Properties

Label 2442.2.a.t
Level $2442$
Weight $2$
Character orbit 2442.a
Self dual yes
Analytic conductor $19.499$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2442,2,Mod(1,2442)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2442, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2442.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2442 = 2 \cdot 3 \cdot 11 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2442.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,3,3,3,4,3,6,3,3,4,3,3,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.4994681736\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{3} + q^{4} + (\beta_{2} + \beta_1 + 1) q^{5} + q^{6} + ( - \beta_{2} + 2) q^{7} + q^{8} + q^{9} + (\beta_{2} + \beta_1 + 1) q^{10} + q^{11} + q^{12} + ( - \beta_{2} + \beta_1 - 3) q^{13}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 3 q^{3} + 3 q^{4} + 4 q^{5} + 3 q^{6} + 6 q^{7} + 3 q^{8} + 3 q^{9} + 4 q^{10} + 3 q^{11} + 3 q^{12} - 8 q^{13} + 6 q^{14} + 4 q^{15} + 3 q^{16} + 4 q^{17} + 3 q^{18} + 6 q^{19} + 4 q^{20}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 3x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.311108
−1.48119
2.17009
1.00000 1.00000 1.00000 −0.903212 1.00000 4.21432 1.00000 1.00000 −0.903212
1.2 1.00000 1.00000 1.00000 1.19394 1.00000 0.324869 1.00000 1.00000 1.19394
1.3 1.00000 1.00000 1.00000 3.70928 1.00000 1.46081 1.00000 1.00000 3.70928
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(11\) \( -1 \)
\(37\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2442.2.a.t 3
3.b odd 2 1 7326.2.a.w 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2442.2.a.t 3 1.a even 1 1 trivial
7326.2.a.w 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2442))\):

\( T_{5}^{3} - 4T_{5}^{2} + 4 \) Copy content Toggle raw display
\( T_{7}^{3} - 6T_{7}^{2} + 8T_{7} - 2 \) Copy content Toggle raw display
\( T_{13}^{3} + 8T_{13}^{2} + 12T_{13} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{3} \) Copy content Toggle raw display
$3$ \( (T - 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 4T^{2} + 4 \) Copy content Toggle raw display
$7$ \( T^{3} - 6 T^{2} + \cdots - 2 \) Copy content Toggle raw display
$11$ \( (T - 1)^{3} \) Copy content Toggle raw display
$13$ \( T^{3} + 8 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$17$ \( T^{3} - 4 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$19$ \( T^{3} - 6 T^{2} + \cdots + 122 \) Copy content Toggle raw display
$23$ \( T^{3} + 6 T^{2} + \cdots - 428 \) Copy content Toggle raw display
$29$ \( T^{3} - 12 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$31$ \( T^{3} - 10 T^{2} + \cdots + 124 \) Copy content Toggle raw display
$37$ \( (T + 1)^{3} \) Copy content Toggle raw display
$41$ \( T^{3} - 6 T^{2} + \cdots + 460 \) Copy content Toggle raw display
$43$ \( T^{3} - 8 T^{2} + \cdots + 206 \) Copy content Toggle raw display
$47$ \( T^{3} + 10 T^{2} + \cdots - 46 \) Copy content Toggle raw display
$53$ \( T^{3} - 16 T^{2} + \cdots - 74 \) Copy content Toggle raw display
$59$ \( T^{3} + 10 T^{2} + \cdots - 970 \) Copy content Toggle raw display
$61$ \( T^{3} + 20 T^{2} + \cdots + 148 \) Copy content Toggle raw display
$67$ \( T^{3} - 4 T^{2} + \cdots + 268 \) Copy content Toggle raw display
$71$ \( T^{3} + 8 T^{2} + \cdots - 262 \) Copy content Toggle raw display
$73$ \( T^{3} + 14 T^{2} + \cdots - 344 \) Copy content Toggle raw display
$79$ \( T^{3} - 18 T^{2} + \cdots + 2700 \) Copy content Toggle raw display
$83$ \( T^{3} + 4 T^{2} + \cdots - 268 \) Copy content Toggle raw display
$89$ \( T^{3} + 12 T^{2} + \cdots - 10 \) Copy content Toggle raw display
$97$ \( T^{3} + 12 T^{2} + \cdots + 16 \) Copy content Toggle raw display
show more
show less