Properties

Label 2-2442-1.1-c3-0-48
Degree $2$
Conductor $2442$
Sign $-1$
Analytic cond. $144.082$
Root an. cond. $12.0034$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3·3-s + 4·4-s − 15.4·5-s + 6·6-s − 16.9·7-s − 8·8-s + 9·9-s + 30.8·10-s + 11·11-s − 12·12-s − 50.7·13-s + 33.8·14-s + 46.2·15-s + 16·16-s + 38.1·17-s − 18·18-s − 76.6·19-s − 61.6·20-s + 50.8·21-s − 22·22-s − 134.·23-s + 24·24-s + 112.·25-s + 101.·26-s − 27·27-s − 67.7·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 0.5·4-s − 1.37·5-s + 0.408·6-s − 0.914·7-s − 0.353·8-s + 0.333·9-s + 0.974·10-s + 0.301·11-s − 0.288·12-s − 1.08·13-s + 0.646·14-s + 0.795·15-s + 0.250·16-s + 0.543·17-s − 0.235·18-s − 0.925·19-s − 0.689·20-s + 0.528·21-s − 0.213·22-s − 1.21·23-s + 0.204·24-s + 0.899·25-s + 0.765·26-s − 0.192·27-s − 0.457·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2442 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2442 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2442\)    =    \(2 \cdot 3 \cdot 11 \cdot 37\)
Sign: $-1$
Analytic conductor: \(144.082\)
Root analytic conductor: \(12.0034\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2442,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
3 \( 1 + 3T \)
11 \( 1 - 11T \)
37 \( 1 + 37T \)
good5 \( 1 + 15.4T + 125T^{2} \)
7 \( 1 + 16.9T + 343T^{2} \)
13 \( 1 + 50.7T + 2.19e3T^{2} \)
17 \( 1 - 38.1T + 4.91e3T^{2} \)
19 \( 1 + 76.6T + 6.85e3T^{2} \)
23 \( 1 + 134.T + 1.21e4T^{2} \)
29 \( 1 - 253.T + 2.43e4T^{2} \)
31 \( 1 + 120.T + 2.97e4T^{2} \)
41 \( 1 - 168.T + 6.89e4T^{2} \)
43 \( 1 + 47.2T + 7.95e4T^{2} \)
47 \( 1 - 489.T + 1.03e5T^{2} \)
53 \( 1 + 763.T + 1.48e5T^{2} \)
59 \( 1 + 706.T + 2.05e5T^{2} \)
61 \( 1 - 591.T + 2.26e5T^{2} \)
67 \( 1 - 854.T + 3.00e5T^{2} \)
71 \( 1 + 85.5T + 3.57e5T^{2} \)
73 \( 1 - 857.T + 3.89e5T^{2} \)
79 \( 1 - 991.T + 4.93e5T^{2} \)
83 \( 1 + 109.T + 5.71e5T^{2} \)
89 \( 1 - 1.21e3T + 7.04e5T^{2} \)
97 \( 1 - 1.60e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.002073486961040746861982573524, −7.63336817063564123239809318444, −6.68602530616504448001564801999, −6.22461393608862722080628576264, −5.00431965944382094259706096048, −4.10790465952939065296000729882, −3.33321992885390686687252379913, −2.21090910867065753125175844382, −0.71103670600311487968008117695, 0, 0.71103670600311487968008117695, 2.21090910867065753125175844382, 3.33321992885390686687252379913, 4.10790465952939065296000729882, 5.00431965944382094259706096048, 6.22461393608862722080628576264, 6.68602530616504448001564801999, 7.63336817063564123239809318444, 8.002073486961040746861982573524

Graph of the $Z$-function along the critical line