.604 q^{53} +54.0000 q^{54} +33.8099 q^{55} -65.5113 q^{56} -321.223 q^{57} -365.765 q^{58} +520.322 q^{59} -36.8835 q^{60} -72.1506 q^{61} +285.490 q^{62} +73.7003 q^{63} +64.0000 q^{64} -157.402 q^{65} +66.0000 q^{66} +284.421 q^{67} -154.099 q^{68} -124.794 q^{69} -50.3394 q^{70} -433.853 q^{71} -72.0000 q^{72} -262.908 q^{73} +74.0000 q^{74} +346.658 q^{75} +428.298 q^{76} +90.0781 q^{77} -307.264 q^{78} -388.494 q^{79} +49.1780 q^{80} +81.0000 q^{81} -284.501 q^{82} -249.994 q^{83} -98.2670 q^{84} -118.411 q^{85} -905.379 q^{86} -548.648 q^{87} -88.0000 q^{88} -1411.38 q^{89} -55.3253 q^{90} -419.359 q^{91} +166.392 q^{92} +428.234 q^{93} +1201.17 q^{94} +329.107 q^{95} +96.0000 q^{96} +19.5161 q^{97} +551.883 q^{98} +99.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 24 q^{2} - 36 q^{3} + 48 q^{4} - 10 q^{5} + 72 q^{6} - 25 q^{7} - 96 q^{8} + 108 q^{9} + 20 q^{10} + 132 q^{11} - 144 q^{12} + 12 q^{13} + 50 q^{14} + 30 q^{15} + 192 q^{16} - 10 q^{17} - 216 q^{18}+ \cdots + 1188 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −3.00000 −0.577350
\(4\) 4.00000 0.500000
\(5\) 3.07363 0.274913 0.137457 0.990508i \(-0.456107\pi\)
0.137457 + 0.990508i \(0.456107\pi\)
\(6\) 6.00000 0.408248
\(7\) 8.18892 0.442160 0.221080 0.975256i \(-0.429042\pi\)
0.221080 + 0.975256i \(0.429042\pi\)
\(8\) −8.00000 −0.353553
\(9\) 9.00000 0.333333
\(10\) −6.14725 −0.194393
\(11\) 11.0000 0.301511
\(12\) −12.0000 −0.288675
\(13\) −51.2106 −1.09256 −0.546279 0.837603i \(-0.683956\pi\)
−0.546279 + 0.837603i \(0.683956\pi\)
\(14\) −16.3778 −0.312654
\(15\) −9.22088 −0.158721
\(16\) 16.0000 0.250000
\(17\) −38.5247 −0.549625 −0.274812 0.961498i \(-0.588616\pi\)
−0.274812 + 0.961498i \(0.588616\pi\)
\(18\) −18.0000 −0.235702
\(19\) 107.074 1.29287 0.646436 0.762968i \(-0.276259\pi\)
0.646436 + 0.762968i \(0.276259\pi\)
\(20\) 12.2945 0.137457
\(21\) −24.5668 −0.255281
\(22\) −22.0000 −0.213201
\(23\) 41.5980 0.377121 0.188561 0.982062i \(-0.439618\pi\)
0.188561 + 0.982062i \(0.439618\pi\)
\(24\) 24.0000 0.204124
\(25\) −115.553 −0.924423
\(26\) 102.421 0.772556
\(27\) −27.0000 −0.192450
\(28\) 32.7557 0.221080
\(29\) 182.883 1.17105 0.585525 0.810654i \(-0.300888\pi\)
0.585525 + 0.810654i \(0.300888\pi\)
\(30\) 18.4418 0.112233
\(31\) −142.745 −0.827023 −0.413512 0.910499i \(-0.635698\pi\)
−0.413512 + 0.910499i \(0.635698\pi\)
\(32\) −32.0000 −0.176777
\(33\) −33.0000 −0.174078
\(34\) 77.0495 0.388643
\(35\) 25.1697 0.121556
\(36\) 36.0000 0.166667
\(37\) −37.0000 −0.164399
\(38\) −214.149 −0.914198
\(39\) 153.632 0.630789
\(40\) −24.5890 −0.0971966
\(41\) 142.251 0.541849 0.270924 0.962601i \(-0.412671\pi\)
0.270924 + 0.962601i \(0.412671\pi\)
\(42\) 49.1335 0.180511
\(43\) 452.690 1.60545 0.802727 0.596347i \(-0.203382\pi\)
0.802727 + 0.596347i \(0.203382\pi\)
\(44\) 44.0000 0.150756
\(45\) 27.6626 0.0916378
\(46\) −83.1960 −0.266665
\(47\) −600.587 −1.86393 −0.931965 0.362549i \(-0.881906\pi\)
−0.931965 + 0.362549i \(0.881906\pi\)
\(48\) −48.0000 −0.144338
\(49\) −275.942 −0.804494
\(50\) 231.106 0.653665
\(51\) 115.574 0.317326
\(52\) −204.842 −0.546279
\(53\) −194.604 −0.504356 −0.252178 0.967681i \(-0.581147\pi\)
−0.252178 + 0.967681i \(0.581147\pi\)
\(54\) 54.0000 0.136083
\(55\) 33.8099 0.0828895
\(56\) −65.5113 −0.156327
\(57\) −321.223 −0.746440
\(58\) −365.765 −0.828057
\(59\) 520.322 1.14814 0.574070 0.818806i \(-0.305364\pi\)
0.574070 + 0.818806i \(0.305364\pi\)
\(60\) −36.8835 −0.0793607
\(61\) −72.1506 −0.151442 −0.0757208 0.997129i \(-0.524126\pi\)
−0.0757208 + 0.997129i \(0.524126\pi\)
\(62\) 285.490 0.584794
\(63\) 73.7003 0.147387
\(64\) 64.0000 0.125000
\(65\) −157.402 −0.300359
\(66\) 66.0000 0.123091
\(67\) 284.421 0.518621 0.259310 0.965794i \(-0.416505\pi\)
0.259310 + 0.965794i \(0.416505\pi\)
\(68\) −154.099 −0.274812
\(69\) −124.794 −0.217731
\(70\) −50.3394 −0.0859529
\(71\) −433.853 −0.725196 −0.362598 0.931946i \(-0.618110\pi\)
−0.362598 + 0.931946i \(0.618110\pi\)
\(72\) −72.0000 −0.117851
\(73\) −262.908 −0.421522 −0.210761 0.977538i \(-0.567594\pi\)
−0.210761 + 0.977538i \(0.567594\pi\)
\(74\) 74.0000 0.116248
\(75\) 346.658 0.533716
\(76\) 428.298 0.646436
\(77\) 90.0781 0.133316
\(78\) −307.264 −0.446035
\(79\) −388.494 −0.553279 −0.276639 0.960974i \(-0.589221\pi\)
−0.276639 + 0.960974i \(0.589221\pi\)
\(80\) 49.1780 0.0687284
\(81\) 81.0000 0.111111
\(82\) −284.501 −0.383145
\(83\) −249.994 −0.330607 −0.165303 0.986243i \(-0.552860\pi\)
−0.165303 + 0.986243i \(0.552860\pi\)
\(84\) −98.2670 −0.127641
\(85\) −118.411 −0.151099
\(86\) −905.379 −1.13523
\(87\) −548.648 −0.676106
\(88\) −88.0000 −0.106600
\(89\) −1411.38 −1.68097 −0.840485 0.541835i \(-0.817730\pi\)
−0.840485 + 0.541835i \(0.817730\pi\)
\(90\) −55.3253 −0.0647977
\(91\) −419.359 −0.483086
\(92\) 166.392 0.188561
\(93\) 428.234 0.477482
\(94\) 1201.17 1.31800
\(95\) 329.107 0.355428
\(96\) 96.0000 0.102062
\(97\) 19.5161 0.0204285 0.0102142 0.999948i \(-0.496749\pi\)
0.0102142 + 0.999948i \(0.496749\pi\)
\(98\) 551.883 0.568864
\(99\) 99.0000 0.100504
\(100\) −462.211 −0.462211
\(101\) −61.6445 −0.0607312 −0.0303656 0.999539i \(-0.509667\pi\)
−0.0303656 + 0.999539i \(0.509667\pi\)
\(102\) −231.148 −0.224383
\(103\) 242.265 0.231758 0.115879 0.993263i \(-0.463032\pi\)
0.115879 + 0.993263i \(0.463032\pi\)
\(104\) 409.685 0.386278
\(105\) −75.5090 −0.0701803
\(106\) 389.208 0.356634
\(107\) 473.833 0.428104 0.214052 0.976822i \(-0.431334\pi\)
0.214052 + 0.976822i \(0.431334\pi\)
\(108\) −108.000 −0.0962250
\(109\) 1325.05 1.16438 0.582188 0.813054i \(-0.302197\pi\)
0.582188 + 0.813054i \(0.302197\pi\)
\(110\) −67.6198 −0.0586118
\(111\) 111.000 0.0949158
\(112\) 131.023 0.110540
\(113\) −102.180 −0.0850648 −0.0425324 0.999095i \(-0.513543\pi\)
−0.0425324 + 0.999095i \(0.513543\pi\)
\(114\) 642.447 0.527813
\(115\) 127.857 0.103676
\(116\) 731.530 0.585525
\(117\) −460.895 −0.364186
\(118\) −1040.64 −0.811857
\(119\) −315.476 −0.243022
\(120\) 73.7670 0.0561165
\(121\) 121.000 0.0909091
\(122\) 144.301 0.107085
\(123\) −426.752 −0.312837
\(124\) −570.979 −0.413512
\(125\) −739.369 −0.529050
\(126\) −147.401 −0.104218
\(127\) 517.102 0.361302 0.180651 0.983547i \(-0.442180\pi\)
0.180651 + 0.983547i \(0.442180\pi\)
\(128\) −128.000 −0.0883883
\(129\) −1358.07 −0.926909
\(130\) 314.805 0.212386
\(131\) 2508.62 1.67312 0.836561 0.547874i \(-0.184563\pi\)
0.836561 + 0.547874i \(0.184563\pi\)
\(132\) −132.000 −0.0870388
\(133\) 876.824 0.571656
\(134\) −568.843 −0.366720
\(135\) −82.9879 −0.0529071
\(136\) 308.198 0.194322
\(137\) −2427.16 −1.51363 −0.756813 0.653632i \(-0.773244\pi\)
−0.756813 + 0.653632i \(0.773244\pi\)
\(138\) 249.588 0.153959
\(139\) −852.922 −0.520459 −0.260230 0.965547i \(-0.583798\pi\)
−0.260230 + 0.965547i \(0.583798\pi\)
\(140\) 100.679 0.0607779
\(141\) 1801.76 1.07614
\(142\) 867.707 0.512791
\(143\) −563.317 −0.329419
\(144\) 144.000 0.0833333
\(145\) 562.113 0.321937
\(146\) 525.817 0.298061
\(147\) 827.825 0.464475
\(148\) −148.000 −0.0821995
\(149\) −918.974 −0.505270 −0.252635 0.967562i \(-0.581297\pi\)
−0.252635 + 0.967562i \(0.581297\pi\)
\(150\) −693.317 −0.377394
\(151\) −298.176 −0.160697 −0.0803485 0.996767i \(-0.525603\pi\)
−0.0803485 + 0.996767i \(0.525603\pi\)
\(152\) −856.596 −0.457099
\(153\) −346.723 −0.183208
\(154\) −180.156 −0.0942688
\(155\) −438.744 −0.227360
\(156\) 614.527 0.315395
\(157\) 1534.87 0.780229 0.390114 0.920766i \(-0.372436\pi\)
0.390114 + 0.920766i \(0.372436\pi\)
\(158\) 776.988 0.391227
\(159\) 583.811 0.291190
\(160\) −98.3560 −0.0485983
\(161\) 340.643 0.166748
\(162\) −162.000 −0.0785674
\(163\) 1885.38 0.905980 0.452990 0.891516i \(-0.350357\pi\)
0.452990 + 0.891516i \(0.350357\pi\)
\(164\) 569.002 0.270924
\(165\) −101.430 −0.0478563
\(166\) 499.987 0.233774
\(167\) −836.534 −0.387622 −0.193811 0.981039i \(-0.562085\pi\)
−0.193811 + 0.981039i \(0.562085\pi\)
\(168\) 196.534 0.0902555
\(169\) 425.526 0.193685
\(170\) 236.821 0.106843
\(171\) 963.670 0.430957
\(172\) 1810.76 0.802727
\(173\) 3301.99 1.45113 0.725565 0.688154i \(-0.241579\pi\)
0.725565 + 0.688154i \(0.241579\pi\)
\(174\) 1097.30 0.478079
\(175\) −946.253 −0.408743
\(176\) 176.000 0.0753778
\(177\) −1560.97 −0.662878
\(178\) 2822.77 1.18862
\(179\) 989.749 0.413281 0.206641 0.978417i \(-0.433747\pi\)
0.206641 + 0.978417i \(0.433747\pi\)
\(180\) 110.651 0.0458189
\(181\) 3921.76 1.61051 0.805254 0.592930i \(-0.202029\pi\)
0.805254 + 0.592930i \(0.202029\pi\)
\(182\) 838.719 0.341593
\(183\) 216.452 0.0874349
\(184\) −332.784 −0.133332
\(185\) −113.724 −0.0451955
\(186\) −856.469 −0.337631
\(187\) −423.772 −0.165718
\(188\) −2402.35 −0.931965
\(189\) −221.101 −0.0850937
\(190\) −658.214 −0.251325
\(191\) 1158.72 0.438965 0.219483 0.975616i \(-0.429563\pi\)
0.219483 + 0.975616i \(0.429563\pi\)
\(192\) −192.000 −0.0721688
\(193\) −2360.03 −0.880201 −0.440100 0.897949i \(-0.645057\pi\)
−0.440100 + 0.897949i \(0.645057\pi\)
\(194\) −39.0323 −0.0144451
\(195\) 472.207 0.173412
\(196\) −1103.77 −0.402247
\(197\) −4004.70 −1.44834 −0.724170 0.689621i \(-0.757777\pi\)
−0.724170 + 0.689621i \(0.757777\pi\)
\(198\) −198.000 −0.0710669
\(199\) 2980.05 1.06156 0.530778 0.847511i \(-0.321900\pi\)
0.530778 + 0.847511i \(0.321900\pi\)
\(200\) 924.423 0.326833
\(201\) −853.264 −0.299426
\(202\) 123.289 0.0429435
\(203\) 1497.61 0.517792
\(204\) 462.297 0.158663
\(205\) 437.225 0.148962
\(206\) −484.529 −0.163877
\(207\) 374.382 0.125707
\(208\) −819.370 −0.273140
\(209\) 1177.82 0.389816
\(210\) 151.018 0.0496249
\(211\) −655.330 −0.213814 −0.106907 0.994269i \(-0.534095\pi\)
−0.106907 + 0.994269i \(0.534095\pi\)
\(212\) −778.415 −0.252178
\(213\) 1301.56 0.418692
\(214\) −947.665 −0.302715
\(215\) 1391.40 0.441361
\(216\) 216.000 0.0680414
\(217\) −1168.93 −0.365677
\(218\) −2650.10 −0.823338
\(219\) 788.725 0.243366
\(220\) 135.240 0.0414448
\(221\) 1972.87 0.600497
\(222\) −222.000 −0.0671156
\(223\) −2030.02 −0.609598 −0.304799 0.952417i \(-0.598589\pi\)
−0.304799 + 0.952417i \(0.598589\pi\)
\(224\) −262.045 −0.0781636
\(225\) −1039.98 −0.308141
\(226\) 204.361 0.0601499
\(227\) −5127.11 −1.49911 −0.749556 0.661941i \(-0.769733\pi\)
−0.749556 + 0.661941i \(0.769733\pi\)
\(228\) −1284.89 −0.373220
\(229\) −5277.52 −1.52292 −0.761460 0.648212i \(-0.775517\pi\)
−0.761460 + 0.648212i \(0.775517\pi\)
\(230\) −255.714 −0.0733098
\(231\) −270.234 −0.0769702
\(232\) −1463.06 −0.414029
\(233\) −5012.75 −1.40942 −0.704712 0.709493i \(-0.748924\pi\)
−0.704712 + 0.709493i \(0.748924\pi\)
\(234\) 921.791 0.257519
\(235\) −1845.98 −0.512419
\(236\) 2081.29 0.574070
\(237\) 1165.48 0.319436
\(238\) 630.952 0.171843
\(239\) 4511.89 1.22113 0.610564 0.791967i \(-0.290943\pi\)
0.610564 + 0.791967i \(0.290943\pi\)
\(240\) −147.534 −0.0396803
\(241\) 4363.49 1.16629 0.583147 0.812367i \(-0.301821\pi\)
0.583147 + 0.812367i \(0.301821\pi\)
\(242\) −242.000 −0.0642824
\(243\) −243.000 −0.0641500
\(244\) −288.602 −0.0757208
\(245\) −848.141 −0.221166
\(246\) 853.503 0.221209
\(247\) −5483.35 −1.41254
\(248\) 1141.96 0.292397
\(249\) 749.981 0.190876
\(250\) 1478.74 0.374095
\(251\) 3805.21 0.956904 0.478452 0.878114i \(-0.341198\pi\)
0.478452 + 0.878114i \(0.341198\pi\)
\(252\) 294.801 0.0736933
\(253\) 457.578 0.113706
\(254\) −1034.20 −0.255479
\(255\) 355.232 0.0872372
\(256\) 256.000 0.0625000
\(257\) −2570.55 −0.623917 −0.311958 0.950096i \(-0.600985\pi\)
−0.311958 + 0.950096i \(0.600985\pi\)
\(258\) 2716.14 0.655424
\(259\) −302.990 −0.0726907
\(260\) −629.609 −0.150180
\(261\) 1645.94 0.390350
\(262\) −5017.24 −1.18308
\(263\) 2568.18 0.602133 0.301067 0.953603i \(-0.402657\pi\)
0.301067 + 0.953603i \(0.402657\pi\)
\(264\) 264.000 0.0615457
\(265\) −598.139 −0.138654
\(266\) −1753.65 −0.404222
\(267\) 4234.15 0.970508
\(268\) 1137.69 0.259310
\(269\) 659.031 0.149375 0.0746874 0.997207i \(-0.476204\pi\)
0.0746874 + 0.997207i \(0.476204\pi\)
\(270\) 165.976 0.0374110
\(271\) −5893.87 −1.32113 −0.660566 0.750768i \(-0.729684\pi\)
−0.660566 + 0.750768i \(0.729684\pi\)
\(272\) −616.396 −0.137406
\(273\) 1258.08 0.278910
\(274\) 4854.33 1.07029
\(275\) −1271.08 −0.278724
\(276\) −499.176 −0.108865
\(277\) −758.047 −0.164428 −0.0822141 0.996615i \(-0.526199\pi\)
−0.0822141 + 0.996615i \(0.526199\pi\)
\(278\) 1705.84 0.368020
\(279\) −1284.70 −0.275674
\(280\) −201.357 −0.0429765
\(281\) −8423.49 −1.78827 −0.894134 0.447800i \(-0.852208\pi\)
−0.894134 + 0.447800i \(0.852208\pi\)
\(282\) −3603.52 −0.760946
\(283\) −4328.87 −0.909275 −0.454638 0.890676i \(-0.650231\pi\)
−0.454638 + 0.890676i \(0.650231\pi\)
\(284\) −1735.41 −0.362598
\(285\) −987.321 −0.205206
\(286\) 1126.63 0.232934
\(287\) 1164.88 0.239584
\(288\) −288.000 −0.0589256
\(289\) −3428.84 −0.697913
\(290\) −1124.23 −0.227644
\(291\) −58.5484 −0.0117944
\(292\) −1051.63 −0.210761
\(293\) −8785.59 −1.75174 −0.875869 0.482548i \(-0.839711\pi\)
−0.875869 + 0.482548i \(0.839711\pi\)
\(294\) −1655.65 −0.328434
\(295\) 1599.28 0.315639
\(296\) 296.000 0.0581238
\(297\) −297.000 −0.0580259
\(298\) 1837.95 0.357280
\(299\) −2130.26 −0.412027
\(300\) 1386.63 0.266858
\(301\) 3707.04 0.709868
\(302\) 596.353 0.113630
\(303\) 184.933 0.0350632
\(304\) 1713.19 0.323218
\(305\) −221.764 −0.0416334
\(306\) 693.445 0.129548
\(307\) 2466.05 0.458453 0.229226 0.973373i \(-0.426380\pi\)
0.229226 + 0.973373i \(0.426380\pi\)
\(308\) 360.312 0.0666581
\(309\) −726.794 −0.133805
\(310\) 877.488 0.160768
\(311\) 8340.19 1.52067 0.760336 0.649530i \(-0.225034\pi\)
0.760336 + 0.649530i \(0.225034\pi\)
\(312\) −1229.05 −0.223018
\(313\) 7650.77 1.38162 0.690810 0.723036i \(-0.257254\pi\)
0.690810 + 0.723036i \(0.257254\pi\)
\(314\) −3069.74 −0.551705
\(315\) 226.527 0.0405186
\(316\) −1553.98 −0.276639
\(317\) −2797.81 −0.495711 −0.247856 0.968797i \(-0.579726\pi\)
−0.247856 + 0.968797i \(0.579726\pi\)
\(318\) −1167.62 −0.205903
\(319\) 2011.71 0.353085
\(320\) 196.712 0.0343642
\(321\) −1421.50 −0.247166
\(322\) −681.286 −0.117909
\(323\) −4125.01 −0.710594
\(324\) 324.000 0.0555556
\(325\) 5917.53 1.00999
\(326\) −3770.77 −0.640624
\(327\) −3975.16 −0.672253
\(328\) −1138.00 −0.191572
\(329\) −4918.16 −0.824155
\(330\) 202.859 0.0338395
\(331\) 5279.51 0.876701 0.438351 0.898804i \(-0.355563\pi\)
0.438351 + 0.898804i \(0.355563\pi\)
\(332\) −999.975 −0.165303
\(333\) −333.000 −0.0547997
\(334\) 1673.07 0.274090
\(335\) 874.205 0.142576
\(336\) −393.068 −0.0638203
\(337\) −8993.90 −1.45379 −0.726897 0.686746i \(-0.759038\pi\)
−0.726897 + 0.686746i \(0.759038\pi\)
\(338\) −851.051 −0.136956
\(339\) 306.541 0.0491122
\(340\) −473.643 −0.0755496
\(341\) −1570.19 −0.249357
\(342\) −1927.34 −0.304733
\(343\) −5068.46 −0.797875
\(344\) −3621.52 −0.567614
\(345\) −383.570 −0.0598572
\(346\) −6603.98 −1.02610
\(347\) −6719.14 −1.03949 −0.519744 0.854322i \(-0.673973\pi\)
−0.519744 + 0.854322i \(0.673973\pi\)
\(348\) −2194.59 −0.338053
\(349\) 8423.73 1.29201 0.646006 0.763333i \(-0.276438\pi\)
0.646006 + 0.763333i \(0.276438\pi\)
\(350\) 1892.51 0.289025
\(351\) 1382.69 0.210263
\(352\) −352.000 −0.0533002
\(353\) 177.391 0.0267467 0.0133734 0.999911i \(-0.495743\pi\)
0.0133734 + 0.999911i \(0.495743\pi\)
\(354\) 3121.93 0.468726
\(355\) −1333.50 −0.199366
\(356\) −5645.53 −0.840485
\(357\) 946.428 0.140309
\(358\) −1979.50 −0.292234
\(359\) −7598.01 −1.11701 −0.558507 0.829500i \(-0.688626\pi\)
−0.558507 + 0.829500i \(0.688626\pi\)
\(360\) −221.301 −0.0323989
\(361\) 4605.94 0.671517
\(362\) −7843.51 −1.13880
\(363\) −363.000 −0.0524864
\(364\) −1677.44 −0.241543
\(365\) −808.082 −0.115882
\(366\) −432.904 −0.0618258
\(367\) 12598.1 1.79187 0.895933 0.444188i \(-0.146508\pi\)
0.895933 + 0.444188i \(0.146508\pi\)
\(368\) 665.568 0.0942803
\(369\) 1280.25 0.180616
\(370\) 227.448 0.0319580
\(371\) −1593.59 −0.223006
\(372\) 1712.94 0.238741
\(373\) −7416.15 −1.02947 −0.514737 0.857348i \(-0.672110\pi\)
−0.514737 + 0.857348i \(0.672110\pi\)
\(374\) 847.544 0.117180
\(375\) 2218.11 0.305447
\(376\) 4804.70 0.658999
\(377\) −9365.53 −1.27944
\(378\) 442.202 0.0601704
\(379\) −4963.72 −0.672743 −0.336371 0.941729i \(-0.609200\pi\)
−0.336371 + 0.941729i \(0.609200\pi\)
\(380\) 1316.43 0.177714
\(381\) −1551.31 −0.208598
\(382\) −2317.45 −0.310395
\(383\) −13935.6 −1.85920 −0.929602 0.368564i \(-0.879850\pi\)
−0.929602 + 0.368564i \(0.879850\pi\)
\(384\) 384.000 0.0510310
\(385\) 276.866 0.0366504
\(386\) 4720.06 0.622396
\(387\) 4074.21 0.535151
\(388\) 78.0646 0.0102142
\(389\) 4763.57 0.620881 0.310440 0.950593i \(-0.399523\pi\)
0.310440 + 0.950593i \(0.399523\pi\)
\(390\) −944.414 −0.122621
\(391\) −1602.55 −0.207275
\(392\) 2207.53 0.284432
\(393\) −7525.86 −0.965978
\(394\) 8009.40 1.02413
\(395\) −1194.09 −0.152104
\(396\) 396.000 0.0502519
\(397\) 8796.08 1.11200 0.555999 0.831183i \(-0.312336\pi\)
0.555999 + 0.831183i \(0.312336\pi\)
\(398\) −5960.09 −0.750634
\(399\) −2630.47 −0.330046
\(400\) −1848.85 −0.231106
\(401\) −6638.46 −0.826706 −0.413353 0.910571i \(-0.635642\pi\)
−0.413353 + 0.910571i \(0.635642\pi\)
\(402\) 1706.53 0.211726
\(403\) 7310.05 0.903572
\(404\) −246.578 −0.0303656
\(405\) 248.964 0.0305459
\(406\) −2995.22 −0.366134
\(407\) −407.000 −0.0495682
\(408\) −924.594 −0.112192
\(409\) 868.442 0.104992 0.0524960 0.998621i \(-0.483282\pi\)
0.0524960 + 0.998621i \(0.483282\pi\)
\(410\) −874.450 −0.105332
\(411\) 7281.49 0.873892
\(412\) 969.058 0.115879
\(413\) 4260.88 0.507661
\(414\) −748.764 −0.0888883
\(415\) −768.387 −0.0908883
\(416\) 1638.74 0.193139
\(417\) 2558.76 0.300487
\(418\) −2355.64 −0.275641
\(419\) −8289.12 −0.966467 −0.483234 0.875491i \(-0.660538\pi\)
−0.483234 + 0.875491i \(0.660538\pi\)
\(420\) −302.036 −0.0350901
\(421\) −5622.66 −0.650906 −0.325453 0.945558i \(-0.605517\pi\)
−0.325453 + 0.945558i \(0.605517\pi\)
\(422\) 1310.66 0.151189
\(423\) −5405.29 −0.621310
\(424\) 1556.83 0.178317
\(425\) 4451.64 0.508085
\(426\) −2603.12 −0.296060
\(427\) −590.836 −0.0669614
\(428\) 1895.33 0.214052
\(429\) 1689.95 0.190190
\(430\) −2782.80 −0.312089
\(431\) −15296.5 −1.70953 −0.854764 0.519016i \(-0.826298\pi\)
−0.854764 + 0.519016i \(0.826298\pi\)
\(432\) −432.000 −0.0481125
\(433\) 7436.26 0.825321 0.412660 0.910885i \(-0.364600\pi\)
0.412660 + 0.910885i \(0.364600\pi\)
\(434\) 2337.85 0.258572
\(435\) −1686.34 −0.185871
\(436\) 5300.21 0.582188
\(437\) 4454.08 0.487569
\(438\) −1577.45 −0.172086
\(439\) −11640.5 −1.26554 −0.632769 0.774340i \(-0.718082\pi\)
−0.632769 + 0.774340i \(0.718082\pi\)
\(440\) −270.479 −0.0293059
\(441\) −2483.47 −0.268165
\(442\) −3945.75 −0.424616
\(443\) −3470.66 −0.372226 −0.186113 0.982528i \(-0.559589\pi\)
−0.186113 + 0.982528i \(0.559589\pi\)
\(444\) 444.000 0.0474579
\(445\) −4338.06 −0.462121
\(446\) 4060.05 0.431051
\(447\) 2756.92 0.291718
\(448\) 524.091 0.0552700
\(449\) 3597.29 0.378099 0.189050 0.981968i \(-0.439459\pi\)
0.189050 + 0.981968i \(0.439459\pi\)
\(450\) 2079.95 0.217888
\(451\) 1564.76 0.163374
\(452\) −408.721 −0.0425324
\(453\) 894.529 0.0927784
\(454\) 10254.2 1.06003
\(455\) −1288.95 −0.132807
\(456\) 2569.79 0.263906
\(457\) −4089.05 −0.418551 −0.209275 0.977857i \(-0.567111\pi\)
−0.209275 + 0.977857i \(0.567111\pi\)
\(458\) 10555.0 1.07687
\(459\) 1040.17 0.105775
\(460\) 511.427 0.0518378
\(461\) −10004.1 −1.01071 −0.505353 0.862913i \(-0.668638\pi\)
−0.505353 + 0.862913i \(0.668638\pi\)
\(462\) 540.469 0.0544261
\(463\) 2114.41 0.212235 0.106117 0.994354i \(-0.466158\pi\)
0.106117 + 0.994354i \(0.466158\pi\)
\(464\) 2926.12 0.292763
\(465\) 1316.23 0.131266
\(466\) 10025.5 0.996614
\(467\) −17113.2 −1.69573 −0.847866 0.530211i \(-0.822113\pi\)
−0.847866 + 0.530211i \(0.822113\pi\)
\(468\) −1843.58 −0.182093
\(469\) 2329.10 0.229313
\(470\) 3691.96 0.362335
\(471\) −4604.61 −0.450465
\(472\) −4162.58 −0.405929
\(473\) 4979.59 0.484063
\(474\) −2330.97 −0.225875
\(475\) −12372.8 −1.19516
\(476\) −1261.90 −0.121511
\(477\) −1751.43 −0.168119
\(478\) −9023.77 −0.863468
\(479\) −12132.7 −1.15732 −0.578659 0.815570i \(-0.696424\pi\)
−0.578659 + 0.815570i \(0.696424\pi\)
\(480\) 295.068 0.0280582
\(481\) 1894.79 0.179616
\(482\) −8726.97 −0.824695
\(483\) −1021.93 −0.0962719
\(484\) 484.000 0.0454545
\(485\) 59.9853 0.00561607
\(486\) 486.000 0.0453609
\(487\) −19366.3 −1.80199 −0.900997 0.433825i \(-0.857164\pi\)
−0.900997 + 0.433825i \(0.857164\pi\)
\(488\) 577.205 0.0535427
\(489\) −5656.15 −0.523068
\(490\) 1696.28 0.156388
\(491\) −12743.2 −1.17127 −0.585635 0.810575i \(-0.699155\pi\)
−0.585635 + 0.810575i \(0.699155\pi\)
\(492\) −1707.01 −0.156418
\(493\) −7045.50 −0.643638
\(494\) 10966.7 0.998816
\(495\) 304.289 0.0276298
\(496\) −2283.92 −0.206756
\(497\) −3552.79 −0.320653
\(498\) −1499.96 −0.134970
\(499\) −11982.8 −1.07500 −0.537499 0.843264i \(-0.680631\pi\)
−0.537499 + 0.843264i \(0.680631\pi\)
\(500\) −2957.48 −0.264525
\(501\) 2509.60 0.223794
\(502\) −7610.42 −0.676633
\(503\) −10130.4 −0.897996 −0.448998 0.893533i \(-0.648219\pi\)
−0.448998 + 0.893533i \(0.648219\pi\)
\(504\) −589.602 −0.0521091
\(505\) −189.472 −0.0166958
\(506\) −915.156 −0.0804025
\(507\) −1276.58 −0.111824
\(508\) 2068.41 0.180651
\(509\) 2447.72 0.213150 0.106575 0.994305i \(-0.466012\pi\)
0.106575 + 0.994305i \(0.466012\pi\)
\(510\) −710.464 −0.0616860
\(511\) −2152.94 −0.186380
\(512\) −512.000 −0.0441942
\(513\) −2891.01 −0.248813
\(514\) 5141.10 0.441176
\(515\) 744.631 0.0637133
\(516\) −5432.28 −0.463455
\(517\) −6606.46 −0.561996
\(518\) 605.980 0.0514001
\(519\) −9905.96 −0.837810
\(520\) 1259.22 0.106193
\(521\) 6697.04 0.563153 0.281577 0.959539i \(-0.409143\pi\)
0.281577 + 0.959539i \(0.409143\pi\)
\(522\) −3291.89 −0.276019
\(523\) −10744.5 −0.898328 −0.449164 0.893449i \(-0.648278\pi\)
−0.449164 + 0.893449i \(0.648278\pi\)
\(524\) 10034.5 0.836561
\(525\) 2838.76 0.235988
\(526\) −5136.37 −0.425772
\(527\) 5499.20 0.454552
\(528\) −528.000 −0.0435194
\(529\) −10436.6 −0.857780
\(530\) 1196.28 0.0980434
\(531\) 4682.90 0.382713
\(532\) 3507.30 0.285828
\(533\) −7284.74 −0.592002
\(534\) −8468.30 −0.686253
\(535\) 1456.38 0.117692
\(536\) −2275.37 −0.183360
\(537\) −2969.25 −0.238608
\(538\) −1318.06 −0.105624
\(539\) −3035.36 −0.242564
\(540\) −331.952 −0.0264536
\(541\) 10113.2 0.803694 0.401847 0.915707i \(-0.368368\pi\)
0.401847 + 0.915707i \(0.368368\pi\)
\(542\) 11787.7 0.934182
\(543\) −11765.3 −0.929827
\(544\) 1232.79 0.0971608
\(545\) 4072.71 0.320103
\(546\) −2516.16 −0.197219
\(547\) 2413.40 0.188646 0.0943231 0.995542i \(-0.469931\pi\)
0.0943231 + 0.995542i \(0.469931\pi\)
\(548\) −9708.66 −0.756813
\(549\) −649.356 −0.0504805
\(550\) 2542.16 0.197088
\(551\) 19582.1 1.51402
\(552\) 998.352 0.0769795
\(553\) −3181.35 −0.244638
\(554\) 1516.09 0.116268
\(555\) 341.173 0.0260936
\(556\) −3411.69 −0.260230
\(557\) −2425.44 −0.184505 −0.0922524 0.995736i \(-0.529407\pi\)
−0.0922524 + 0.995736i \(0.529407\pi\)
\(558\) 2569.41 0.194931
\(559\) −23182.5 −1.75405
\(560\) 402.715 0.0303889
\(561\) 1271.32 0.0956774
\(562\) 16847.0 1.26450
\(563\) −17183.0 −1.28628 −0.643141 0.765748i \(-0.722369\pi\)
−0.643141 + 0.765748i \(0.722369\pi\)
\(564\) 7207.05 0.538070
\(565\) −314.064 −0.0233855
\(566\) 8657.75 0.642955
\(567\) 663.302 0.0491289
\(568\) 3470.83 0.256396
\(569\) −6320.15 −0.465649 −0.232825 0.972519i \(-0.574797\pi\)
−0.232825 + 0.972519i \(0.574797\pi\)
\(570\) 1974.64 0.145103
\(571\) −500.896 −0.0367108 −0.0183554 0.999832i \(-0.505843\pi\)
−0.0183554 + 0.999832i \(0.505843\pi\)
\(572\) −2253.27 −0.164709
\(573\) −3476.17 −0.253437
\(574\) −2329.76 −0.169411
\(575\) −4806.77 −0.348619
\(576\) 576.000 0.0416667
\(577\) −10608.2 −0.765383 −0.382692 0.923876i \(-0.625003\pi\)
−0.382692 + 0.923876i \(0.625003\pi\)
\(578\) 6857.69 0.493499
\(579\) 7080.09 0.508184
\(580\) 2248.45 0.160969
\(581\) −2047.18 −0.146181
\(582\) 117.097 0.00833990
\(583\) −2140.64 −0.152069
\(584\) 2103.27 0.149031
\(585\) −1416.62 −0.100120
\(586\) 17571.2 1.23867
\(587\) 4.95996 0.000348755 0 0.000174378 1.00000i \(-0.499944\pi\)
0.000174378 1.00000i \(0.499944\pi\)
\(588\) 3311.30 0.232238
\(589\) −15284.3 −1.06924
\(590\) −3198.55 −0.223190
\(591\) 12014.1 0.836200
\(592\) −592.000 −0.0410997
\(593\) 15786.1 1.09318 0.546592 0.837399i \(-0.315925\pi\)
0.546592 + 0.837399i \(0.315925\pi\)
\(594\) 594.000 0.0410305
\(595\) −969.655 −0.0668101
\(596\) −3675.90 −0.252635
\(597\) −8940.14 −0.612890
\(598\) 4260.52 0.291347
\(599\) 4694.49 0.320219 0.160110 0.987099i \(-0.448815\pi\)
0.160110 + 0.987099i \(0.448815\pi\)
\(600\) −2773.27 −0.188697
\(601\) 12784.0 0.867668 0.433834 0.900993i \(-0.357160\pi\)
0.433834 + 0.900993i \(0.357160\pi\)
\(602\) −7414.08 −0.501952
\(603\) 2559.79 0.172874
\(604\) −1192.71 −0.0803485
\(605\) 371.909 0.0249921
\(606\) −369.867 −0.0247934
\(607\) 28949.0 1.93576 0.967879 0.251416i \(-0.0808961\pi\)
0.967879 + 0.251416i \(0.0808961\pi\)
\(608\) −3426.38 −0.228550
\(609\) −4492.83 −0.298947
\(610\) 443.528 0.0294392
\(611\) 30756.4 2.03645
\(612\) −1386.89 −0.0916041
\(613\) 16031.7 1.05630 0.528150 0.849151i \(-0.322886\pi\)
0.528150 + 0.849151i \(0.322886\pi\)
\(614\) −4932.10 −0.324175
\(615\) −1311.67 −0.0860030
\(616\) −720.625 −0.0471344
\(617\) 15815.1 1.03191 0.515957 0.856615i \(-0.327437\pi\)
0.515957 + 0.856615i \(0.327437\pi\)
\(618\) 1453.59 0.0946147
\(619\) −11831.8 −0.768271 −0.384135 0.923277i \(-0.625500\pi\)
−0.384135 + 0.923277i \(0.625500\pi\)
\(620\) −1754.98 −0.113680
\(621\) −1123.15 −0.0725770
\(622\) −16680.4 −1.07528
\(623\) −11557.7 −0.743258
\(624\) 2458.11 0.157697
\(625\) 12171.6 0.778980
\(626\) −15301.5 −0.976953
\(627\) −3533.46 −0.225060
\(628\) 6139.48 0.390114
\(629\) 1425.42 0.0903577
\(630\) −453.054 −0.0286510
\(631\) −17812.8 −1.12380 −0.561899 0.827206i \(-0.689929\pi\)
−0.561899 + 0.827206i \(0.689929\pi\)
\(632\) 3107.95 0.195614
\(633\) 1965.99 0.123446
\(634\) 5595.61 0.350521
\(635\) 1589.38 0.0993269
\(636\) 2335.25 0.145595
\(637\) 14131.1 0.878958
\(638\) −4023.42 −0.249669
\(639\) −3904.68 −0.241732
\(640\) −393.424 −0.0242991
\(641\) −12948.8 −0.797891 −0.398945 0.916975i \(-0.630624\pi\)
−0.398945 + 0.916975i \(0.630624\pi\)
\(642\) 2843.00 0.174773
\(643\) −22805.5 −1.39870 −0.699349 0.714781i \(-0.746527\pi\)
−0.699349 + 0.714781i \(0.746527\pi\)
\(644\) 1362.57 0.0833739
\(645\) −4174.20 −0.254820
\(646\) 8250.03 0.502466
\(647\) −1321.81 −0.0803177 −0.0401588 0.999193i \(-0.512786\pi\)
−0.0401588 + 0.999193i \(0.512786\pi\)
\(648\) −648.000 −0.0392837
\(649\) 5723.55 0.346177
\(650\) −11835.1 −0.714168
\(651\) 3506.78 0.211124
\(652\) 7541.54 0.452990
\(653\) −18001.0 −1.07876 −0.539382 0.842061i \(-0.681342\pi\)
−0.539382 + 0.842061i \(0.681342\pi\)
\(654\) 7950.31 0.475354
\(655\) 7710.56 0.459964
\(656\) 2276.01 0.135462
\(657\) −2366.18 −0.140507
\(658\) 9836.32 0.582766
\(659\) −14021.0 −0.828804 −0.414402 0.910094i \(-0.636009\pi\)
−0.414402 + 0.910094i \(0.636009\pi\)
\(660\) −405.719 −0.0239281
\(661\) −10779.2 −0.634287 −0.317144 0.948378i \(-0.602724\pi\)
−0.317144 + 0.948378i \(0.602724\pi\)
\(662\) −10559.0 −0.619921
\(663\) −5918.62 −0.346697
\(664\) 1999.95 0.116887
\(665\) 2695.03 0.157156
\(666\) 666.000 0.0387492
\(667\) 7607.55 0.441628
\(668\) −3346.13 −0.193811
\(669\) 6090.07 0.351952
\(670\) −1748.41 −0.100816
\(671\) −793.657 −0.0456614
\(672\) 786.136 0.0451278
\(673\) 8704.75 0.498579 0.249289 0.968429i \(-0.419803\pi\)
0.249289 + 0.968429i \(0.419803\pi\)
\(674\) 17987.8 1.02799
\(675\) 3119.93 0.177905
\(676\) 1702.10 0.0968424
\(677\) 11295.9 0.641265 0.320633 0.947204i \(-0.396105\pi\)
0.320633 + 0.947204i \(0.396105\pi\)
\(678\) −613.082 −0.0347275
\(679\) 159.816 0.00903267
\(680\) 947.285 0.0534217
\(681\) 15381.3 0.865512
\(682\) 3140.39 0.176322
\(683\) −7481.67 −0.419148 −0.209574 0.977793i \(-0.567208\pi\)
−0.209574 + 0.977793i \(0.567208\pi\)
\(684\) 3854.68 0.215479
\(685\) −7460.20 −0.416116
\(686\) 10136.9 0.564183
\(687\) 15832.6 0.879258
\(688\) 7243.03 0.401363
\(689\) 9965.78 0.551039
\(690\) 767.141 0.0423254
\(691\) −8279.75 −0.455827 −0.227914 0.973681i \(-0.573190\pi\)
−0.227914 + 0.973681i \(0.573190\pi\)
\(692\) 13208.0 0.725565
\(693\) 810.703 0.0444388
\(694\) 13438.3 0.735029
\(695\) −2621.56 −0.143081
\(696\) 4389.18 0.239040
\(697\) −5480.16 −0.297813
\(698\) −16847.5 −0.913590
\(699\) 15038.2 0.813732
\(700\) −3785.01 −0.204371
\(701\) 486.188 0.0261955 0.0130978 0.999914i \(-0.495831\pi\)
0.0130978 + 0.999914i \(0.495831\pi\)
\(702\) −2765.37 −0.148678
\(703\) −3961.75 −0.212547
\(704\) 704.000 0.0376889
\(705\) 5537.94 0.295845
\(706\) −354.783 −0.0189128
\(707\) −504.801 −0.0268529
\(708\) −6243.87 −0.331439
\(709\) 2200.07 0.116538 0.0582689 0.998301i \(-0.481442\pi\)
0.0582689 + 0.998301i \(0.481442\pi\)
\(710\) 2667.01 0.140973
\(711\) −3496.45 −0.184426
\(712\) 11291.1 0.594312
\(713\) −5937.90 −0.311888
\(714\) −1892.86 −0.0992134
\(715\) −1731.42 −0.0905617
\(716\) 3959.00 0.206641
\(717\) −13535.7 −0.705019
\(718\) 15196.0 0.789848
\(719\) 11192.3 0.580532 0.290266 0.956946i \(-0.406256\pi\)
0.290266 + 0.956946i \(0.406256\pi\)
\(720\) 442.602 0.0229095
\(721\) 1983.89 0.102474
\(722\) −9211.88 −0.474835
\(723\) −13090.5 −0.673360
\(724\) 15687.0 0.805254
\(725\) −21132.6 −1.08255
\(726\) 726.000 0.0371135
\(727\) 19784.7 1.00932 0.504660 0.863318i \(-0.331618\pi\)
0.504660 + 0.863318i \(0.331618\pi\)
\(728\) 3354.88 0.170797
\(729\) 729.000 0.0370370
\(730\) 1616.16 0.0819410
\(731\) −17439.7 −0.882397
\(732\) 865.807 0.0437174
\(733\) 38236.7 1.92675 0.963373 0.268166i \(-0.0864176\pi\)
0.963373 + 0.268166i \(0.0864176\pi\)
\(734\) −25196.2 −1.26704
\(735\) 2544.42 0.127690
\(736\) −1331.14 −0.0666662
\(737\) 3128.63 0.156370
\(738\) −2560.51 −0.127715
\(739\) −23571.1 −1.17331 −0.586656 0.809836i \(-0.699556\pi\)
−0.586656 + 0.809836i \(0.699556\pi\)
\(740\) −454.897 −0.0225978
\(741\) 16450.0 0.815529
\(742\) 3187.19 0.157689
\(743\) −23302.1 −1.15056 −0.575282 0.817955i \(-0.695108\pi\)
−0.575282 + 0.817955i \(0.695108\pi\)
\(744\) −3425.87 −0.168815
\(745\) −2824.58 −0.138906
\(746\) 14832.3 0.727947
\(747\) −2249.94 −0.110202
\(748\) −1695.09 −0.0828590
\(749\) 3880.18 0.189291
\(750\) −4436.22 −0.215984
\(751\) −16972.8 −0.824698 −0.412349 0.911026i \(-0.635291\pi\)
−0.412349 + 0.911026i \(0.635291\pi\)
\(752\) −9609.40 −0.465982
\(753\) −11415.6 −0.552469
\(754\) 18731.1 0.904701
\(755\) −916.482 −0.0441778
\(756\) −884.403 −0.0425469
\(757\) −26187.0 −1.25731 −0.628654 0.777685i \(-0.716394\pi\)
−0.628654 + 0.777685i \(0.716394\pi\)
\(758\) 9927.45 0.475701
\(759\) −1372.73 −0.0656484
\(760\) −2632.85 −0.125663
\(761\) 5055.31 0.240808 0.120404 0.992725i \(-0.461581\pi\)
0.120404 + 0.992725i \(0.461581\pi\)
\(762\) 3102.61 0.147501
\(763\) 10850.7 0.514840
\(764\) 4634.90 0.219483
\(765\) −1065.70 −0.0503664
\(766\) 27871.2 1.31466
\(767\) −26646.0 −1.25441
\(768\) −768.000 −0.0360844
\(769\) −12297.1 −0.576651 −0.288325 0.957532i \(-0.593098\pi\)
−0.288325 + 0.957532i \(0.593098\pi\)
\(770\) −553.733 −0.0259158
\(771\) 7711.65 0.360218
\(772\) −9440.13 −0.440100
\(773\) 17375.8 0.808493 0.404246 0.914650i \(-0.367534\pi\)
0.404246 + 0.914650i \(0.367534\pi\)
\(774\) −8148.41 −0.378409
\(775\) 16494.6 0.764519
\(776\) −156.129 −0.00722256
\(777\) 908.970 0.0419680
\(778\) −9527.14 −0.439029
\(779\) 15231.4 0.700541
\(780\) 1888.83 0.0867062
\(781\) −4772.39 −0.218655
\(782\) 3205.10 0.146566
\(783\) −4937.83 −0.225369
\(784\) −4415.07 −0.201124
\(785\) 4717.61 0.214495
\(786\) 15051.7 0.683049
\(787\) −1443.69 −0.0653900 −0.0326950 0.999465i \(-0.510409\pi\)
−0.0326950 + 0.999465i \(0.510409\pi\)
\(788\) −16018.8 −0.724170
\(789\) −7704.55 −0.347642
\(790\) 2388.17 0.107554
\(791\) −836.747 −0.0376122
\(792\) −792.000 −0.0355335
\(793\) 3694.88 0.165459
\(794\) −17592.2 −0.786301
\(795\) 1794.42 0.0800521
\(796\) 11920.2 0.530778
\(797\) −17895.1 −0.795330 −0.397665 0.917531i \(-0.630179\pi\)
−0.397665 + 0.917531i \(0.630179\pi\)
\(798\) 5260.94 0.233378
\(799\) 23137.5 1.02446
\(800\) 3697.69 0.163416
\(801\) −12702.4 −0.560323
\(802\) 13276.9 0.584569
\(803\) −2891.99 −0.127094
\(804\) −3413.06 −0.149713
\(805\) 1047.01 0.0458412
\(806\) −14620.1 −0.638922
\(807\) −1977.09 −0.0862415
\(808\) 493.156 0.0214717
\(809\) −36322.9 −1.57855 −0.789274 0.614041i \(-0.789543\pi\)
−0.789274 + 0.614041i \(0.789543\pi\)
\(810\) −497.927 −0.0215992
\(811\) −14521.2 −0.628742 −0.314371 0.949300i \(-0.601794\pi\)
−0.314371 + 0.949300i \(0.601794\pi\)
\(812\) 5990.44 0.258896
\(813\) 17681.6 0.762756
\(814\) 814.000 0.0350500
\(815\) 5794.97 0.249066
\(816\) 1849.19 0.0793315
\(817\) 48471.5 2.07565
\(818\) −1736.88 −0.0742405
\(819\) −3774.24 −0.161029
\(820\) 1748.90 0.0744808
\(821\) 3236.72 0.137591 0.0687956 0.997631i \(-0.478084\pi\)
0.0687956 + 0.997631i \(0.478084\pi\)
\(822\) −14563.0 −0.617935
\(823\) 41242.3 1.74680 0.873400 0.487003i \(-0.161910\pi\)
0.873400 + 0.487003i \(0.161910\pi\)
\(824\) −1938.12 −0.0819387
\(825\) 3813.24 0.160921
\(826\) −8521.76 −0.358971
\(827\) 22725.4 0.955552 0.477776 0.878482i \(-0.341443\pi\)
0.477776 + 0.878482i \(0.341443\pi\)
\(828\) 1497.53 0.0628535
\(829\) 5236.53 0.219387 0.109694 0.993965i \(-0.465013\pi\)
0.109694 + 0.993965i \(0.465013\pi\)
\(830\) 1536.77 0.0642677
\(831\) 2274.14 0.0949327
\(832\) −3277.48 −0.136570
\(833\) 10630.6 0.442170
\(834\) −5117.53 −0.212477
\(835\) −2571.19 −0.106563
\(836\) 4711.28 0.194908
\(837\) 3854.11 0.159161
\(838\) 16578.2 0.683396
\(839\) 12610.4 0.518901 0.259451 0.965756i \(-0.416459\pi\)
0.259451 + 0.965756i \(0.416459\pi\)
\(840\) 604.072 0.0248125
\(841\) 9057.05 0.371358
\(842\) 11245.3 0.460260
\(843\) 25270.5 1.03246
\(844\) −2621.32 −0.106907
\(845\) 1307.91 0.0532466
\(846\) 10810.6 0.439332
\(847\) 990.859 0.0401964
\(848\) −3113.66 −0.126089
\(849\) 12986.6 0.524970
\(850\) −8903.28 −0.359271
\(851\) −1539.13 −0.0619983
\(852\) 5206.24 0.209346
\(853\) −42846.1 −1.71984 −0.859920 0.510430i \(-0.829486\pi\)
−0.859920 + 0.510430i \(0.829486\pi\)
\(854\) 1181.67 0.0473489
\(855\) 2961.96 0.118476
\(856\) −3790.66 −0.151358
\(857\) 25052.1 0.998556 0.499278 0.866442i \(-0.333599\pi\)
0.499278 + 0.866442i \(0.333599\pi\)
\(858\) −3379.90 −0.134485
\(859\) 31951.0 1.26910 0.634549 0.772883i \(-0.281186\pi\)
0.634549 + 0.772883i \(0.281186\pi\)
\(860\) 5565.59 0.220680
\(861\) −3494.63 −0.138324
\(862\) 30593.0 1.20882
\(863\) −16653.0 −0.656865 −0.328432 0.944528i \(-0.606520\pi\)
−0.328432 + 0.944528i \(0.606520\pi\)
\(864\) 864.000 0.0340207
\(865\) 10149.1 0.398935
\(866\) −14872.5 −0.583590
\(867\) 10286.5 0.402940
\(868\) −4675.70 −0.182838
\(869\) −4273.44 −0.166820
\(870\) 3372.68 0.131430
\(871\) −14565.4 −0.566624
\(872\) −10600.4 −0.411669
\(873\) 175.645 0.00680950
\(874\) −8908.17 −0.344764
\(875\) −6054.64 −0.233925
\(876\) 3154.90 0.121683
\(877\) 36657.6 1.41145 0.705724 0.708486i \(-0.250622\pi\)
0.705724 + 0.708486i \(0.250622\pi\)
\(878\) 23281.0 0.894871
\(879\) 26356.8 1.01137
\(880\) 540.958 0.0207224
\(881\) −19122.6 −0.731280 −0.365640 0.930756i \(-0.619150\pi\)
−0.365640 + 0.930756i \(0.619150\pi\)
\(882\) 4966.95 0.189621
\(883\) 580.239 0.0221139 0.0110570 0.999939i \(-0.496480\pi\)
0.0110570 + 0.999939i \(0.496480\pi\)
\(884\) 7891.50 0.300249
\(885\) −4797.83 −0.182234
\(886\) 6941.32 0.263203
\(887\) −17085.6 −0.646764 −0.323382 0.946269i \(-0.604820\pi\)
−0.323382 + 0.946269i \(0.604820\pi\)
\(888\) −888.000 −0.0335578
\(889\) 4234.51 0.159753
\(890\) 8676.13 0.326769
\(891\) 891.000 0.0335013
\(892\) −8120.09 −0.304799
\(893\) −64307.6 −2.40982
\(894\) −5513.84 −0.206276
\(895\) 3042.12 0.113617
\(896\) −1048.18 −0.0390818
\(897\) 6390.78 0.237884
\(898\) −7194.58 −0.267357
\(899\) −26105.5 −0.968486
\(900\) −4159.90 −0.154070
\(901\) 7497.06 0.277207
\(902\) −3129.51 −0.115523
\(903\) −11121.1 −0.409842
\(904\) 817.443 0.0300749
\(905\) 12054.0 0.442750
\(906\) −1789.06 −0.0656043
\(907\) 16559.8 0.606241 0.303120 0.952952i \(-0.401972\pi\)
0.303120 + 0.952952i \(0.401972\pi\)
\(908\) −20508.4 −0.749556
\(909\) −554.800 −0.0202437
\(910\) 2577.91 0.0939086
\(911\) −25847.7 −0.940035 −0.470018 0.882657i \(-0.655752\pi\)
−0.470018 + 0.882657i \(0.655752\pi\)
\(912\) −5139.57 −0.186610
\(913\) −2749.93 −0.0996817
\(914\) 8178.10 0.295960
\(915\) 665.292 0.0240370
\(916\) −21110.1 −0.761460
\(917\) 20542.9 0.739788
\(918\) −2080.34 −0.0747945
\(919\) 10191.6 0.365823 0.182911 0.983129i \(-0.441448\pi\)
0.182911 + 0.983129i \(0.441448\pi\)
\(920\) −1022.85 −0.0366549
\(921\) −7398.15 −0.264688
\(922\) 20008.1 0.714677
\(923\) 22217.9 0.792319
\(924\) −1080.94 −0.0384851
\(925\) 4275.45 0.151974
\(926\) −4228.81 −0.150073
\(927\) 2180.38 0.0772526
\(928\) −5852.24 −0.207014
\(929\) 30519.6 1.07784 0.538921 0.842357i \(-0.318832\pi\)
0.538921 + 0.842357i \(0.318832\pi\)
\(930\) −2632.46 −0.0928193
\(931\) −29546.3 −1.04011
\(932\) −20051.0 −0.704712
\(933\) −25020.6 −0.877960
\(934\) 34226.5 1.19906
\(935\) −1302.52 −0.0455581
\(936\) 3687.16 0.128759
\(937\) 13066.4 0.455560 0.227780 0.973713i \(-0.426853\pi\)
0.227780 + 0.973713i \(0.426853\pi\)
\(938\) −4658.21 −0.162149
\(939\) −22952.3 −0.797679
\(940\) −7383.93 −0.256210
\(941\) 24407.7 0.845556 0.422778 0.906233i \(-0.361055\pi\)
0.422778 + 0.906233i \(0.361055\pi\)
\(942\) 9209.21 0.318527
\(943\) 5917.34 0.204343
\(944\) 8325.16 0.287035
\(945\) −679.581 −0.0233934
\(946\) −9959.17 −0.342284
\(947\) −40157.2 −1.37797 −0.688983 0.724778i \(-0.741942\pi\)
−0.688983 + 0.724778i \(0.741942\pi\)
\(948\) 4661.93 0.159718
\(949\) 13463.7 0.460538
\(950\) 24745.5 0.845106
\(951\) 8393.42 0.286199
\(952\) 2523.81 0.0859213
\(953\) −51933.4 −1.76526 −0.882628 0.470072i \(-0.844228\pi\)
−0.882628 + 0.470072i \(0.844228\pi\)
\(954\) 3502.87 0.118878
\(955\) 3561.49 0.120678
\(956\) 18047.5 0.610564
\(957\) −6035.13 −0.203854
\(958\) 24265.3 0.818347
\(959\) −19875.9 −0.669265
\(960\) −590.136 −0.0198402
\(961\) −9414.93 −0.316033
\(962\) −3789.58 −0.127007
\(963\) 4264.49 0.142701
\(964\) 17453.9 0.583147
\(965\) −7253.85 −0.241979
\(966\) 2043.86 0.0680745
\(967\) −3374.25 −0.112212 −0.0561058 0.998425i \(-0.517868\pi\)
−0.0561058 + 0.998425i \(0.517868\pi\)
\(968\) −968.000 −0.0321412
\(969\) 12375.0 0.410262
\(970\) −119.971 −0.00397116
\(971\) 4992.23 0.164993 0.0824965 0.996591i \(-0.473711\pi\)
0.0824965 + 0.996591i \(0.473711\pi\)
\(972\) −972.000 −0.0320750
\(973\) −6984.51 −0.230126
\(974\) 38732.6 1.27420
\(975\) −17752.6 −0.583116
\(976\) −1154.41 −0.0378604
\(977\) −47053.7 −1.54082 −0.770411 0.637548i \(-0.779949\pi\)
−0.770411 + 0.637548i \(0.779949\pi\)
\(978\) 11312.3 0.369865
\(979\) −15525.2 −0.506831
\(980\) −3392.57 −0.110583
\(981\) 11925.5 0.388125
\(982\) 25486.4 0.828213
\(983\) 3656.90 0.118654 0.0593271 0.998239i \(-0.481105\pi\)
0.0593271 + 0.998239i \(0.481105\pi\)
\(984\) 3414.01 0.110604
\(985\) −12309.0 −0.398168
\(986\) 14091.0 0.455121
\(987\) 14754.5 0.475826
\(988\) −21933.4 −0.706269
\(989\) 18831.0 0.605451
\(990\) −608.578 −0.0195373
\(991\) 52490.5 1.68256 0.841280 0.540600i \(-0.181803\pi\)
0.841280 + 0.540600i \(0.181803\pi\)
\(992\) 4567.83 0.146198
\(993\) −15838.5 −0.506164
\(994\) 7105.58 0.226736
\(995\) 9159.55 0.291836
\(996\) 2999.92 0.0954380
\(997\) 54753.8 1.73929 0.869644 0.493680i \(-0.164348\pi\)
0.869644 + 0.493680i \(0.164348\pi\)
\(998\) 23965.6 0.760139
\(999\) 999.000 0.0316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2442.4.a.n.1.8 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2442.4.a.n.1.8 12 1.1 even 1 trivial