Properties

Label 2442.2
Level 2442
Weight 2
Dimension 40293
Nonzero newspaces 36
Sturm bound 656640
Trace bound 10

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 2442 = 2 \cdot 3 \cdot 11 \cdot 37 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 36 \)
Sturm bound: \(656640\)
Trace bound: \(10\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(2442))\).

Total New Old
Modular forms 167040 40293 126747
Cusp forms 161281 40293 120988
Eisenstein series 5759 0 5759

Trace form

\( 40293 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 18 q^{5} + 7 q^{6} + 16 q^{7} - 3 q^{8} + 37 q^{9} + 22 q^{10} + 17 q^{11} + 17 q^{12} - 2 q^{13} + 16 q^{14} + 42 q^{15} - 3 q^{16} + 26 q^{17} + 7 q^{18} - 18 q^{20}+ \cdots - 263 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(2442))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2442.2.a \(\chi_{2442}(1, \cdot)\) 2442.2.a.a 1 1
2442.2.a.b 1
2442.2.a.c 1
2442.2.a.d 1
2442.2.a.e 1
2442.2.a.f 1
2442.2.a.g 1
2442.2.a.h 1
2442.2.a.i 1
2442.2.a.j 2
2442.2.a.k 2
2442.2.a.l 2
2442.2.a.m 2
2442.2.a.n 2
2442.2.a.o 3
2442.2.a.p 3
2442.2.a.q 3
2442.2.a.r 3
2442.2.a.s 3
2442.2.a.t 3
2442.2.a.u 4
2442.2.a.v 4
2442.2.a.w 5
2442.2.a.x 5
2442.2.a.y 6
2442.2.b \(\chi_{2442}(593, \cdot)\) n/a 144 1
2442.2.d \(\chi_{2442}(1849, \cdot)\) 2442.2.d.a 2 1
2442.2.d.b 2
2442.2.d.c 2
2442.2.d.d 12
2442.2.d.e 14
2442.2.d.f 16
2442.2.d.g 16
2442.2.g \(\chi_{2442}(2441, \cdot)\) n/a 152 1
2442.2.i \(\chi_{2442}(1321, \cdot)\) n/a 136 2
2442.2.k \(\chi_{2442}(43, \cdot)\) n/a 152 2
2442.2.m \(\chi_{2442}(1079, \cdot)\) n/a 248 2
2442.2.n \(\chi_{2442}(223, \cdot)\) n/a 288 4
2442.2.p \(\chi_{2442}(989, \cdot)\) n/a 304 2
2442.2.s \(\chi_{2442}(397, \cdot)\) n/a 128 2
2442.2.u \(\chi_{2442}(1913, \cdot)\) n/a 304 2
2442.2.v \(\chi_{2442}(793, \cdot)\) n/a 384 6
2442.2.x \(\chi_{2442}(887, \cdot)\) n/a 608 4
2442.2.ba \(\chi_{2442}(295, \cdot)\) n/a 304 4
2442.2.bc \(\chi_{2442}(149, \cdot)\) n/a 576 4
2442.2.bd \(\chi_{2442}(23, \cdot)\) n/a 496 4
2442.2.bf \(\chi_{2442}(637, \cdot)\) n/a 304 4
2442.2.bh \(\chi_{2442}(433, \cdot)\) n/a 608 8
2442.2.bj \(\chi_{2442}(65, \cdot)\) n/a 912 6
2442.2.bm \(\chi_{2442}(197, \cdot)\) n/a 912 6
2442.2.bn \(\chi_{2442}(67, \cdot)\) n/a 360 6
2442.2.bp \(\chi_{2442}(179, \cdot)\) n/a 1216 8
2442.2.br \(\chi_{2442}(475, \cdot)\) n/a 608 8
2442.2.bt \(\chi_{2442}(359, \cdot)\) n/a 1216 8
2442.2.bv \(\chi_{2442}(619, \cdot)\) n/a 608 8
2442.2.by \(\chi_{2442}(101, \cdot)\) n/a 1216 8
2442.2.cb \(\chi_{2442}(109, \cdot)\) n/a 912 12
2442.2.cc \(\chi_{2442}(89, \cdot)\) n/a 1536 12
2442.2.ce \(\chi_{2442}(49, \cdot)\) n/a 1824 24
2442.2.cg \(\chi_{2442}(193, \cdot)\) n/a 1216 16
2442.2.ci \(\chi_{2442}(119, \cdot)\) n/a 2432 16
2442.2.ck \(\chi_{2442}(41, \cdot)\) n/a 3648 24
2442.2.cn \(\chi_{2442}(25, \cdot)\) n/a 1824 24
2442.2.co \(\chi_{2442}(83, \cdot)\) n/a 3648 24
2442.2.cr \(\chi_{2442}(5, \cdot)\) n/a 7296 48
2442.2.cs \(\chi_{2442}(13, \cdot)\) n/a 3648 48

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(2442))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(2442)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(37))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(66))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(74))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(111))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(222))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(407))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(814))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1221))\)\(^{\oplus 2}\)