Properties

Label 2432.2.c.j.1217.5
Level $2432$
Weight $2$
Character 2432.1217
Analytic conductor $19.420$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2432,2,Mod(1217,2432)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2432, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2432.1217"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2432 = 2^{7} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2432.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.4196177716\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 170x^{16} + 6593x^{12} + 64168x^{8} + 95760x^{4} + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{19} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1217.5
Root \(-1.31430 + 1.31430i\) of defining polynomial
Character \(\chi\) \(=\) 2432.1217
Dual form 2432.2.c.j.1217.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.85871i q^{3} -1.69983i q^{5} +4.99365 q^{7} -0.454788 q^{9} -1.11059i q^{11} +3.29382i q^{13} -3.15948 q^{15} +1.15203 q^{17} -1.00000i q^{19} -9.28173i q^{21} +1.96339 q^{23} +2.11059 q^{25} -4.73080i q^{27} -0.533986i q^{29} +5.01704 q^{31} -2.06426 q^{33} -8.48834i q^{35} +0.331051i q^{37} +6.12225 q^{39} -4.12133 q^{41} +9.29618i q^{43} +0.773061i q^{45} +5.71748 q^{47} +17.9366 q^{49} -2.14129i q^{51} -10.5213i q^{53} -1.88781 q^{55} -1.85871 q^{57} +14.1441i q^{59} -13.2760i q^{61} -2.27105 q^{63} +5.59893 q^{65} +11.9258i q^{67} -3.64936i q^{69} -4.73009 q^{71} -6.28279 q^{73} -3.92296i q^{75} -5.54590i q^{77} +2.23894 q^{79} -10.1575 q^{81} +3.09516i q^{83} -1.95826i q^{85} -0.992524 q^{87} -6.62510 q^{89} +16.4482i q^{91} -9.32520i q^{93} -1.69983 q^{95} -6.46818 q^{97} +0.505083i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 28 q^{9} + 8 q^{17} - 20 q^{25} - 16 q^{33} + 24 q^{41} + 52 q^{49} - 8 q^{57} - 48 q^{65} - 24 q^{73} + 68 q^{81} + 40 q^{89} - 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2432\mathbb{Z}\right)^\times\).

\(n\) \(1407\) \(1921\) \(2053\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.85871i − 1.07312i −0.843861 0.536562i \(-0.819723\pi\)
0.843861 0.536562i \(-0.180277\pi\)
\(4\) 0 0
\(5\) − 1.69983i − 0.760186i −0.924948 0.380093i \(-0.875892\pi\)
0.924948 0.380093i \(-0.124108\pi\)
\(6\) 0 0
\(7\) 4.99365 1.88742 0.943711 0.330770i \(-0.107308\pi\)
0.943711 + 0.330770i \(0.107308\pi\)
\(8\) 0 0
\(9\) −0.454788 −0.151596
\(10\) 0 0
\(11\) − 1.11059i − 0.334855i −0.985884 0.167428i \(-0.946454\pi\)
0.985884 0.167428i \(-0.0535461\pi\)
\(12\) 0 0
\(13\) 3.29382i 0.913543i 0.889584 + 0.456771i \(0.150994\pi\)
−0.889584 + 0.456771i \(0.849006\pi\)
\(14\) 0 0
\(15\) −3.15948 −0.815774
\(16\) 0 0
\(17\) 1.15203 0.279409 0.139705 0.990193i \(-0.455385\pi\)
0.139705 + 0.990193i \(0.455385\pi\)
\(18\) 0 0
\(19\) − 1.00000i − 0.229416i
\(20\) 0 0
\(21\) − 9.28173i − 2.02544i
\(22\) 0 0
\(23\) 1.96339 0.409395 0.204698 0.978825i \(-0.434379\pi\)
0.204698 + 0.978825i \(0.434379\pi\)
\(24\) 0 0
\(25\) 2.11059 0.422118
\(26\) 0 0
\(27\) − 4.73080i − 0.910443i
\(28\) 0 0
\(29\) − 0.533986i − 0.0991588i −0.998770 0.0495794i \(-0.984212\pi\)
0.998770 0.0495794i \(-0.0157881\pi\)
\(30\) 0 0
\(31\) 5.01704 0.901087 0.450543 0.892755i \(-0.351230\pi\)
0.450543 + 0.892755i \(0.351230\pi\)
\(32\) 0 0
\(33\) −2.06426 −0.359341
\(34\) 0 0
\(35\) − 8.48834i − 1.43479i
\(36\) 0 0
\(37\) 0.331051i 0.0544244i 0.999630 + 0.0272122i \(0.00866299\pi\)
−0.999630 + 0.0272122i \(0.991337\pi\)
\(38\) 0 0
\(39\) 6.12225 0.980345
\(40\) 0 0
\(41\) −4.12133 −0.643644 −0.321822 0.946800i \(-0.604295\pi\)
−0.321822 + 0.946800i \(0.604295\pi\)
\(42\) 0 0
\(43\) 9.29618i 1.41765i 0.705382 + 0.708827i \(0.250775\pi\)
−0.705382 + 0.708827i \(0.749225\pi\)
\(44\) 0 0
\(45\) 0.773061i 0.115241i
\(46\) 0 0
\(47\) 5.71748 0.833980 0.416990 0.908911i \(-0.363085\pi\)
0.416990 + 0.908911i \(0.363085\pi\)
\(48\) 0 0
\(49\) 17.9366 2.56236
\(50\) 0 0
\(51\) − 2.14129i − 0.299841i
\(52\) 0 0
\(53\) − 10.5213i − 1.44521i −0.691261 0.722605i \(-0.742945\pi\)
0.691261 0.722605i \(-0.257055\pi\)
\(54\) 0 0
\(55\) −1.88781 −0.254552
\(56\) 0 0
\(57\) −1.85871 −0.246192
\(58\) 0 0
\(59\) 14.1441i 1.84141i 0.390259 + 0.920705i \(0.372386\pi\)
−0.390259 + 0.920705i \(0.627614\pi\)
\(60\) 0 0
\(61\) − 13.2760i − 1.69982i −0.526930 0.849909i \(-0.676657\pi\)
0.526930 0.849909i \(-0.323343\pi\)
\(62\) 0 0
\(63\) −2.27105 −0.286126
\(64\) 0 0
\(65\) 5.59893 0.694462
\(66\) 0 0
\(67\) 11.9258i 1.45697i 0.685062 + 0.728485i \(0.259775\pi\)
−0.685062 + 0.728485i \(0.740225\pi\)
\(68\) 0 0
\(69\) − 3.64936i − 0.439332i
\(70\) 0 0
\(71\) −4.73009 −0.561358 −0.280679 0.959802i \(-0.590560\pi\)
−0.280679 + 0.959802i \(0.590560\pi\)
\(72\) 0 0
\(73\) −6.28279 −0.735345 −0.367672 0.929955i \(-0.619845\pi\)
−0.367672 + 0.929955i \(0.619845\pi\)
\(74\) 0 0
\(75\) − 3.92296i − 0.452985i
\(76\) 0 0
\(77\) − 5.54590i − 0.632013i
\(78\) 0 0
\(79\) 2.23894 0.251901 0.125950 0.992037i \(-0.459802\pi\)
0.125950 + 0.992037i \(0.459802\pi\)
\(80\) 0 0
\(81\) −10.1575 −1.12861
\(82\) 0 0
\(83\) 3.09516i 0.339738i 0.985467 + 0.169869i \(0.0543345\pi\)
−0.985467 + 0.169869i \(0.945665\pi\)
\(84\) 0 0
\(85\) − 1.95826i − 0.212403i
\(86\) 0 0
\(87\) −0.992524 −0.106410
\(88\) 0 0
\(89\) −6.62510 −0.702259 −0.351129 0.936327i \(-0.614202\pi\)
−0.351129 + 0.936327i \(0.614202\pi\)
\(90\) 0 0
\(91\) 16.4482i 1.72424i
\(92\) 0 0
\(93\) − 9.32520i − 0.966978i
\(94\) 0 0
\(95\) −1.69983 −0.174399
\(96\) 0 0
\(97\) −6.46818 −0.656744 −0.328372 0.944549i \(-0.606500\pi\)
−0.328372 + 0.944549i \(0.606500\pi\)
\(98\) 0 0
\(99\) 0.505083i 0.0507627i
\(100\) 0 0
\(101\) 7.77688i 0.773828i 0.922116 + 0.386914i \(0.126459\pi\)
−0.922116 + 0.386914i \(0.873541\pi\)
\(102\) 0 0
\(103\) 1.85756 0.183031 0.0915155 0.995804i \(-0.470829\pi\)
0.0915155 + 0.995804i \(0.470829\pi\)
\(104\) 0 0
\(105\) −15.7773 −1.53971
\(106\) 0 0
\(107\) − 8.77113i − 0.847937i −0.905677 0.423969i \(-0.860637\pi\)
0.905677 0.423969i \(-0.139363\pi\)
\(108\) 0 0
\(109\) − 0.00686030i 0 0.000657098i −1.00000 0.000328549i \(-0.999895\pi\)
1.00000 0.000328549i \(-0.000104580\pi\)
\(110\) 0 0
\(111\) 0.615326 0.0584042
\(112\) 0 0
\(113\) −16.7751 −1.57807 −0.789034 0.614349i \(-0.789419\pi\)
−0.789034 + 0.614349i \(0.789419\pi\)
\(114\) 0 0
\(115\) − 3.33742i − 0.311216i
\(116\) 0 0
\(117\) − 1.49799i − 0.138489i
\(118\) 0 0
\(119\) 5.75286 0.527364
\(120\) 0 0
\(121\) 9.76659 0.887872
\(122\) 0 0
\(123\) 7.66034i 0.690710i
\(124\) 0 0
\(125\) − 12.0868i − 1.08107i
\(126\) 0 0
\(127\) −14.0735 −1.24883 −0.624413 0.781095i \(-0.714662\pi\)
−0.624413 + 0.781095i \(0.714662\pi\)
\(128\) 0 0
\(129\) 17.2789 1.52132
\(130\) 0 0
\(131\) − 11.8828i − 1.03821i −0.854711 0.519104i \(-0.826266\pi\)
0.854711 0.519104i \(-0.173734\pi\)
\(132\) 0 0
\(133\) − 4.99365i − 0.433004i
\(134\) 0 0
\(135\) −8.04154 −0.692106
\(136\) 0 0
\(137\) −5.95987 −0.509186 −0.254593 0.967048i \(-0.581942\pi\)
−0.254593 + 0.967048i \(0.581942\pi\)
\(138\) 0 0
\(139\) 9.63584i 0.817301i 0.912691 + 0.408651i \(0.134001\pi\)
−0.912691 + 0.408651i \(0.865999\pi\)
\(140\) 0 0
\(141\) − 10.6271i − 0.894965i
\(142\) 0 0
\(143\) 3.65809 0.305905
\(144\) 0 0
\(145\) −0.907684 −0.0753791
\(146\) 0 0
\(147\) − 33.3388i − 2.74974i
\(148\) 0 0
\(149\) − 9.08676i − 0.744416i −0.928149 0.372208i \(-0.878601\pi\)
0.928149 0.372208i \(-0.121399\pi\)
\(150\) 0 0
\(151\) −1.45792 −0.118644 −0.0593220 0.998239i \(-0.518894\pi\)
−0.0593220 + 0.998239i \(0.518894\pi\)
\(152\) 0 0
\(153\) −0.523932 −0.0423574
\(154\) 0 0
\(155\) − 8.52810i − 0.684993i
\(156\) 0 0
\(157\) − 15.2445i − 1.21664i −0.793690 0.608322i \(-0.791843\pi\)
0.793690 0.608322i \(-0.208157\pi\)
\(158\) 0 0
\(159\) −19.5560 −1.55089
\(160\) 0 0
\(161\) 9.80448 0.772702
\(162\) 0 0
\(163\) − 5.49623i − 0.430498i −0.976559 0.215249i \(-0.930944\pi\)
0.976559 0.215249i \(-0.0690564\pi\)
\(164\) 0 0
\(165\) 3.50888i 0.273166i
\(166\) 0 0
\(167\) 2.94782 0.228109 0.114055 0.993474i \(-0.463616\pi\)
0.114055 + 0.993474i \(0.463616\pi\)
\(168\) 0 0
\(169\) 2.15072 0.165440
\(170\) 0 0
\(171\) 0.454788i 0.0347785i
\(172\) 0 0
\(173\) 20.7338i 1.57636i 0.615443 + 0.788181i \(0.288977\pi\)
−0.615443 + 0.788181i \(0.711023\pi\)
\(174\) 0 0
\(175\) 10.5395 0.796715
\(176\) 0 0
\(177\) 26.2898 1.97606
\(178\) 0 0
\(179\) − 9.93574i − 0.742632i −0.928507 0.371316i \(-0.878907\pi\)
0.928507 0.371316i \(-0.121093\pi\)
\(180\) 0 0
\(181\) 14.9317i 1.10987i 0.831895 + 0.554933i \(0.187256\pi\)
−0.831895 + 0.554933i \(0.812744\pi\)
\(182\) 0 0
\(183\) −24.6762 −1.82412
\(184\) 0 0
\(185\) 0.562729 0.0413727
\(186\) 0 0
\(187\) − 1.27944i − 0.0935617i
\(188\) 0 0
\(189\) − 23.6240i − 1.71839i
\(190\) 0 0
\(191\) −13.9130 −1.00671 −0.503354 0.864080i \(-0.667901\pi\)
−0.503354 + 0.864080i \(0.667901\pi\)
\(192\) 0 0
\(193\) −18.0432 −1.29878 −0.649388 0.760457i \(-0.724975\pi\)
−0.649388 + 0.760457i \(0.724975\pi\)
\(194\) 0 0
\(195\) − 10.4068i − 0.745244i
\(196\) 0 0
\(197\) − 18.9494i − 1.35009i −0.737778 0.675044i \(-0.764125\pi\)
0.737778 0.675044i \(-0.235875\pi\)
\(198\) 0 0
\(199\) −23.5571 −1.66992 −0.834960 0.550311i \(-0.814509\pi\)
−0.834960 + 0.550311i \(0.814509\pi\)
\(200\) 0 0
\(201\) 22.1666 1.56351
\(202\) 0 0
\(203\) − 2.66654i − 0.187155i
\(204\) 0 0
\(205\) 7.00555i 0.489289i
\(206\) 0 0
\(207\) −0.892926 −0.0620627
\(208\) 0 0
\(209\) −1.11059 −0.0768211
\(210\) 0 0
\(211\) 7.03487i 0.484300i 0.970239 + 0.242150i \(0.0778527\pi\)
−0.970239 + 0.242150i \(0.922147\pi\)
\(212\) 0 0
\(213\) 8.79184i 0.602407i
\(214\) 0 0
\(215\) 15.8019 1.07768
\(216\) 0 0
\(217\) 25.0533 1.70073
\(218\) 0 0
\(219\) 11.6779i 0.789117i
\(220\) 0 0
\(221\) 3.79460i 0.255252i
\(222\) 0 0
\(223\) 26.5805 1.77996 0.889981 0.455997i \(-0.150717\pi\)
0.889981 + 0.455997i \(0.150717\pi\)
\(224\) 0 0
\(225\) −0.959871 −0.0639914
\(226\) 0 0
\(227\) − 7.42897i − 0.493078i −0.969133 0.246539i \(-0.920707\pi\)
0.969133 0.246539i \(-0.0792933\pi\)
\(228\) 0 0
\(229\) 15.2748i 1.00938i 0.863299 + 0.504692i \(0.168394\pi\)
−0.863299 + 0.504692i \(0.831606\pi\)
\(230\) 0 0
\(231\) −10.3082 −0.678229
\(232\) 0 0
\(233\) −23.5221 −1.54098 −0.770492 0.637450i \(-0.779989\pi\)
−0.770492 + 0.637450i \(0.779989\pi\)
\(234\) 0 0
\(235\) − 9.71873i − 0.633980i
\(236\) 0 0
\(237\) − 4.16154i − 0.270321i
\(238\) 0 0
\(239\) 14.0034 0.905804 0.452902 0.891560i \(-0.350389\pi\)
0.452902 + 0.891560i \(0.350389\pi\)
\(240\) 0 0
\(241\) −14.3117 −0.921895 −0.460948 0.887427i \(-0.652490\pi\)
−0.460948 + 0.887427i \(0.652490\pi\)
\(242\) 0 0
\(243\) 4.68746i 0.300701i
\(244\) 0 0
\(245\) − 30.4890i − 1.94787i
\(246\) 0 0
\(247\) 3.29382 0.209581
\(248\) 0 0
\(249\) 5.75300 0.364582
\(250\) 0 0
\(251\) 18.5407i 1.17028i 0.810933 + 0.585138i \(0.198960\pi\)
−0.810933 + 0.585138i \(0.801040\pi\)
\(252\) 0 0
\(253\) − 2.18052i − 0.137088i
\(254\) 0 0
\(255\) −3.63983 −0.227935
\(256\) 0 0
\(257\) −30.7165 −1.91604 −0.958022 0.286693i \(-0.907444\pi\)
−0.958022 + 0.286693i \(0.907444\pi\)
\(258\) 0 0
\(259\) 1.65315i 0.102722i
\(260\) 0 0
\(261\) 0.242851i 0.0150321i
\(262\) 0 0
\(263\) −21.6908 −1.33751 −0.668757 0.743481i \(-0.733173\pi\)
−0.668757 + 0.743481i \(0.733173\pi\)
\(264\) 0 0
\(265\) −17.8844 −1.09863
\(266\) 0 0
\(267\) 12.3141i 0.753611i
\(268\) 0 0
\(269\) − 21.4204i − 1.30603i −0.757347 0.653013i \(-0.773505\pi\)
0.757347 0.653013i \(-0.226495\pi\)
\(270\) 0 0
\(271\) −14.3429 −0.871267 −0.435634 0.900124i \(-0.643476\pi\)
−0.435634 + 0.900124i \(0.643476\pi\)
\(272\) 0 0
\(273\) 30.5724 1.85033
\(274\) 0 0
\(275\) − 2.34400i − 0.141348i
\(276\) 0 0
\(277\) 22.3325i 1.34183i 0.741534 + 0.670915i \(0.234099\pi\)
−0.741534 + 0.670915i \(0.765901\pi\)
\(278\) 0 0
\(279\) −2.28169 −0.136601
\(280\) 0 0
\(281\) 28.1504 1.67931 0.839656 0.543118i \(-0.182757\pi\)
0.839656 + 0.543118i \(0.182757\pi\)
\(282\) 0 0
\(283\) 18.2272i 1.08350i 0.840541 + 0.541748i \(0.182237\pi\)
−0.840541 + 0.541748i \(0.817763\pi\)
\(284\) 0 0
\(285\) 3.15948i 0.187151i
\(286\) 0 0
\(287\) −20.5805 −1.21483
\(288\) 0 0
\(289\) −15.6728 −0.921930
\(290\) 0 0
\(291\) 12.0224i 0.704768i
\(292\) 0 0
\(293\) − 3.08217i − 0.180062i −0.995939 0.0900311i \(-0.971303\pi\)
0.995939 0.0900311i \(-0.0286966\pi\)
\(294\) 0 0
\(295\) 24.0426 1.39981
\(296\) 0 0
\(297\) −5.25398 −0.304867
\(298\) 0 0
\(299\) 6.46706i 0.374000i
\(300\) 0 0
\(301\) 46.4219i 2.67571i
\(302\) 0 0
\(303\) 14.4549 0.830414
\(304\) 0 0
\(305\) −22.5669 −1.29218
\(306\) 0 0
\(307\) − 21.0933i − 1.20386i −0.798550 0.601928i \(-0.794399\pi\)
0.798550 0.601928i \(-0.205601\pi\)
\(308\) 0 0
\(309\) − 3.45266i − 0.196415i
\(310\) 0 0
\(311\) 2.25610 0.127932 0.0639658 0.997952i \(-0.479625\pi\)
0.0639658 + 0.997952i \(0.479625\pi\)
\(312\) 0 0
\(313\) 26.0686 1.47349 0.736743 0.676173i \(-0.236363\pi\)
0.736743 + 0.676173i \(0.236363\pi\)
\(314\) 0 0
\(315\) 3.86040i 0.217509i
\(316\) 0 0
\(317\) 20.6543i 1.16006i 0.814594 + 0.580032i \(0.196960\pi\)
−0.814594 + 0.580032i \(0.803040\pi\)
\(318\) 0 0
\(319\) −0.593040 −0.0332038
\(320\) 0 0
\(321\) −16.3030 −0.909942
\(322\) 0 0
\(323\) − 1.15203i − 0.0641009i
\(324\) 0 0
\(325\) 6.95191i 0.385623i
\(326\) 0 0
\(327\) −0.0127513 −0.000705148 0
\(328\) 0 0
\(329\) 28.5511 1.57407
\(330\) 0 0
\(331\) 9.74497i 0.535632i 0.963470 + 0.267816i \(0.0863019\pi\)
−0.963470 + 0.267816i \(0.913698\pi\)
\(332\) 0 0
\(333\) − 0.150558i − 0.00825053i
\(334\) 0 0
\(335\) 20.2718 1.10757
\(336\) 0 0
\(337\) 22.4739 1.22423 0.612115 0.790769i \(-0.290319\pi\)
0.612115 + 0.790769i \(0.290319\pi\)
\(338\) 0 0
\(339\) 31.1800i 1.69346i
\(340\) 0 0
\(341\) − 5.57187i − 0.301734i
\(342\) 0 0
\(343\) 54.6133 2.94884
\(344\) 0 0
\(345\) −6.20329 −0.333974
\(346\) 0 0
\(347\) 19.8570i 1.06598i 0.846121 + 0.532990i \(0.178932\pi\)
−0.846121 + 0.532990i \(0.821068\pi\)
\(348\) 0 0
\(349\) 1.09822i 0.0587864i 0.999568 + 0.0293932i \(0.00935750\pi\)
−0.999568 + 0.0293932i \(0.990643\pi\)
\(350\) 0 0
\(351\) 15.5824 0.831729
\(352\) 0 0
\(353\) 13.6146 0.724630 0.362315 0.932056i \(-0.381987\pi\)
0.362315 + 0.932056i \(0.381987\pi\)
\(354\) 0 0
\(355\) 8.04033i 0.426736i
\(356\) 0 0
\(357\) − 10.6929i − 0.565927i
\(358\) 0 0
\(359\) −2.11086 −0.111407 −0.0557036 0.998447i \(-0.517740\pi\)
−0.0557036 + 0.998447i \(0.517740\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) 0 0
\(363\) − 18.1532i − 0.952797i
\(364\) 0 0
\(365\) 10.6797i 0.558999i
\(366\) 0 0
\(367\) −18.2079 −0.950446 −0.475223 0.879865i \(-0.657633\pi\)
−0.475223 + 0.879865i \(0.657633\pi\)
\(368\) 0 0
\(369\) 1.87433 0.0975738
\(370\) 0 0
\(371\) − 52.5397i − 2.72772i
\(372\) 0 0
\(373\) − 10.4064i − 0.538823i −0.963025 0.269411i \(-0.913171\pi\)
0.963025 0.269411i \(-0.0868292\pi\)
\(374\) 0 0
\(375\) −22.4658 −1.16013
\(376\) 0 0
\(377\) 1.75886 0.0905858
\(378\) 0 0
\(379\) 26.5865i 1.36566i 0.730579 + 0.682828i \(0.239250\pi\)
−0.730579 + 0.682828i \(0.760750\pi\)
\(380\) 0 0
\(381\) 26.1586i 1.34014i
\(382\) 0 0
\(383\) 32.1769 1.64416 0.822081 0.569371i \(-0.192813\pi\)
0.822081 + 0.569371i \(0.192813\pi\)
\(384\) 0 0
\(385\) −9.42706 −0.480448
\(386\) 0 0
\(387\) − 4.22779i − 0.214911i
\(388\) 0 0
\(389\) − 12.5671i − 0.637178i −0.947893 0.318589i \(-0.896791\pi\)
0.947893 0.318589i \(-0.103209\pi\)
\(390\) 0 0
\(391\) 2.26189 0.114389
\(392\) 0 0
\(393\) −22.0867 −1.11413
\(394\) 0 0
\(395\) − 3.80582i − 0.191491i
\(396\) 0 0
\(397\) − 13.9346i − 0.699359i −0.936869 0.349680i \(-0.886290\pi\)
0.936869 0.349680i \(-0.113710\pi\)
\(398\) 0 0
\(399\) −9.28173 −0.464668
\(400\) 0 0
\(401\) 12.1528 0.606884 0.303442 0.952850i \(-0.401864\pi\)
0.303442 + 0.952850i \(0.401864\pi\)
\(402\) 0 0
\(403\) 16.5252i 0.823181i
\(404\) 0 0
\(405\) 17.2660i 0.857957i
\(406\) 0 0
\(407\) 0.367662 0.0182243
\(408\) 0 0
\(409\) −19.2621 −0.952451 −0.476225 0.879323i \(-0.657995\pi\)
−0.476225 + 0.879323i \(0.657995\pi\)
\(410\) 0 0
\(411\) 11.0776i 0.546420i
\(412\) 0 0
\(413\) 70.6309i 3.47552i
\(414\) 0 0
\(415\) 5.26124 0.258264
\(416\) 0 0
\(417\) 17.9102 0.877066
\(418\) 0 0
\(419\) 24.7994i 1.21153i 0.795643 + 0.605766i \(0.207133\pi\)
−0.795643 + 0.605766i \(0.792867\pi\)
\(420\) 0 0
\(421\) 8.44804i 0.411732i 0.978580 + 0.205866i \(0.0660012\pi\)
−0.978580 + 0.205866i \(0.933999\pi\)
\(422\) 0 0
\(423\) −2.60024 −0.126428
\(424\) 0 0
\(425\) 2.43147 0.117944
\(426\) 0 0
\(427\) − 66.2957i − 3.20827i
\(428\) 0 0
\(429\) − 6.79931i − 0.328274i
\(430\) 0 0
\(431\) −13.5241 −0.651435 −0.325717 0.945467i \(-0.605606\pi\)
−0.325717 + 0.945467i \(0.605606\pi\)
\(432\) 0 0
\(433\) −22.1120 −1.06263 −0.531317 0.847173i \(-0.678303\pi\)
−0.531317 + 0.847173i \(0.678303\pi\)
\(434\) 0 0
\(435\) 1.68712i 0.0808911i
\(436\) 0 0
\(437\) − 1.96339i − 0.0939217i
\(438\) 0 0
\(439\) 27.3233 1.30407 0.652036 0.758188i \(-0.273915\pi\)
0.652036 + 0.758188i \(0.273915\pi\)
\(440\) 0 0
\(441\) −8.15733 −0.388444
\(442\) 0 0
\(443\) 24.5051i 1.16427i 0.813092 + 0.582136i \(0.197783\pi\)
−0.813092 + 0.582136i \(0.802217\pi\)
\(444\) 0 0
\(445\) 11.2615i 0.533847i
\(446\) 0 0
\(447\) −16.8896 −0.798851
\(448\) 0 0
\(449\) −24.6752 −1.16450 −0.582248 0.813011i \(-0.697827\pi\)
−0.582248 + 0.813011i \(0.697827\pi\)
\(450\) 0 0
\(451\) 4.57710i 0.215527i
\(452\) 0 0
\(453\) 2.70985i 0.127320i
\(454\) 0 0
\(455\) 27.9591 1.31074
\(456\) 0 0
\(457\) 0.949705 0.0444253 0.0222127 0.999753i \(-0.492929\pi\)
0.0222127 + 0.999753i \(0.492929\pi\)
\(458\) 0 0
\(459\) − 5.45005i − 0.254386i
\(460\) 0 0
\(461\) − 20.4010i − 0.950171i −0.879940 0.475085i \(-0.842417\pi\)
0.879940 0.475085i \(-0.157583\pi\)
\(462\) 0 0
\(463\) 6.95349 0.323156 0.161578 0.986860i \(-0.448342\pi\)
0.161578 + 0.986860i \(0.448342\pi\)
\(464\) 0 0
\(465\) −15.8512 −0.735083
\(466\) 0 0
\(467\) − 33.0618i − 1.52992i −0.644078 0.764960i \(-0.722759\pi\)
0.644078 0.764960i \(-0.277241\pi\)
\(468\) 0 0
\(469\) 59.5534i 2.74992i
\(470\) 0 0
\(471\) −28.3351 −1.30561
\(472\) 0 0
\(473\) 10.3242 0.474709
\(474\) 0 0
\(475\) − 2.11059i − 0.0968405i
\(476\) 0 0
\(477\) 4.78496i 0.219088i
\(478\) 0 0
\(479\) 40.8353 1.86581 0.932907 0.360117i \(-0.117263\pi\)
0.932907 + 0.360117i \(0.117263\pi\)
\(480\) 0 0
\(481\) −1.09042 −0.0497191
\(482\) 0 0
\(483\) − 18.2237i − 0.829205i
\(484\) 0 0
\(485\) 10.9948i 0.499247i
\(486\) 0 0
\(487\) 2.51966 0.114177 0.0570884 0.998369i \(-0.481818\pi\)
0.0570884 + 0.998369i \(0.481818\pi\)
\(488\) 0 0
\(489\) −10.2159 −0.461978
\(490\) 0 0
\(491\) 34.1557i 1.54143i 0.637183 + 0.770713i \(0.280100\pi\)
−0.637183 + 0.770713i \(0.719900\pi\)
\(492\) 0 0
\(493\) − 0.615171i − 0.0277059i
\(494\) 0 0
\(495\) 0.858553 0.0385891
\(496\) 0 0
\(497\) −23.6204 −1.05952
\(498\) 0 0
\(499\) − 3.55199i − 0.159009i −0.996835 0.0795044i \(-0.974666\pi\)
0.996835 0.0795044i \(-0.0253338\pi\)
\(500\) 0 0
\(501\) − 5.47913i − 0.244790i
\(502\) 0 0
\(503\) 17.1375 0.764121 0.382061 0.924137i \(-0.375215\pi\)
0.382061 + 0.924137i \(0.375215\pi\)
\(504\) 0 0
\(505\) 13.2193 0.588253
\(506\) 0 0
\(507\) − 3.99755i − 0.177538i
\(508\) 0 0
\(509\) − 17.8510i − 0.791233i −0.918416 0.395616i \(-0.870531\pi\)
0.918416 0.395616i \(-0.129469\pi\)
\(510\) 0 0
\(511\) −31.3741 −1.38791
\(512\) 0 0
\(513\) −4.73080 −0.208870
\(514\) 0 0
\(515\) − 3.15753i − 0.139137i
\(516\) 0 0
\(517\) − 6.34977i − 0.279263i
\(518\) 0 0
\(519\) 38.5381 1.69163
\(520\) 0 0
\(521\) 18.7080 0.819612 0.409806 0.912173i \(-0.365596\pi\)
0.409806 + 0.912173i \(0.365596\pi\)
\(522\) 0 0
\(523\) − 25.3363i − 1.10788i −0.832557 0.553940i \(-0.813124\pi\)
0.832557 0.553940i \(-0.186876\pi\)
\(524\) 0 0
\(525\) − 19.5899i − 0.854974i
\(526\) 0 0
\(527\) 5.77980 0.251772
\(528\) 0 0
\(529\) −19.1451 −0.832396
\(530\) 0 0
\(531\) − 6.43259i − 0.279151i
\(532\) 0 0
\(533\) − 13.5749i − 0.587996i
\(534\) 0 0
\(535\) −14.9094 −0.644590
\(536\) 0 0
\(537\) −18.4676 −0.796937
\(538\) 0 0
\(539\) − 19.9201i − 0.858021i
\(540\) 0 0
\(541\) 25.2010i 1.08348i 0.840547 + 0.541738i \(0.182233\pi\)
−0.840547 + 0.541738i \(0.817767\pi\)
\(542\) 0 0
\(543\) 27.7537 1.19102
\(544\) 0 0
\(545\) −0.0116613 −0.000499516 0
\(546\) 0 0
\(547\) − 38.4387i − 1.64352i −0.569834 0.821760i \(-0.692993\pi\)
0.569834 0.821760i \(-0.307007\pi\)
\(548\) 0 0
\(549\) 6.03776i 0.257686i
\(550\) 0 0
\(551\) −0.533986 −0.0227486
\(552\) 0 0
\(553\) 11.1805 0.475443
\(554\) 0 0
\(555\) − 1.04595i − 0.0443980i
\(556\) 0 0
\(557\) 34.4826i 1.46107i 0.682873 + 0.730537i \(0.260730\pi\)
−0.682873 + 0.730537i \(0.739270\pi\)
\(558\) 0 0
\(559\) −30.6200 −1.29509
\(560\) 0 0
\(561\) −2.37810 −0.100403
\(562\) 0 0
\(563\) 19.3574i 0.815818i 0.913023 + 0.407909i \(0.133742\pi\)
−0.913023 + 0.407909i \(0.866258\pi\)
\(564\) 0 0
\(565\) 28.5148i 1.19962i
\(566\) 0 0
\(567\) −50.7232 −2.13017
\(568\) 0 0
\(569\) 10.1856 0.427002 0.213501 0.976943i \(-0.431513\pi\)
0.213501 + 0.976943i \(0.431513\pi\)
\(570\) 0 0
\(571\) − 47.1495i − 1.97315i −0.163320 0.986573i \(-0.552220\pi\)
0.163320 0.986573i \(-0.447780\pi\)
\(572\) 0 0
\(573\) 25.8601i 1.08032i
\(574\) 0 0
\(575\) 4.14391 0.172813
\(576\) 0 0
\(577\) 32.4237 1.34982 0.674908 0.737902i \(-0.264183\pi\)
0.674908 + 0.737902i \(0.264183\pi\)
\(578\) 0 0
\(579\) 33.5370i 1.39375i
\(580\) 0 0
\(581\) 15.4562i 0.641230i
\(582\) 0 0
\(583\) −11.6848 −0.483936
\(584\) 0 0
\(585\) −2.54633 −0.105278
\(586\) 0 0
\(587\) − 5.31292i − 0.219288i −0.993971 0.109644i \(-0.965029\pi\)
0.993971 0.109644i \(-0.0349710\pi\)
\(588\) 0 0
\(589\) − 5.01704i − 0.206723i
\(590\) 0 0
\(591\) −35.2213 −1.44881
\(592\) 0 0
\(593\) 45.1632 1.85463 0.927316 0.374280i \(-0.122110\pi\)
0.927316 + 0.374280i \(0.122110\pi\)
\(594\) 0 0
\(595\) − 9.77887i − 0.400894i
\(596\) 0 0
\(597\) 43.7857i 1.79203i
\(598\) 0 0
\(599\) −1.43343 −0.0585685 −0.0292842 0.999571i \(-0.509323\pi\)
−0.0292842 + 0.999571i \(0.509323\pi\)
\(600\) 0 0
\(601\) −12.5520 −0.512008 −0.256004 0.966676i \(-0.582406\pi\)
−0.256004 + 0.966676i \(0.582406\pi\)
\(602\) 0 0
\(603\) − 5.42372i − 0.220871i
\(604\) 0 0
\(605\) − 16.6015i − 0.674947i
\(606\) 0 0
\(607\) 16.1205 0.654310 0.327155 0.944971i \(-0.393910\pi\)
0.327155 + 0.944971i \(0.393910\pi\)
\(608\) 0 0
\(609\) −4.95632 −0.200840
\(610\) 0 0
\(611\) 18.8324i 0.761877i
\(612\) 0 0
\(613\) 24.3980i 0.985426i 0.870192 + 0.492713i \(0.163995\pi\)
−0.870192 + 0.492713i \(0.836005\pi\)
\(614\) 0 0
\(615\) 13.0213 0.525068
\(616\) 0 0
\(617\) −23.3224 −0.938924 −0.469462 0.882953i \(-0.655552\pi\)
−0.469462 + 0.882953i \(0.655552\pi\)
\(618\) 0 0
\(619\) − 3.63412i − 0.146068i −0.997329 0.0730338i \(-0.976732\pi\)
0.997329 0.0730338i \(-0.0232681\pi\)
\(620\) 0 0
\(621\) − 9.28841i − 0.372731i
\(622\) 0 0
\(623\) −33.0834 −1.32546
\(624\) 0 0
\(625\) −9.99247 −0.399699
\(626\) 0 0
\(627\) 2.06426i 0.0824386i
\(628\) 0 0
\(629\) 0.381382i 0.0152067i
\(630\) 0 0
\(631\) 23.8545 0.949632 0.474816 0.880085i \(-0.342515\pi\)
0.474816 + 0.880085i \(0.342515\pi\)
\(632\) 0 0
\(633\) 13.0758 0.519715
\(634\) 0 0
\(635\) 23.9226i 0.949339i
\(636\) 0 0
\(637\) 59.0799i 2.34083i
\(638\) 0 0
\(639\) 2.15119 0.0850997
\(640\) 0 0
\(641\) 4.48926 0.177315 0.0886575 0.996062i \(-0.471742\pi\)
0.0886575 + 0.996062i \(0.471742\pi\)
\(642\) 0 0
\(643\) 21.1677i 0.834771i 0.908730 + 0.417386i \(0.137054\pi\)
−0.908730 + 0.417386i \(0.862946\pi\)
\(644\) 0 0
\(645\) − 29.3711i − 1.15648i
\(646\) 0 0
\(647\) 35.3649 1.39034 0.695169 0.718847i \(-0.255330\pi\)
0.695169 + 0.718847i \(0.255330\pi\)
\(648\) 0 0
\(649\) 15.7083 0.616606
\(650\) 0 0
\(651\) − 46.5668i − 1.82510i
\(652\) 0 0
\(653\) − 32.1652i − 1.25872i −0.777113 0.629361i \(-0.783317\pi\)
0.777113 0.629361i \(-0.216683\pi\)
\(654\) 0 0
\(655\) −20.1988 −0.789231
\(656\) 0 0
\(657\) 2.85734 0.111475
\(658\) 0 0
\(659\) 2.75228i 0.107214i 0.998562 + 0.0536068i \(0.0170718\pi\)
−0.998562 + 0.0536068i \(0.982928\pi\)
\(660\) 0 0
\(661\) − 4.60431i − 0.179087i −0.995983 0.0895434i \(-0.971459\pi\)
0.995983 0.0895434i \(-0.0285408\pi\)
\(662\) 0 0
\(663\) 7.05305 0.273918
\(664\) 0 0
\(665\) −8.48834 −0.329164
\(666\) 0 0
\(667\) − 1.04842i − 0.0405951i
\(668\) 0 0
\(669\) − 49.4054i − 1.91012i
\(670\) 0 0
\(671\) −14.7442 −0.569193
\(672\) 0 0
\(673\) 6.59710 0.254299 0.127150 0.991884i \(-0.459417\pi\)
0.127150 + 0.991884i \(0.459417\pi\)
\(674\) 0 0
\(675\) − 9.98478i − 0.384314i
\(676\) 0 0
\(677\) 19.3836i 0.744972i 0.928038 + 0.372486i \(0.121494\pi\)
−0.928038 + 0.372486i \(0.878506\pi\)
\(678\) 0 0
\(679\) −32.2998 −1.23955
\(680\) 0 0
\(681\) −13.8083 −0.529134
\(682\) 0 0
\(683\) 22.8042i 0.872577i 0.899807 + 0.436289i \(0.143707\pi\)
−0.899807 + 0.436289i \(0.856293\pi\)
\(684\) 0 0
\(685\) 10.1307i 0.387076i
\(686\) 0 0
\(687\) 28.3913 1.08320
\(688\) 0 0
\(689\) 34.6553 1.32026
\(690\) 0 0
\(691\) 4.42861i 0.168472i 0.996446 + 0.0842361i \(0.0268450\pi\)
−0.996446 + 0.0842361i \(0.973155\pi\)
\(692\) 0 0
\(693\) 2.52221i 0.0958107i
\(694\) 0 0
\(695\) 16.3793 0.621300
\(696\) 0 0
\(697\) −4.74792 −0.179840
\(698\) 0 0
\(699\) 43.7207i 1.65367i
\(700\) 0 0
\(701\) − 29.2291i − 1.10397i −0.833855 0.551983i \(-0.813871\pi\)
0.833855 0.551983i \(-0.186129\pi\)
\(702\) 0 0
\(703\) 0.331051 0.0124858
\(704\) 0 0
\(705\) −18.0643 −0.680339
\(706\) 0 0
\(707\) 38.8350i 1.46054i
\(708\) 0 0
\(709\) 27.6770i 1.03943i 0.854339 + 0.519716i \(0.173962\pi\)
−0.854339 + 0.519716i \(0.826038\pi\)
\(710\) 0 0
\(711\) −1.01824 −0.0381872
\(712\) 0 0
\(713\) 9.85040 0.368901
\(714\) 0 0
\(715\) − 6.21811i − 0.232544i
\(716\) 0 0
\(717\) − 26.0282i − 0.972040i
\(718\) 0 0
\(719\) 23.7354 0.885181 0.442591 0.896724i \(-0.354060\pi\)
0.442591 + 0.896724i \(0.354060\pi\)
\(720\) 0 0
\(721\) 9.27601 0.345457
\(722\) 0 0
\(723\) 26.6012i 0.989308i
\(724\) 0 0
\(725\) − 1.12703i − 0.0418567i
\(726\) 0 0
\(727\) 15.5963 0.578434 0.289217 0.957264i \(-0.406605\pi\)
0.289217 + 0.957264i \(0.406605\pi\)
\(728\) 0 0
\(729\) −21.7600 −0.805925
\(730\) 0 0
\(731\) 10.7095i 0.396106i
\(732\) 0 0
\(733\) 33.0714i 1.22152i 0.791816 + 0.610760i \(0.209136\pi\)
−0.791816 + 0.610760i \(0.790864\pi\)
\(734\) 0 0
\(735\) −56.6702 −2.09031
\(736\) 0 0
\(737\) 13.2447 0.487874
\(738\) 0 0
\(739\) − 12.5146i − 0.460356i −0.973149 0.230178i \(-0.926069\pi\)
0.973149 0.230178i \(-0.0739308\pi\)
\(740\) 0 0
\(741\) − 6.12225i − 0.224907i
\(742\) 0 0
\(743\) −34.5320 −1.26685 −0.633427 0.773802i \(-0.718352\pi\)
−0.633427 + 0.773802i \(0.718352\pi\)
\(744\) 0 0
\(745\) −15.4459 −0.565894
\(746\) 0 0
\(747\) − 1.40764i − 0.0515030i
\(748\) 0 0
\(749\) − 43.8000i − 1.60042i
\(750\) 0 0
\(751\) 7.00101 0.255470 0.127735 0.991808i \(-0.459229\pi\)
0.127735 + 0.991808i \(0.459229\pi\)
\(752\) 0 0
\(753\) 34.4617 1.25585
\(754\) 0 0
\(755\) 2.47821i 0.0901914i
\(756\) 0 0
\(757\) 30.4249i 1.10581i 0.833244 + 0.552905i \(0.186481\pi\)
−0.833244 + 0.552905i \(0.813519\pi\)
\(758\) 0 0
\(759\) −4.05294 −0.147113
\(760\) 0 0
\(761\) −0.313350 −0.0113589 −0.00567947 0.999984i \(-0.501808\pi\)
−0.00567947 + 0.999984i \(0.501808\pi\)
\(762\) 0 0
\(763\) − 0.0342580i − 0.00124022i
\(764\) 0 0
\(765\) 0.890593i 0.0321995i
\(766\) 0 0
\(767\) −46.5883 −1.68221
\(768\) 0 0
\(769\) 8.26131 0.297910 0.148955 0.988844i \(-0.452409\pi\)
0.148955 + 0.988844i \(0.452409\pi\)
\(770\) 0 0
\(771\) 57.0930i 2.05615i
\(772\) 0 0
\(773\) 50.9112i 1.83115i 0.402149 + 0.915574i \(0.368263\pi\)
−0.402149 + 0.915574i \(0.631737\pi\)
\(774\) 0 0
\(775\) 10.5889 0.380365
\(776\) 0 0
\(777\) 3.07273 0.110233
\(778\) 0 0
\(779\) 4.12133i 0.147662i
\(780\) 0 0
\(781\) 5.25319i 0.187974i
\(782\) 0 0
\(783\) −2.52618 −0.0902784
\(784\) 0 0
\(785\) −25.9130 −0.924876
\(786\) 0 0
\(787\) 2.29558i 0.0818286i 0.999163 + 0.0409143i \(0.0130271\pi\)
−0.999163 + 0.0409143i \(0.986973\pi\)
\(788\) 0 0
\(789\) 40.3169i 1.43532i
\(790\) 0 0
\(791\) −83.7690 −2.97848
\(792\) 0 0
\(793\) 43.7288 1.55286
\(794\) 0 0
\(795\) 33.2418i 1.17896i
\(796\) 0 0
\(797\) 11.3651i 0.402574i 0.979532 + 0.201287i \(0.0645124\pi\)
−0.979532 + 0.201287i \(0.935488\pi\)
\(798\) 0 0
\(799\) 6.58674 0.233022
\(800\) 0 0
\(801\) 3.01301 0.106460
\(802\) 0 0
\(803\) 6.97760i 0.246234i
\(804\) 0 0
\(805\) − 16.6659i − 0.587397i
\(806\) 0 0
\(807\) −39.8142 −1.40153
\(808\) 0 0
\(809\) −43.6307 −1.53397 −0.766986 0.641664i \(-0.778244\pi\)
−0.766986 + 0.641664i \(0.778244\pi\)
\(810\) 0 0
\(811\) − 24.7308i − 0.868416i −0.900813 0.434208i \(-0.857028\pi\)
0.900813 0.434208i \(-0.142972\pi\)
\(812\) 0 0
\(813\) 26.6592i 0.934978i
\(814\) 0 0
\(815\) −9.34264 −0.327259
\(816\) 0 0
\(817\) 9.29618 0.325232
\(818\) 0 0
\(819\) − 7.48045i − 0.261388i
\(820\) 0 0
\(821\) − 33.9492i − 1.18484i −0.805631 0.592418i \(-0.798173\pi\)
0.805631 0.592418i \(-0.201827\pi\)
\(822\) 0 0
\(823\) −11.3696 −0.396321 −0.198160 0.980170i \(-0.563497\pi\)
−0.198160 + 0.980170i \(0.563497\pi\)
\(824\) 0 0
\(825\) −4.35680 −0.151684
\(826\) 0 0
\(827\) 42.0705i 1.46294i 0.681876 + 0.731468i \(0.261164\pi\)
−0.681876 + 0.731468i \(0.738836\pi\)
\(828\) 0 0
\(829\) − 35.3449i − 1.22758i −0.789470 0.613790i \(-0.789644\pi\)
0.789470 0.613790i \(-0.210356\pi\)
\(830\) 0 0
\(831\) 41.5096 1.43995
\(832\) 0 0
\(833\) 20.6635 0.715949
\(834\) 0 0
\(835\) − 5.01078i − 0.173405i
\(836\) 0 0
\(837\) − 23.7346i − 0.820388i
\(838\) 0 0
\(839\) −33.1160 −1.14329 −0.571645 0.820501i \(-0.693695\pi\)
−0.571645 + 0.820501i \(0.693695\pi\)
\(840\) 0 0
\(841\) 28.7149 0.990168
\(842\) 0 0
\(843\) − 52.3233i − 1.80211i
\(844\) 0 0
\(845\) − 3.65585i − 0.125765i
\(846\) 0 0
\(847\) 48.7710 1.67579
\(848\) 0 0
\(849\) 33.8791 1.16273
\(850\) 0 0
\(851\) 0.649982i 0.0222811i
\(852\) 0 0
\(853\) − 8.43149i − 0.288689i −0.989528 0.144344i \(-0.953893\pi\)
0.989528 0.144344i \(-0.0461073\pi\)
\(854\) 0 0
\(855\) 0.773061 0.0264381
\(856\) 0 0
\(857\) 29.8421 1.01939 0.509694 0.860356i \(-0.329759\pi\)
0.509694 + 0.860356i \(0.329759\pi\)
\(858\) 0 0
\(859\) − 2.21512i − 0.0755790i −0.999286 0.0377895i \(-0.987968\pi\)
0.999286 0.0377895i \(-0.0120316\pi\)
\(860\) 0 0
\(861\) 38.2531i 1.30366i
\(862\) 0 0
\(863\) 25.5362 0.869263 0.434631 0.900608i \(-0.356879\pi\)
0.434631 + 0.900608i \(0.356879\pi\)
\(864\) 0 0
\(865\) 35.2439 1.19833
\(866\) 0 0
\(867\) 29.1312i 0.989346i
\(868\) 0 0
\(869\) − 2.48655i − 0.0843503i
\(870\) 0 0
\(871\) −39.2815 −1.33100
\(872\) 0 0
\(873\) 2.94165 0.0995597
\(874\) 0 0
\(875\) − 60.3571i − 2.04044i
\(876\) 0 0
\(877\) 11.9569i 0.403757i 0.979411 + 0.201878i \(0.0647046\pi\)
−0.979411 + 0.201878i \(0.935295\pi\)
\(878\) 0 0
\(879\) −5.72884 −0.193229
\(880\) 0 0
\(881\) −27.8077 −0.936866 −0.468433 0.883499i \(-0.655181\pi\)
−0.468433 + 0.883499i \(0.655181\pi\)
\(882\) 0 0
\(883\) 19.8570i 0.668242i 0.942530 + 0.334121i \(0.108439\pi\)
−0.942530 + 0.334121i \(0.891561\pi\)
\(884\) 0 0
\(885\) − 44.6881i − 1.50217i
\(886\) 0 0
\(887\) −40.6937 −1.36636 −0.683180 0.730250i \(-0.739403\pi\)
−0.683180 + 0.730250i \(0.739403\pi\)
\(888\) 0 0
\(889\) −70.2784 −2.35706
\(890\) 0 0
\(891\) 11.2808i 0.377923i
\(892\) 0 0
\(893\) − 5.71748i − 0.191328i
\(894\) 0 0
\(895\) −16.8890 −0.564538
\(896\) 0 0
\(897\) 12.0204 0.401348
\(898\) 0 0
\(899\) − 2.67903i − 0.0893507i
\(900\) 0 0
\(901\) − 12.1209i − 0.403805i
\(902\) 0 0
\(903\) 86.2846 2.87137
\(904\) 0 0
\(905\) 25.3813 0.843704
\(906\) 0 0
\(907\) − 15.8372i − 0.525866i −0.964814 0.262933i \(-0.915310\pi\)
0.964814 0.262933i \(-0.0846899\pi\)
\(908\) 0 0
\(909\) − 3.53683i − 0.117309i
\(910\) 0 0
\(911\) 39.7130 1.31575 0.657875 0.753127i \(-0.271455\pi\)
0.657875 + 0.753127i \(0.271455\pi\)
\(912\) 0 0
\(913\) 3.43746 0.113763
\(914\) 0 0
\(915\) 41.9452i 1.38667i
\(916\) 0 0
\(917\) − 59.3387i − 1.95954i
\(918\) 0 0
\(919\) −41.7674 −1.37778 −0.688889 0.724867i \(-0.741901\pi\)
−0.688889 + 0.724867i \(0.741901\pi\)
\(920\) 0 0
\(921\) −39.2062 −1.29189
\(922\) 0 0
\(923\) − 15.5801i − 0.512825i
\(924\) 0 0
\(925\) 0.698713i 0.0229735i
\(926\) 0 0
\(927\) −0.844797 −0.0277468
\(928\) 0 0
\(929\) −4.32933 −0.142041 −0.0710203 0.997475i \(-0.522626\pi\)
−0.0710203 + 0.997475i \(0.522626\pi\)
\(930\) 0 0
\(931\) − 17.9366i − 0.587847i
\(932\) 0 0
\(933\) − 4.19343i − 0.137287i
\(934\) 0 0
\(935\) −2.17482 −0.0711243
\(936\) 0 0
\(937\) −42.6962 −1.39482 −0.697412 0.716670i \(-0.745665\pi\)
−0.697412 + 0.716670i \(0.745665\pi\)
\(938\) 0 0
\(939\) − 48.4539i − 1.58123i
\(940\) 0 0
\(941\) 3.56032i 0.116063i 0.998315 + 0.0580315i \(0.0184824\pi\)
−0.998315 + 0.0580315i \(0.981518\pi\)
\(942\) 0 0
\(943\) −8.09178 −0.263505
\(944\) 0 0
\(945\) −40.1567 −1.30630
\(946\) 0 0
\(947\) − 48.9588i − 1.59095i −0.605988 0.795473i \(-0.707222\pi\)
0.605988 0.795473i \(-0.292778\pi\)
\(948\) 0 0
\(949\) − 20.6944i − 0.671769i
\(950\) 0 0
\(951\) 38.3903 1.24489
\(952\) 0 0
\(953\) 7.27695 0.235723 0.117862 0.993030i \(-0.462396\pi\)
0.117862 + 0.993030i \(0.462396\pi\)
\(954\) 0 0
\(955\) 23.6497i 0.765285i
\(956\) 0 0
\(957\) 1.10229i 0.0356319i
\(958\) 0 0
\(959\) −29.7615 −0.961050
\(960\) 0 0
\(961\) −5.82932 −0.188043
\(962\) 0 0
\(963\) 3.98901i 0.128544i
\(964\) 0 0
\(965\) 30.6703i 0.987311i
\(966\) 0 0
\(967\) 8.44568 0.271595 0.135797 0.990737i \(-0.456640\pi\)
0.135797 + 0.990737i \(0.456640\pi\)
\(968\) 0 0
\(969\) −2.14129 −0.0687883
\(970\) 0 0
\(971\) 6.14737i 0.197278i 0.995123 + 0.0986392i \(0.0314490\pi\)
−0.995123 + 0.0986392i \(0.968551\pi\)
\(972\) 0 0
\(973\) 48.1180i 1.54259i
\(974\) 0 0
\(975\) 12.9216 0.413821
\(976\) 0 0
\(977\) −36.3838 −1.16402 −0.582010 0.813181i \(-0.697734\pi\)
−0.582010 + 0.813181i \(0.697734\pi\)
\(978\) 0 0
\(979\) 7.35776i 0.235155i
\(980\) 0 0
\(981\) 0.00311998i 0 9.96134e-5i
\(982\) 0 0
\(983\) 34.8229 1.11068 0.555340 0.831624i \(-0.312588\pi\)
0.555340 + 0.831624i \(0.312588\pi\)
\(984\) 0 0
\(985\) −32.2107 −1.02632
\(986\) 0 0
\(987\) − 53.0681i − 1.68918i
\(988\) 0 0
\(989\) 18.2520i 0.580380i
\(990\) 0 0
\(991\) 44.9897 1.42914 0.714572 0.699562i \(-0.246622\pi\)
0.714572 + 0.699562i \(0.246622\pi\)
\(992\) 0 0
\(993\) 18.1130 0.574800
\(994\) 0 0
\(995\) 40.0430i 1.26945i
\(996\) 0 0
\(997\) − 48.3676i − 1.53182i −0.642949 0.765909i \(-0.722289\pi\)
0.642949 0.765909i \(-0.277711\pi\)
\(998\) 0 0
\(999\) 1.56614 0.0495504
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2432.2.c.j.1217.5 20
4.3 odd 2 inner 2432.2.c.j.1217.15 yes 20
8.3 odd 2 inner 2432.2.c.j.1217.6 yes 20
8.5 even 2 inner 2432.2.c.j.1217.16 yes 20
16.3 odd 4 4864.2.a.bs.1.3 10
16.5 even 4 4864.2.a.bs.1.4 10
16.11 odd 4 4864.2.a.bt.1.8 10
16.13 even 4 4864.2.a.bt.1.7 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2432.2.c.j.1217.5 20 1.1 even 1 trivial
2432.2.c.j.1217.6 yes 20 8.3 odd 2 inner
2432.2.c.j.1217.15 yes 20 4.3 odd 2 inner
2432.2.c.j.1217.16 yes 20 8.5 even 2 inner
4864.2.a.bs.1.3 10 16.3 odd 4
4864.2.a.bs.1.4 10 16.5 even 4
4864.2.a.bt.1.7 10 16.13 even 4
4864.2.a.bt.1.8 10 16.11 odd 4