Properties

Label 2442.4.a.n
Level $2442$
Weight $4$
Character orbit 2442.a
Self dual yes
Analytic conductor $144.083$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2442,4,Mod(1,2442)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2442, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2442.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2442 = 2 \cdot 3 \cdot 11 \cdot 37 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2442.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-24,-36,48,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(144.082664234\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} - 849 x^{10} + 1205 x^{9} + 248360 x^{8} - 397682 x^{7} - 29936318 x^{6} + \cdots - 37088275010 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{4}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} - 3 q^{3} + 4 q^{4} + (\beta_1 - 1) q^{5} + 6 q^{6} + (\beta_{3} - 2) q^{7} - 8 q^{8} + 9 q^{9} + ( - 2 \beta_1 + 2) q^{10} + 11 q^{11} - 12 q^{12} + (\beta_{10} + 1) q^{13} + ( - 2 \beta_{3} + 4) q^{14}+ \cdots + 99 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 24 q^{2} - 36 q^{3} + 48 q^{4} - 10 q^{5} + 72 q^{6} - 25 q^{7} - 96 q^{8} + 108 q^{9} + 20 q^{10} + 132 q^{11} - 144 q^{12} + 12 q^{13} + 50 q^{14} + 30 q^{15} + 192 q^{16} - 10 q^{17} - 216 q^{18}+ \cdots + 1188 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 2 x^{11} - 849 x^{10} + 1205 x^{9} + 248360 x^{8} - 397682 x^{7} - 29936318 x^{6} + \cdots - 37088275010 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 20\!\cdots\!73 \nu^{11} + \cdots - 16\!\cdots\!02 ) / 76\!\cdots\!08 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 61\!\cdots\!55 \nu^{11} + \cdots - 11\!\cdots\!82 ) / 15\!\cdots\!16 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 13\!\cdots\!89 \nu^{11} + \cdots - 30\!\cdots\!30 ) / 15\!\cdots\!16 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 10\!\cdots\!73 \nu^{11} + \cdots + 47\!\cdots\!26 ) / 76\!\cdots\!08 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 40\!\cdots\!83 \nu^{11} + \cdots - 24\!\cdots\!90 ) / 19\!\cdots\!52 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 57\!\cdots\!45 \nu^{11} + \cdots - 72\!\cdots\!34 ) / 21\!\cdots\!88 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 87\!\cdots\!71 \nu^{11} + \cdots + 92\!\cdots\!86 ) / 21\!\cdots\!88 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 92\!\cdots\!61 \nu^{11} + \cdots + 94\!\cdots\!98 ) / 20\!\cdots\!84 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 63\!\cdots\!63 \nu^{11} + \cdots - 56\!\cdots\!34 ) / 76\!\cdots\!08 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 13\!\cdots\!65 \nu^{11} + \cdots + 11\!\cdots\!22 ) / 76\!\cdots\!08 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{11} + \beta_{10} - \beta_{9} - \beta_{8} - \beta_{7} + \beta_{6} + \beta_{4} + \beta_{3} + \beta _1 + 142 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( - 2 \beta_{11} - \beta_{10} + 2 \beta_{9} - 11 \beta_{8} - 21 \beta_{7} - 6 \beta_{6} + 12 \beta_{4} + \cdots + 72 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 331 \beta_{11} + 397 \beta_{10} - 321 \beta_{9} - 346 \beta_{8} - 610 \beta_{7} + 384 \beta_{6} + \cdots + 37504 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 48 \beta_{11} + 816 \beta_{10} - 941 \beta_{9} - 5480 \beta_{8} - 12262 \beta_{7} - 2171 \beta_{6} + \cdots + 115686 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 105738 \beta_{11} + 137075 \beta_{10} - 112083 \beta_{9} - 130489 \beta_{8} - 293425 \beta_{7} + \cdots + 11770404 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 375461 \beta_{11} + 778238 \beta_{10} - 939288 \beta_{9} - 2439061 \beta_{8} - 5877269 \beta_{7} + \cdots + 75643084 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 35691474 \beta_{11} + 48166103 \beta_{10} - 42364748 \beta_{9} - 52392630 \beta_{8} - 131360504 \beta_{7} + \cdots + 4073008690 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 264658682 \beta_{11} + 452050663 \beta_{10} - 540096933 \beta_{9} - 1052925686 \beta_{8} + \cdots + 39969645396 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 12830051130 \beta_{11} + 17723520144 \beta_{10} - 16816778042 \beta_{9} - 21766724675 \beta_{8} + \cdots + 1509762156386 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 141752574614 \beta_{11} + 225184284541 \beta_{10} - 265414235203 \beta_{9} - 450067354347 \beta_{8} + \cdots + 19273746097616 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−17.2673
−15.7225
−14.4099
−8.25233
−4.59085
0.700104
3.90570
4.07363
6.18811
11.7318
14.9649
20.6786
−2.00000 −3.00000 4.00000 −18.2673 6.00000 32.8498 −8.00000 9.00000 36.5346
1.2 −2.00000 −3.00000 4.00000 −16.7225 6.00000 −0.421102 −8.00000 9.00000 33.4451
1.3 −2.00000 −3.00000 4.00000 −15.4099 6.00000 −16.9392 −8.00000 9.00000 30.8197
1.4 −2.00000 −3.00000 4.00000 −9.25233 6.00000 −24.6947 −8.00000 9.00000 18.5047
1.5 −2.00000 −3.00000 4.00000 −5.59085 6.00000 18.8489 −8.00000 9.00000 11.1817
1.6 −2.00000 −3.00000 4.00000 −0.299896 6.00000 −33.3625 −8.00000 9.00000 0.599792
1.7 −2.00000 −3.00000 4.00000 2.90570 6.00000 12.2772 −8.00000 9.00000 −5.81139
1.8 −2.00000 −3.00000 4.00000 3.07363 6.00000 8.18892 −8.00000 9.00000 −6.14725
1.9 −2.00000 −3.00000 4.00000 5.18811 6.00000 6.01889 −8.00000 9.00000 −10.3762
1.10 −2.00000 −3.00000 4.00000 10.7318 6.00000 8.30812 −8.00000 9.00000 −21.4635
1.11 −2.00000 −3.00000 4.00000 13.9649 6.00000 −28.4509 −8.00000 9.00000 −27.9299
1.12 −2.00000 −3.00000 4.00000 19.6786 6.00000 −7.62338 −8.00000 9.00000 −39.3573
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.12
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(11\) \( -1 \)
\(37\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2442.4.a.n 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2442.4.a.n 12 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{12} + 10 T_{5}^{11} - 805 T_{5}^{10} - 7175 T_{5}^{9} + 221165 T_{5}^{8} + 1530830 T_{5}^{7} + \cdots + 9979078784 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2442))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{12} \) Copy content Toggle raw display
$3$ \( (T + 3)^{12} \) Copy content Toggle raw display
$5$ \( T^{12} + \cdots + 9979078784 \) Copy content Toggle raw display
$7$ \( T^{12} + \cdots + 3967804813312 \) Copy content Toggle raw display
$11$ \( (T - 11)^{12} \) Copy content Toggle raw display
$13$ \( T^{12} + \cdots - 72\!\cdots\!48 \) Copy content Toggle raw display
$17$ \( T^{12} + \cdots + 10\!\cdots\!04 \) Copy content Toggle raw display
$19$ \( T^{12} + \cdots - 30\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{12} + \cdots - 24\!\cdots\!08 \) Copy content Toggle raw display
$29$ \( T^{12} + \cdots - 29\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{12} + \cdots - 71\!\cdots\!04 \) Copy content Toggle raw display
$37$ \( (T + 37)^{12} \) Copy content Toggle raw display
$41$ \( T^{12} + \cdots + 12\!\cdots\!32 \) Copy content Toggle raw display
$43$ \( T^{12} + \cdots + 23\!\cdots\!92 \) Copy content Toggle raw display
$47$ \( T^{12} + \cdots + 10\!\cdots\!40 \) Copy content Toggle raw display
$53$ \( T^{12} + \cdots - 10\!\cdots\!40 \) Copy content Toggle raw display
$59$ \( T^{12} + \cdots + 23\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{12} + \cdots + 27\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{12} + \cdots - 44\!\cdots\!24 \) Copy content Toggle raw display
$71$ \( T^{12} + \cdots - 99\!\cdots\!68 \) Copy content Toggle raw display
$73$ \( T^{12} + \cdots + 47\!\cdots\!56 \) Copy content Toggle raw display
$79$ \( T^{12} + \cdots - 69\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{12} + \cdots - 86\!\cdots\!48 \) Copy content Toggle raw display
$89$ \( T^{12} + \cdots - 74\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{12} + \cdots - 32\!\cdots\!64 \) Copy content Toggle raw display
show more
show less