Properties

Label 243.9.b.i.242.39
Level $243$
Weight $9$
Character 243.242
Analytic conductor $98.993$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [243,9,Mod(242,243)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("243.242"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(243, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 243.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,-6144,0,0,-5538] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(98.9930022449\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 242.39
Character \(\chi\) \(=\) 243.242
Dual form 243.9.b.i.242.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+23.5529i q^{2} -298.740 q^{4} -538.241i q^{5} -4052.68 q^{7} -1006.66i q^{8} +12677.2 q^{10} -9903.48i q^{11} -44841.2 q^{13} -95452.4i q^{14} -52767.8 q^{16} +118686. i q^{17} -196772. q^{19} +160794. i q^{20} +233256. q^{22} -238453. i q^{23} +100921. q^{25} -1.05614e6i q^{26} +1.21070e6 q^{28} -690920. i q^{29} -393655. q^{31} -1.50054e6i q^{32} -2.79540e6 q^{34} +2.18132e6i q^{35} -815758. q^{37} -4.63456e6i q^{38} -541823. q^{40} +2.17076e6i q^{41} -2.31203e6 q^{43} +2.95857e6i q^{44} +5.61626e6 q^{46} -2.51790e6i q^{47} +1.06594e7 q^{49} +2.37699e6i q^{50} +1.33959e7 q^{52} +1.00137e7i q^{53} -5.33047e6 q^{55} +4.07965e6i q^{56} +1.62732e7 q^{58} -539181. i q^{59} -8.88226e6 q^{61} -9.27173e6i q^{62} +2.18335e7 q^{64} +2.41354e7i q^{65} +2.95954e7 q^{67} -3.54562e7i q^{68} -5.13764e7 q^{70} -2.83945e7i q^{71} +3.40772e7 q^{73} -1.92135e7i q^{74} +5.87838e7 q^{76} +4.01356e7i q^{77} +5.04348e7 q^{79} +2.84018e7i q^{80} -5.11277e7 q^{82} +8.02664e7i q^{83} +6.38816e7 q^{85} -5.44550e7i q^{86} -9.96939e6 q^{88} -2.40788e7i q^{89} +1.81727e8 q^{91} +7.12355e7i q^{92} +5.93040e7 q^{94} +1.05911e8i q^{95} -5.70595e7 q^{97} +2.51060e8i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 6144 q^{4} - 5538 q^{7} - 10110 q^{13} + 786432 q^{16} - 277662 q^{19} - 3750000 q^{25} + 2835456 q^{28} - 856704 q^{31} + 2625462 q^{34} + 1640958 q^{37} + 866250 q^{40} - 13575936 q^{43} - 12911094 q^{46}+ \cdots + 244503618 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 23.5529i 1.47206i 0.676950 + 0.736029i \(0.263301\pi\)
−0.676950 + 0.736029i \(0.736699\pi\)
\(3\) 0 0
\(4\) −298.740 −1.16695
\(5\) − 538.241i − 0.861186i −0.902546 0.430593i \(-0.858304\pi\)
0.902546 0.430593i \(-0.141696\pi\)
\(6\) 0 0
\(7\) −4052.68 −1.68791 −0.843956 0.536413i \(-0.819779\pi\)
−0.843956 + 0.536413i \(0.819779\pi\)
\(8\) − 1006.66i − 0.245765i
\(9\) 0 0
\(10\) 12677.2 1.26772
\(11\) − 9903.48i − 0.676421i −0.941070 0.338211i \(-0.890178\pi\)
0.941070 0.338211i \(-0.109822\pi\)
\(12\) 0 0
\(13\) −44841.2 −1.57001 −0.785007 0.619487i \(-0.787341\pi\)
−0.785007 + 0.619487i \(0.787341\pi\)
\(14\) − 95452.4i − 2.48470i
\(15\) 0 0
\(16\) −52767.8 −0.805173
\(17\) 118686.i 1.42103i 0.703683 + 0.710514i \(0.251538\pi\)
−0.703683 + 0.710514i \(0.748462\pi\)
\(18\) 0 0
\(19\) −196772. −1.50991 −0.754953 0.655779i \(-0.772340\pi\)
−0.754953 + 0.655779i \(0.772340\pi\)
\(20\) 160794.i 1.00496i
\(21\) 0 0
\(22\) 233256. 0.995731
\(23\) − 238453.i − 0.852101i −0.904699 0.426051i \(-0.859905\pi\)
0.904699 0.426051i \(-0.140095\pi\)
\(24\) 0 0
\(25\) 100921. 0.258358
\(26\) − 1.05614e6i − 2.31115i
\(27\) 0 0
\(28\) 1.21070e6 1.96971
\(29\) − 690920.i − 0.976868i −0.872601 0.488434i \(-0.837568\pi\)
0.872601 0.488434i \(-0.162432\pi\)
\(30\) 0 0
\(31\) −393655. −0.426255 −0.213127 0.977024i \(-0.568365\pi\)
−0.213127 + 0.977024i \(0.568365\pi\)
\(32\) − 1.50054e6i − 1.43103i
\(33\) 0 0
\(34\) −2.79540e6 −2.09184
\(35\) 2.18132e6i 1.45361i
\(36\) 0 0
\(37\) −815758. −0.435266 −0.217633 0.976031i \(-0.569834\pi\)
−0.217633 + 0.976031i \(0.569834\pi\)
\(38\) − 4.63456e6i − 2.22267i
\(39\) 0 0
\(40\) −541823. −0.211650
\(41\) 2.17076e6i 0.768202i 0.923291 + 0.384101i \(0.125489\pi\)
−0.923291 + 0.384101i \(0.874511\pi\)
\(42\) 0 0
\(43\) −2.31203e6 −0.676269 −0.338134 0.941098i \(-0.609796\pi\)
−0.338134 + 0.941098i \(0.609796\pi\)
\(44\) 2.95857e6i 0.789352i
\(45\) 0 0
\(46\) 5.61626e6 1.25434
\(47\) − 2.51790e6i − 0.515998i −0.966145 0.257999i \(-0.916937\pi\)
0.966145 0.257999i \(-0.0830631\pi\)
\(48\) 0 0
\(49\) 1.06594e7 1.84905
\(50\) 2.37699e6i 0.380318i
\(51\) 0 0
\(52\) 1.33959e7 1.83213
\(53\) 1.00137e7i 1.26909i 0.772886 + 0.634545i \(0.218813\pi\)
−0.772886 + 0.634545i \(0.781187\pi\)
\(54\) 0 0
\(55\) −5.33047e6 −0.582525
\(56\) 4.07965e6i 0.414830i
\(57\) 0 0
\(58\) 1.62732e7 1.43801
\(59\) − 539181.i − 0.0444966i −0.999752 0.0222483i \(-0.992918\pi\)
0.999752 0.0222483i \(-0.00708244\pi\)
\(60\) 0 0
\(61\) −8.88226e6 −0.641511 −0.320755 0.947162i \(-0.603937\pi\)
−0.320755 + 0.947162i \(0.603937\pi\)
\(62\) − 9.27173e6i − 0.627472i
\(63\) 0 0
\(64\) 2.18335e7 1.30138
\(65\) 2.41354e7i 1.35207i
\(66\) 0 0
\(67\) 2.95954e7 1.46868 0.734338 0.678784i \(-0.237493\pi\)
0.734338 + 0.678784i \(0.237493\pi\)
\(68\) − 3.54562e7i − 1.65827i
\(69\) 0 0
\(70\) −5.13764e7 −2.13979
\(71\) − 2.83945e7i − 1.11738i −0.829376 0.558691i \(-0.811304\pi\)
0.829376 0.558691i \(-0.188696\pi\)
\(72\) 0 0
\(73\) 3.40772e7 1.19997 0.599987 0.800010i \(-0.295172\pi\)
0.599987 + 0.800010i \(0.295172\pi\)
\(74\) − 1.92135e7i − 0.640736i
\(75\) 0 0
\(76\) 5.87838e7 1.76199
\(77\) 4.01356e7i 1.14174i
\(78\) 0 0
\(79\) 5.04348e7 1.29486 0.647429 0.762126i \(-0.275844\pi\)
0.647429 + 0.762126i \(0.275844\pi\)
\(80\) 2.84018e7i 0.693404i
\(81\) 0 0
\(82\) −5.11277e7 −1.13084
\(83\) 8.02664e7i 1.69130i 0.533736 + 0.845651i \(0.320788\pi\)
−0.533736 + 0.845651i \(0.679212\pi\)
\(84\) 0 0
\(85\) 6.38816e7 1.22377
\(86\) − 5.44550e7i − 0.995507i
\(87\) 0 0
\(88\) −9.96939e6 −0.166241
\(89\) − 2.40788e7i − 0.383773i −0.981417 0.191887i \(-0.938539\pi\)
0.981417 0.191887i \(-0.0614606\pi\)
\(90\) 0 0
\(91\) 1.81727e8 2.65005
\(92\) 7.12355e7i 0.994363i
\(93\) 0 0
\(94\) 5.93040e7 0.759579
\(95\) 1.05911e8i 1.30031i
\(96\) 0 0
\(97\) −5.70595e7 −0.644527 −0.322264 0.946650i \(-0.604444\pi\)
−0.322264 + 0.946650i \(0.604444\pi\)
\(98\) 2.51060e8i 2.72190i
\(99\) 0 0
\(100\) −3.01492e7 −0.301492
\(101\) 1.32882e8i 1.27697i 0.769633 + 0.638486i \(0.220439\pi\)
−0.769633 + 0.638486i \(0.779561\pi\)
\(102\) 0 0
\(103\) −1.01313e8 −0.900155 −0.450077 0.892990i \(-0.648604\pi\)
−0.450077 + 0.892990i \(0.648604\pi\)
\(104\) 4.51396e7i 0.385855i
\(105\) 0 0
\(106\) −2.35853e8 −1.86817
\(107\) 1.22335e8i 0.933286i 0.884446 + 0.466643i \(0.154537\pi\)
−0.884446 + 0.466643i \(0.845463\pi\)
\(108\) 0 0
\(109\) 7.61722e7 0.539623 0.269812 0.962913i \(-0.413039\pi\)
0.269812 + 0.962913i \(0.413039\pi\)
\(110\) − 1.25548e8i − 0.857510i
\(111\) 0 0
\(112\) 2.13851e8 1.35906
\(113\) − 1.15813e8i − 0.710303i −0.934809 0.355152i \(-0.884429\pi\)
0.934809 0.355152i \(-0.115571\pi\)
\(114\) 0 0
\(115\) −1.28345e8 −0.733818
\(116\) 2.06406e8i 1.13996i
\(117\) 0 0
\(118\) 1.26993e7 0.0655015
\(119\) − 4.80995e8i − 2.39857i
\(120\) 0 0
\(121\) 1.16280e8 0.542454
\(122\) − 2.09203e8i − 0.944341i
\(123\) 0 0
\(124\) 1.17601e8 0.497420
\(125\) − 2.64571e8i − 1.08368i
\(126\) 0 0
\(127\) −3.26554e8 −1.25528 −0.627639 0.778504i \(-0.715979\pi\)
−0.627639 + 0.778504i \(0.715979\pi\)
\(128\) 1.30105e8i 0.484680i
\(129\) 0 0
\(130\) −5.68459e8 −1.99033
\(131\) − 2.64867e8i − 0.899380i −0.893185 0.449690i \(-0.851534\pi\)
0.893185 0.449690i \(-0.148466\pi\)
\(132\) 0 0
\(133\) 7.97455e8 2.54859
\(134\) 6.97059e8i 2.16197i
\(135\) 0 0
\(136\) 1.19476e8 0.349240
\(137\) 6.17028e8i 1.75155i 0.482720 + 0.875775i \(0.339649\pi\)
−0.482720 + 0.875775i \(0.660351\pi\)
\(138\) 0 0
\(139\) −3.23443e8 −0.866440 −0.433220 0.901288i \(-0.642623\pi\)
−0.433220 + 0.901288i \(0.642623\pi\)
\(140\) − 6.51647e8i − 1.69629i
\(141\) 0 0
\(142\) 6.68775e8 1.64485
\(143\) 4.44084e8i 1.06199i
\(144\) 0 0
\(145\) −3.71882e8 −0.841266
\(146\) 8.02617e8i 1.76643i
\(147\) 0 0
\(148\) 2.43700e8 0.507935
\(149\) − 6.88395e8i − 1.39667i −0.715773 0.698333i \(-0.753925\pi\)
0.715773 0.698333i \(-0.246075\pi\)
\(150\) 0 0
\(151\) −6.89897e8 −1.32702 −0.663509 0.748169i \(-0.730933\pi\)
−0.663509 + 0.748169i \(0.730933\pi\)
\(152\) 1.98082e8i 0.371082i
\(153\) 0 0
\(154\) −9.45311e8 −1.68071
\(155\) 2.11882e8i 0.367085i
\(156\) 0 0
\(157\) −6.13844e8 −1.01032 −0.505161 0.863025i \(-0.668567\pi\)
−0.505161 + 0.863025i \(0.668567\pi\)
\(158\) 1.18789e9i 1.90610i
\(159\) 0 0
\(160\) −8.07653e8 −1.23238
\(161\) 9.66372e8i 1.43827i
\(162\) 0 0
\(163\) 7.98620e7 0.113133 0.0565666 0.998399i \(-0.481985\pi\)
0.0565666 + 0.998399i \(0.481985\pi\)
\(164\) − 6.48492e8i − 0.896457i
\(165\) 0 0
\(166\) −1.89051e9 −2.48970
\(167\) 4.38350e7i 0.0563580i 0.999603 + 0.0281790i \(0.00897084\pi\)
−0.999603 + 0.0281790i \(0.991029\pi\)
\(168\) 0 0
\(169\) 1.19500e9 1.46494
\(170\) 1.50460e9i 1.80146i
\(171\) 0 0
\(172\) 6.90696e8 0.789175
\(173\) − 1.35263e8i − 0.151007i −0.997146 0.0755033i \(-0.975944\pi\)
0.997146 0.0755033i \(-0.0240563\pi\)
\(174\) 0 0
\(175\) −4.09001e8 −0.436086
\(176\) 5.22585e8i 0.544636i
\(177\) 0 0
\(178\) 5.67126e8 0.564936
\(179\) 8.17612e6i 0.00796407i 0.999992 + 0.00398204i \(0.00126752\pi\)
−0.999992 + 0.00398204i \(0.998732\pi\)
\(180\) 0 0
\(181\) 3.14441e8 0.292971 0.146486 0.989213i \(-0.453204\pi\)
0.146486 + 0.989213i \(0.453204\pi\)
\(182\) 4.28020e9i 3.90102i
\(183\) 0 0
\(184\) −2.40040e8 −0.209417
\(185\) 4.39075e8i 0.374845i
\(186\) 0 0
\(187\) 1.17540e9 0.961214
\(188\) 7.52199e8i 0.602146i
\(189\) 0 0
\(190\) −2.49451e9 −1.91413
\(191\) − 1.26785e9i − 0.952656i −0.879268 0.476328i \(-0.841968\pi\)
0.879268 0.476328i \(-0.158032\pi\)
\(192\) 0 0
\(193\) 1.60046e9 1.15350 0.576748 0.816922i \(-0.304321\pi\)
0.576748 + 0.816922i \(0.304321\pi\)
\(194\) − 1.34392e9i − 0.948781i
\(195\) 0 0
\(196\) −3.18439e9 −2.15775
\(197\) 3.92350e8i 0.260500i 0.991481 + 0.130250i \(0.0415781\pi\)
−0.991481 + 0.130250i \(0.958422\pi\)
\(198\) 0 0
\(199\) −1.11760e9 −0.712645 −0.356322 0.934363i \(-0.615970\pi\)
−0.356322 + 0.934363i \(0.615970\pi\)
\(200\) − 1.01593e8i − 0.0634955i
\(201\) 0 0
\(202\) −3.12976e9 −1.87978
\(203\) 2.80008e9i 1.64887i
\(204\) 0 0
\(205\) 1.16839e9 0.661565
\(206\) − 2.38622e9i − 1.32508i
\(207\) 0 0
\(208\) 2.36617e9 1.26413
\(209\) 1.94873e9i 1.02133i
\(210\) 0 0
\(211\) 1.64682e9 0.830839 0.415420 0.909630i \(-0.363635\pi\)
0.415420 + 0.909630i \(0.363635\pi\)
\(212\) − 2.99150e9i − 1.48097i
\(213\) 0 0
\(214\) −2.88134e9 −1.37385
\(215\) 1.24443e9i 0.582394i
\(216\) 0 0
\(217\) 1.59536e9 0.719480
\(218\) 1.79408e9i 0.794356i
\(219\) 0 0
\(220\) 1.59242e9 0.679779
\(221\) − 5.32201e9i − 2.23104i
\(222\) 0 0
\(223\) 3.82469e8 0.154659 0.0773297 0.997006i \(-0.475361\pi\)
0.0773297 + 0.997006i \(0.475361\pi\)
\(224\) 6.08120e9i 2.41545i
\(225\) 0 0
\(226\) 2.72774e9 1.04561
\(227\) − 3.72889e9i − 1.40435i −0.712004 0.702175i \(-0.752212\pi\)
0.712004 0.702175i \(-0.247788\pi\)
\(228\) 0 0
\(229\) −3.92728e9 −1.42807 −0.714037 0.700108i \(-0.753135\pi\)
−0.714037 + 0.700108i \(0.753135\pi\)
\(230\) − 3.02291e9i − 1.08022i
\(231\) 0 0
\(232\) −6.95519e8 −0.240080
\(233\) − 1.95244e9i − 0.662452i −0.943551 0.331226i \(-0.892538\pi\)
0.943551 0.331226i \(-0.107462\pi\)
\(234\) 0 0
\(235\) −1.35524e9 −0.444370
\(236\) 1.61075e8i 0.0519255i
\(237\) 0 0
\(238\) 1.13288e10 3.53083
\(239\) 3.51213e9i 1.07641i 0.842813 + 0.538207i \(0.180898\pi\)
−0.842813 + 0.538207i \(0.819102\pi\)
\(240\) 0 0
\(241\) 1.15927e9 0.343649 0.171825 0.985128i \(-0.445034\pi\)
0.171825 + 0.985128i \(0.445034\pi\)
\(242\) 2.73873e9i 0.798524i
\(243\) 0 0
\(244\) 2.65349e9 0.748613
\(245\) − 5.73732e9i − 1.59237i
\(246\) 0 0
\(247\) 8.82350e9 2.37057
\(248\) 3.96275e8i 0.104759i
\(249\) 0 0
\(250\) 6.23141e9 1.59524
\(251\) − 5.16023e9i − 1.30009i −0.759894 0.650046i \(-0.774749\pi\)
0.759894 0.650046i \(-0.225251\pi\)
\(252\) 0 0
\(253\) −2.36151e9 −0.576379
\(254\) − 7.69130e9i − 1.84784i
\(255\) 0 0
\(256\) 2.52502e9 0.587903
\(257\) − 5.10591e9i − 1.17042i −0.810883 0.585209i \(-0.801012\pi\)
0.810883 0.585209i \(-0.198988\pi\)
\(258\) 0 0
\(259\) 3.30600e9 0.734690
\(260\) − 7.21021e9i − 1.57781i
\(261\) 0 0
\(262\) 6.23840e9 1.32394
\(263\) 6.53671e9i 1.36627i 0.730292 + 0.683135i \(0.239384\pi\)
−0.730292 + 0.683135i \(0.760616\pi\)
\(264\) 0 0
\(265\) 5.38981e9 1.09292
\(266\) 1.87824e10i 3.75167i
\(267\) 0 0
\(268\) −8.84135e9 −1.71388
\(269\) 6.54489e9i 1.24995i 0.780644 + 0.624976i \(0.214891\pi\)
−0.780644 + 0.624976i \(0.785109\pi\)
\(270\) 0 0
\(271\) −2.86482e9 −0.531153 −0.265577 0.964090i \(-0.585562\pi\)
−0.265577 + 0.964090i \(0.585562\pi\)
\(272\) − 6.26279e9i − 1.14417i
\(273\) 0 0
\(274\) −1.45328e10 −2.57838
\(275\) − 9.99471e8i − 0.174759i
\(276\) 0 0
\(277\) −6.30864e9 −1.07156 −0.535780 0.844358i \(-0.679982\pi\)
−0.535780 + 0.844358i \(0.679982\pi\)
\(278\) − 7.61803e9i − 1.27545i
\(279\) 0 0
\(280\) 2.19583e9 0.357246
\(281\) 8.68683e9i 1.39327i 0.717424 + 0.696636i \(0.245321\pi\)
−0.717424 + 0.696636i \(0.754679\pi\)
\(282\) 0 0
\(283\) 1.10233e10 1.71857 0.859284 0.511498i \(-0.170909\pi\)
0.859284 + 0.511498i \(0.170909\pi\)
\(284\) 8.48259e9i 1.30393i
\(285\) 0 0
\(286\) −1.04595e10 −1.56331
\(287\) − 8.79737e9i − 1.29666i
\(288\) 0 0
\(289\) −7.11054e9 −1.01932
\(290\) − 8.75891e9i − 1.23839i
\(291\) 0 0
\(292\) −1.01802e10 −1.40031
\(293\) 3.77481e9i 0.512182i 0.966653 + 0.256091i \(0.0824347\pi\)
−0.966653 + 0.256091i \(0.917565\pi\)
\(294\) 0 0
\(295\) −2.90210e8 −0.0383199
\(296\) 8.21187e8i 0.106973i
\(297\) 0 0
\(298\) 1.62137e10 2.05597
\(299\) 1.06925e10i 1.33781i
\(300\) 0 0
\(301\) 9.36990e9 1.14148
\(302\) − 1.62491e10i − 1.95345i
\(303\) 0 0
\(304\) 1.03832e10 1.21573
\(305\) 4.78080e9i 0.552460i
\(306\) 0 0
\(307\) 6.59335e9 0.742255 0.371127 0.928582i \(-0.378971\pi\)
0.371127 + 0.928582i \(0.378971\pi\)
\(308\) − 1.19901e10i − 1.33236i
\(309\) 0 0
\(310\) −4.99043e9 −0.540370
\(311\) − 3.48676e9i − 0.372718i −0.982482 0.186359i \(-0.940331\pi\)
0.982482 0.186359i \(-0.0596687\pi\)
\(312\) 0 0
\(313\) 1.30101e10 1.35551 0.677757 0.735286i \(-0.262952\pi\)
0.677757 + 0.735286i \(0.262952\pi\)
\(314\) − 1.44578e10i − 1.48725i
\(315\) 0 0
\(316\) −1.50669e10 −1.51104
\(317\) 1.51141e10i 1.49674i 0.663284 + 0.748368i \(0.269162\pi\)
−0.663284 + 0.748368i \(0.730838\pi\)
\(318\) 0 0
\(319\) −6.84252e9 −0.660775
\(320\) − 1.17517e10i − 1.12073i
\(321\) 0 0
\(322\) −2.27609e10 −2.11722
\(323\) − 2.33541e10i − 2.14562i
\(324\) 0 0
\(325\) −4.52542e9 −0.405626
\(326\) 1.88098e9i 0.166538i
\(327\) 0 0
\(328\) 2.18520e9 0.188798
\(329\) 1.02043e10i 0.870959i
\(330\) 0 0
\(331\) 2.27268e10 1.89333 0.946666 0.322216i \(-0.104428\pi\)
0.946666 + 0.322216i \(0.104428\pi\)
\(332\) − 2.39788e10i − 1.97367i
\(333\) 0 0
\(334\) −1.03244e9 −0.0829622
\(335\) − 1.59295e10i − 1.26480i
\(336\) 0 0
\(337\) −2.13432e10 −1.65478 −0.827390 0.561627i \(-0.810176\pi\)
−0.827390 + 0.561627i \(0.810176\pi\)
\(338\) 2.81458e10i 2.15648i
\(339\) 0 0
\(340\) −1.90840e10 −1.42808
\(341\) 3.89856e9i 0.288328i
\(342\) 0 0
\(343\) −1.98362e10 −1.43311
\(344\) 2.32742e9i 0.166203i
\(345\) 0 0
\(346\) 3.18585e9 0.222290
\(347\) 5.00444e9i 0.345173i 0.984994 + 0.172587i \(0.0552125\pi\)
−0.984994 + 0.172587i \(0.944788\pi\)
\(348\) 0 0
\(349\) 2.46756e10 1.66328 0.831642 0.555313i \(-0.187401\pi\)
0.831642 + 0.555313i \(0.187401\pi\)
\(350\) − 9.63316e9i − 0.641943i
\(351\) 0 0
\(352\) −1.48606e10 −0.967976
\(353\) − 1.22061e10i − 0.786101i −0.919517 0.393050i \(-0.871420\pi\)
0.919517 0.393050i \(-0.128580\pi\)
\(354\) 0 0
\(355\) −1.52831e10 −0.962274
\(356\) 7.19330e9i 0.447846i
\(357\) 0 0
\(358\) −1.92572e8 −0.0117236
\(359\) − 1.55430e10i − 0.935743i −0.883796 0.467872i \(-0.845021\pi\)
0.883796 0.467872i \(-0.154979\pi\)
\(360\) 0 0
\(361\) 2.17358e10 1.27981
\(362\) 7.40601e9i 0.431271i
\(363\) 0 0
\(364\) −5.42891e10 −3.09248
\(365\) − 1.83417e10i − 1.03340i
\(366\) 0 0
\(367\) 1.22968e10 0.677843 0.338921 0.940815i \(-0.389938\pi\)
0.338921 + 0.940815i \(0.389938\pi\)
\(368\) 1.25826e10i 0.686089i
\(369\) 0 0
\(370\) −1.03415e10 −0.551793
\(371\) − 4.05824e10i − 2.14211i
\(372\) 0 0
\(373\) −1.50406e10 −0.777014 −0.388507 0.921446i \(-0.627009\pi\)
−0.388507 + 0.921446i \(0.627009\pi\)
\(374\) 2.76842e10i 1.41496i
\(375\) 0 0
\(376\) −2.53466e9 −0.126814
\(377\) 3.09817e10i 1.53370i
\(378\) 0 0
\(379\) −1.01950e10 −0.494119 −0.247060 0.969000i \(-0.579464\pi\)
−0.247060 + 0.969000i \(0.579464\pi\)
\(380\) − 3.16399e10i − 1.51740i
\(381\) 0 0
\(382\) 2.98617e10 1.40236
\(383\) − 8.24876e9i − 0.383349i −0.981459 0.191674i \(-0.938608\pi\)
0.981459 0.191674i \(-0.0613917\pi\)
\(384\) 0 0
\(385\) 2.16026e10 0.983250
\(386\) 3.76956e10i 1.69801i
\(387\) 0 0
\(388\) 1.70460e10 0.752134
\(389\) − 4.79075e9i − 0.209221i −0.994513 0.104610i \(-0.966640\pi\)
0.994513 0.104610i \(-0.0333596\pi\)
\(390\) 0 0
\(391\) 2.83010e10 1.21086
\(392\) − 1.07303e10i − 0.454431i
\(393\) 0 0
\(394\) −9.24098e9 −0.383472
\(395\) − 2.71461e10i − 1.11511i
\(396\) 0 0
\(397\) −3.41091e10 −1.37312 −0.686559 0.727074i \(-0.740880\pi\)
−0.686559 + 0.727074i \(0.740880\pi\)
\(398\) − 2.63227e10i − 1.04905i
\(399\) 0 0
\(400\) −5.32539e9 −0.208023
\(401\) − 3.34523e10i − 1.29374i −0.762599 0.646872i \(-0.776077\pi\)
0.762599 0.646872i \(-0.223923\pi\)
\(402\) 0 0
\(403\) 1.76520e10 0.669226
\(404\) − 3.96973e10i − 1.49017i
\(405\) 0 0
\(406\) −6.59500e10 −2.42723
\(407\) 8.07884e9i 0.294423i
\(408\) 0 0
\(409\) 1.88159e10 0.672407 0.336204 0.941789i \(-0.390857\pi\)
0.336204 + 0.941789i \(0.390857\pi\)
\(410\) 2.75190e10i 0.973862i
\(411\) 0 0
\(412\) 3.02663e10 1.05044
\(413\) 2.18513e9i 0.0751063i
\(414\) 0 0
\(415\) 4.32027e10 1.45653
\(416\) 6.72860e10i 2.24673i
\(417\) 0 0
\(418\) −4.58983e10 −1.50346
\(419\) − 2.43950e10i − 0.791488i −0.918361 0.395744i \(-0.870487\pi\)
0.918361 0.395744i \(-0.129513\pi\)
\(420\) 0 0
\(421\) −2.67893e10 −0.852771 −0.426386 0.904542i \(-0.640213\pi\)
−0.426386 + 0.904542i \(0.640213\pi\)
\(422\) 3.87875e10i 1.22304i
\(423\) 0 0
\(424\) 1.00804e10 0.311898
\(425\) 1.19779e10i 0.367134i
\(426\) 0 0
\(427\) 3.59969e10 1.08281
\(428\) − 3.65463e10i − 1.08910i
\(429\) 0 0
\(430\) −2.93100e10 −0.857317
\(431\) 1.61308e10i 0.467461i 0.972301 + 0.233731i \(0.0750934\pi\)
−0.972301 + 0.233731i \(0.924907\pi\)
\(432\) 0 0
\(433\) 2.18440e10 0.621414 0.310707 0.950506i \(-0.399434\pi\)
0.310707 + 0.950506i \(0.399434\pi\)
\(434\) 3.75753e10i 1.05912i
\(435\) 0 0
\(436\) −2.27557e10 −0.629715
\(437\) 4.69209e10i 1.28659i
\(438\) 0 0
\(439\) −3.11018e10 −0.837389 −0.418694 0.908127i \(-0.637512\pi\)
−0.418694 + 0.908127i \(0.637512\pi\)
\(440\) 5.36594e9i 0.143164i
\(441\) 0 0
\(442\) 1.25349e11 3.28421
\(443\) − 1.20685e10i − 0.313357i −0.987650 0.156679i \(-0.949921\pi\)
0.987650 0.156679i \(-0.0500787\pi\)
\(444\) 0 0
\(445\) −1.29602e10 −0.330500
\(446\) 9.00825e9i 0.227667i
\(447\) 0 0
\(448\) −8.84842e10 −2.19661
\(449\) 1.58142e10i 0.389101i 0.980892 + 0.194551i \(0.0623249\pi\)
−0.980892 + 0.194551i \(0.937675\pi\)
\(450\) 0 0
\(451\) 2.14980e10 0.519628
\(452\) 3.45980e10i 0.828891i
\(453\) 0 0
\(454\) 8.78262e10 2.06729
\(455\) − 9.78129e10i − 2.28218i
\(456\) 0 0
\(457\) −1.32253e10 −0.303208 −0.151604 0.988441i \(-0.548444\pi\)
−0.151604 + 0.988441i \(0.548444\pi\)
\(458\) − 9.24990e10i − 2.10221i
\(459\) 0 0
\(460\) 3.83419e10 0.856332
\(461\) 5.90700e10i 1.30787i 0.756553 + 0.653933i \(0.226882\pi\)
−0.756553 + 0.653933i \(0.773118\pi\)
\(462\) 0 0
\(463\) −6.47230e9 −0.140843 −0.0704214 0.997517i \(-0.522434\pi\)
−0.0704214 + 0.997517i \(0.522434\pi\)
\(464\) 3.64584e10i 0.786548i
\(465\) 0 0
\(466\) 4.59857e10 0.975168
\(467\) − 6.99594e10i − 1.47088i −0.677588 0.735442i \(-0.736975\pi\)
0.677588 0.735442i \(-0.263025\pi\)
\(468\) 0 0
\(469\) −1.19941e11 −2.47899
\(470\) − 3.19199e10i − 0.654139i
\(471\) 0 0
\(472\) −5.42769e8 −0.0109357
\(473\) 2.28971e10i 0.457443i
\(474\) 0 0
\(475\) −1.98585e10 −0.390096
\(476\) 1.43692e11i 2.79902i
\(477\) 0 0
\(478\) −8.27210e10 −1.58454
\(479\) 4.34828e9i 0.0825991i 0.999147 + 0.0412996i \(0.0131498\pi\)
−0.999147 + 0.0412996i \(0.986850\pi\)
\(480\) 0 0
\(481\) 3.65795e10 0.683373
\(482\) 2.73041e10i 0.505871i
\(483\) 0 0
\(484\) −3.47375e10 −0.633019
\(485\) 3.07118e10i 0.555058i
\(486\) 0 0
\(487\) 5.82467e10 1.03551 0.517756 0.855528i \(-0.326767\pi\)
0.517756 + 0.855528i \(0.326767\pi\)
\(488\) 8.94137e9i 0.157661i
\(489\) 0 0
\(490\) 1.35131e11 2.34406
\(491\) 4.14176e9i 0.0712622i 0.999365 + 0.0356311i \(0.0113441\pi\)
−0.999365 + 0.0356311i \(0.988656\pi\)
\(492\) 0 0
\(493\) 8.20024e10 1.38816
\(494\) 2.07819e11i 3.48962i
\(495\) 0 0
\(496\) 2.07723e10 0.343209
\(497\) 1.15074e11i 1.88604i
\(498\) 0 0
\(499\) 6.74611e10 1.08806 0.544028 0.839067i \(-0.316898\pi\)
0.544028 + 0.839067i \(0.316898\pi\)
\(500\) 7.90378e10i 1.26461i
\(501\) 0 0
\(502\) 1.21539e11 1.91381
\(503\) 6.04996e10i 0.945106i 0.881302 + 0.472553i \(0.156667\pi\)
−0.881302 + 0.472553i \(0.843333\pi\)
\(504\) 0 0
\(505\) 7.15227e10 1.09971
\(506\) − 5.56206e10i − 0.848464i
\(507\) 0 0
\(508\) 9.75548e10 1.46485
\(509\) − 1.16270e11i − 1.73220i −0.499874 0.866098i \(-0.666621\pi\)
0.499874 0.866098i \(-0.333379\pi\)
\(510\) 0 0
\(511\) −1.38104e11 −2.02545
\(512\) 9.27786e10i 1.35011i
\(513\) 0 0
\(514\) 1.20259e11 1.72292
\(515\) 5.45310e10i 0.775201i
\(516\) 0 0
\(517\) −2.49360e10 −0.349032
\(518\) 7.78660e10i 1.08151i
\(519\) 0 0
\(520\) 2.42960e10 0.332293
\(521\) − 2.97924e10i − 0.404347i −0.979350 0.202174i \(-0.935199\pi\)
0.979350 0.202174i \(-0.0648005\pi\)
\(522\) 0 0
\(523\) 8.16732e10 1.09162 0.545812 0.837908i \(-0.316221\pi\)
0.545812 + 0.837908i \(0.316221\pi\)
\(524\) 7.91265e10i 1.04954i
\(525\) 0 0
\(526\) −1.53959e11 −2.01123
\(527\) − 4.67213e10i − 0.605720i
\(528\) 0 0
\(529\) 2.14512e10 0.273923
\(530\) 1.26946e11i 1.60885i
\(531\) 0 0
\(532\) −2.38232e11 −2.97408
\(533\) − 9.73393e10i − 1.20609i
\(534\) 0 0
\(535\) 6.58457e10 0.803733
\(536\) − 2.97924e10i − 0.360949i
\(537\) 0 0
\(538\) −1.54151e11 −1.84000
\(539\) − 1.05565e11i − 1.25073i
\(540\) 0 0
\(541\) −3.44758e10 −0.402462 −0.201231 0.979544i \(-0.564494\pi\)
−0.201231 + 0.979544i \(0.564494\pi\)
\(542\) − 6.74748e10i − 0.781888i
\(543\) 0 0
\(544\) 1.78093e11 2.03353
\(545\) − 4.09990e10i − 0.464716i
\(546\) 0 0
\(547\) 2.43290e10 0.271754 0.135877 0.990726i \(-0.456615\pi\)
0.135877 + 0.990726i \(0.456615\pi\)
\(548\) − 1.84331e11i − 2.04398i
\(549\) 0 0
\(550\) 2.35405e10 0.257255
\(551\) 1.35954e11i 1.47498i
\(552\) 0 0
\(553\) −2.04396e11 −2.18560
\(554\) − 1.48587e11i − 1.57740i
\(555\) 0 0
\(556\) 9.66254e10 1.01110
\(557\) − 8.20305e9i − 0.0852225i −0.999092 0.0426113i \(-0.986432\pi\)
0.999092 0.0426113i \(-0.0135677\pi\)
\(558\) 0 0
\(559\) 1.03674e11 1.06175
\(560\) − 1.15103e11i − 1.17040i
\(561\) 0 0
\(562\) −2.04600e11 −2.05098
\(563\) 1.04123e11i 1.03637i 0.855269 + 0.518185i \(0.173392\pi\)
−0.855269 + 0.518185i \(0.826608\pi\)
\(564\) 0 0
\(565\) −6.23354e10 −0.611703
\(566\) 2.59631e11i 2.52983i
\(567\) 0 0
\(568\) −2.85835e10 −0.274614
\(569\) 8.11053e9i 0.0773750i 0.999251 + 0.0386875i \(0.0123177\pi\)
−0.999251 + 0.0386875i \(0.987682\pi\)
\(570\) 0 0
\(571\) −1.06153e11 −0.998594 −0.499297 0.866431i \(-0.666408\pi\)
−0.499297 + 0.866431i \(0.666408\pi\)
\(572\) − 1.32666e11i − 1.23929i
\(573\) 0 0
\(574\) 2.07204e11 1.90876
\(575\) − 2.40649e10i − 0.220147i
\(576\) 0 0
\(577\) −1.09987e11 −0.992292 −0.496146 0.868239i \(-0.665252\pi\)
−0.496146 + 0.868239i \(0.665252\pi\)
\(578\) − 1.67474e11i − 1.50050i
\(579\) 0 0
\(580\) 1.11096e11 0.981718
\(581\) − 3.25294e11i − 2.85477i
\(582\) 0 0
\(583\) 9.91708e10 0.858440
\(584\) − 3.43040e10i − 0.294912i
\(585\) 0 0
\(586\) −8.89078e10 −0.753962
\(587\) − 1.23957e11i − 1.04405i −0.852931 0.522023i \(-0.825178\pi\)
0.852931 0.522023i \(-0.174822\pi\)
\(588\) 0 0
\(589\) 7.74605e10 0.643604
\(590\) − 6.83529e9i − 0.0564090i
\(591\) 0 0
\(592\) 4.30457e10 0.350464
\(593\) − 1.61977e11i − 1.30989i −0.755678 0.654943i \(-0.772693\pi\)
0.755678 0.654943i \(-0.227307\pi\)
\(594\) 0 0
\(595\) −2.58891e11 −2.06562
\(596\) 2.05651e11i 1.62984i
\(597\) 0 0
\(598\) −2.51840e11 −1.96934
\(599\) − 6.65098e10i − 0.516629i −0.966061 0.258314i \(-0.916833\pi\)
0.966061 0.258314i \(-0.0831670\pi\)
\(600\) 0 0
\(601\) −5.22611e10 −0.400572 −0.200286 0.979737i \(-0.564187\pi\)
−0.200286 + 0.979737i \(0.564187\pi\)
\(602\) 2.20689e11i 1.68033i
\(603\) 0 0
\(604\) 2.06100e11 1.54857
\(605\) − 6.25867e10i − 0.467154i
\(606\) 0 0
\(607\) −1.03372e11 −0.761464 −0.380732 0.924685i \(-0.624328\pi\)
−0.380732 + 0.924685i \(0.624328\pi\)
\(608\) 2.95265e11i 2.16071i
\(609\) 0 0
\(610\) −1.12602e11 −0.813254
\(611\) 1.12906e11i 0.810124i
\(612\) 0 0
\(613\) −5.30997e10 −0.376054 −0.188027 0.982164i \(-0.560209\pi\)
−0.188027 + 0.982164i \(0.560209\pi\)
\(614\) 1.55293e11i 1.09264i
\(615\) 0 0
\(616\) 4.04027e10 0.280600
\(617\) 2.08477e11i 1.43853i 0.694737 + 0.719264i \(0.255521\pi\)
−0.694737 + 0.719264i \(0.744479\pi\)
\(618\) 0 0
\(619\) −2.33161e11 −1.58816 −0.794079 0.607815i \(-0.792046\pi\)
−0.794079 + 0.607815i \(0.792046\pi\)
\(620\) − 6.32975e10i − 0.428371i
\(621\) 0 0
\(622\) 8.21233e10 0.548662
\(623\) 9.75835e10i 0.647775i
\(624\) 0 0
\(625\) −1.02981e11 −0.674893
\(626\) 3.06426e11i 1.99540i
\(627\) 0 0
\(628\) 1.83380e11 1.17900
\(629\) − 9.68188e10i − 0.618525i
\(630\) 0 0
\(631\) 1.64963e10 0.104057 0.0520283 0.998646i \(-0.483431\pi\)
0.0520283 + 0.998646i \(0.483431\pi\)
\(632\) − 5.07704e10i − 0.318231i
\(633\) 0 0
\(634\) −3.55981e11 −2.20328
\(635\) 1.75765e11i 1.08103i
\(636\) 0 0
\(637\) −4.77979e11 −2.90303
\(638\) − 1.61161e11i − 0.972698i
\(639\) 0 0
\(640\) 7.00281e10 0.417400
\(641\) 2.27185e11i 1.34570i 0.739779 + 0.672850i \(0.234930\pi\)
−0.739779 + 0.672850i \(0.765070\pi\)
\(642\) 0 0
\(643\) −1.19364e11 −0.698282 −0.349141 0.937070i \(-0.613527\pi\)
−0.349141 + 0.937070i \(0.613527\pi\)
\(644\) − 2.88694e11i − 1.67840i
\(645\) 0 0
\(646\) 5.50057e11 3.15847
\(647\) 2.03521e11i 1.16143i 0.814108 + 0.580714i \(0.197226\pi\)
−0.814108 + 0.580714i \(0.802774\pi\)
\(648\) 0 0
\(649\) −5.33977e9 −0.0300984
\(650\) − 1.06587e11i − 0.597105i
\(651\) 0 0
\(652\) −2.38580e10 −0.132021
\(653\) − 7.74277e10i − 0.425837i −0.977070 0.212919i \(-0.931703\pi\)
0.977070 0.212919i \(-0.0682969\pi\)
\(654\) 0 0
\(655\) −1.42563e11 −0.774534
\(656\) − 1.14546e11i − 0.618536i
\(657\) 0 0
\(658\) −2.40340e11 −1.28210
\(659\) 1.25263e11i 0.664173i 0.943249 + 0.332086i \(0.107753\pi\)
−0.943249 + 0.332086i \(0.892247\pi\)
\(660\) 0 0
\(661\) −1.98619e11 −1.04044 −0.520218 0.854033i \(-0.674149\pi\)
−0.520218 + 0.854033i \(0.674149\pi\)
\(662\) 5.35283e11i 2.78709i
\(663\) 0 0
\(664\) 8.08006e10 0.415664
\(665\) − 4.29223e11i − 2.19481i
\(666\) 0 0
\(667\) −1.64752e11 −0.832391
\(668\) − 1.30953e10i − 0.0657672i
\(669\) 0 0
\(670\) 3.75186e11 1.86186
\(671\) 8.79653e10i 0.433932i
\(672\) 0 0
\(673\) 2.29930e11 1.12082 0.560410 0.828215i \(-0.310644\pi\)
0.560410 + 0.828215i \(0.310644\pi\)
\(674\) − 5.02695e11i − 2.43593i
\(675\) 0 0
\(676\) −3.56995e11 −1.70952
\(677\) − 3.55228e11i − 1.69103i −0.533949 0.845517i \(-0.679292\pi\)
0.533949 0.845517i \(-0.320708\pi\)
\(678\) 0 0
\(679\) 2.31244e11 1.08791
\(680\) − 6.43067e10i − 0.300760i
\(681\) 0 0
\(682\) −9.18224e10 −0.424435
\(683\) 1.23568e11i 0.567835i 0.958849 + 0.283918i \(0.0916342\pi\)
−0.958849 + 0.283918i \(0.908366\pi\)
\(684\) 0 0
\(685\) 3.32110e11 1.50841
\(686\) − 4.67199e11i − 2.10963i
\(687\) 0 0
\(688\) 1.22001e11 0.544513
\(689\) − 4.49028e11i − 1.99249i
\(690\) 0 0
\(691\) 7.55279e10 0.331280 0.165640 0.986186i \(-0.447031\pi\)
0.165640 + 0.986186i \(0.447031\pi\)
\(692\) 4.04086e10i 0.176218i
\(693\) 0 0
\(694\) −1.17869e11 −0.508115
\(695\) 1.74090e11i 0.746166i
\(696\) 0 0
\(697\) −2.57638e11 −1.09164
\(698\) 5.81183e11i 2.44845i
\(699\) 0 0
\(700\) 1.22185e11 0.508892
\(701\) 1.59198e11i 0.659273i 0.944108 + 0.329636i \(0.106926\pi\)
−0.944108 + 0.329636i \(0.893074\pi\)
\(702\) 0 0
\(703\) 1.60519e11 0.657210
\(704\) − 2.16228e11i − 0.880281i
\(705\) 0 0
\(706\) 2.87489e11 1.15719
\(707\) − 5.38529e11i − 2.15542i
\(708\) 0 0
\(709\) 7.32146e10 0.289743 0.144871 0.989451i \(-0.453723\pi\)
0.144871 + 0.989451i \(0.453723\pi\)
\(710\) − 3.59962e11i − 1.41652i
\(711\) 0 0
\(712\) −2.42390e10 −0.0943182
\(713\) 9.38682e10i 0.363212i
\(714\) 0 0
\(715\) 2.39024e11 0.914572
\(716\) − 2.44254e9i − 0.00929370i
\(717\) 0 0
\(718\) 3.66083e11 1.37747
\(719\) − 3.87495e11i − 1.44994i −0.688779 0.724972i \(-0.741853\pi\)
0.688779 0.724972i \(-0.258147\pi\)
\(720\) 0 0
\(721\) 4.10590e11 1.51938
\(722\) 5.11942e11i 1.88396i
\(723\) 0 0
\(724\) −9.39362e10 −0.341884
\(725\) − 6.97285e10i − 0.252382i
\(726\) 0 0
\(727\) 1.54639e11 0.553582 0.276791 0.960930i \(-0.410729\pi\)
0.276791 + 0.960930i \(0.410729\pi\)
\(728\) − 1.82936e11i − 0.651289i
\(729\) 0 0
\(730\) 4.32002e11 1.52123
\(731\) − 2.74405e11i − 0.960998i
\(732\) 0 0
\(733\) 1.23905e10 0.0429215 0.0214607 0.999770i \(-0.493168\pi\)
0.0214607 + 0.999770i \(0.493168\pi\)
\(734\) 2.89626e11i 0.997823i
\(735\) 0 0
\(736\) −3.57808e11 −1.21938
\(737\) − 2.93098e11i − 0.993443i
\(738\) 0 0
\(739\) 1.50897e11 0.505944 0.252972 0.967474i \(-0.418592\pi\)
0.252972 + 0.967474i \(0.418592\pi\)
\(740\) − 1.31169e11i − 0.437426i
\(741\) 0 0
\(742\) 9.55834e11 3.15331
\(743\) − 6.04934e11i − 1.98497i −0.122384 0.992483i \(-0.539054\pi\)
0.122384 0.992483i \(-0.460946\pi\)
\(744\) 0 0
\(745\) −3.70523e11 −1.20279
\(746\) − 3.54249e11i − 1.14381i
\(747\) 0 0
\(748\) −3.51140e11 −1.12169
\(749\) − 4.95783e11i − 1.57530i
\(750\) 0 0
\(751\) −2.24484e11 −0.705709 −0.352854 0.935678i \(-0.614789\pi\)
−0.352854 + 0.935678i \(0.614789\pi\)
\(752\) 1.32864e11i 0.415467i
\(753\) 0 0
\(754\) −7.29709e11 −2.25769
\(755\) 3.71331e11i 1.14281i
\(756\) 0 0
\(757\) 8.38107e10 0.255221 0.127610 0.991824i \(-0.459269\pi\)
0.127610 + 0.991824i \(0.459269\pi\)
\(758\) − 2.40123e11i − 0.727372i
\(759\) 0 0
\(760\) 1.06616e11 0.319571
\(761\) − 2.16529e9i − 0.00645620i −0.999995 0.00322810i \(-0.998972\pi\)
0.999995 0.00322810i \(-0.00102754\pi\)
\(762\) 0 0
\(763\) −3.08701e11 −0.910836
\(764\) 3.78759e11i 1.11171i
\(765\) 0 0
\(766\) 1.94282e11 0.564311
\(767\) 2.41775e10i 0.0698603i
\(768\) 0 0
\(769\) −3.73555e10 −0.106819 −0.0534096 0.998573i \(-0.517009\pi\)
−0.0534096 + 0.998573i \(0.517009\pi\)
\(770\) 5.08805e11i 1.44740i
\(771\) 0 0
\(772\) −4.78122e11 −1.34608
\(773\) − 5.53510e11i − 1.55027i −0.631796 0.775135i \(-0.717682\pi\)
0.631796 0.775135i \(-0.282318\pi\)
\(774\) 0 0
\(775\) −3.97281e10 −0.110126
\(776\) 5.74393e10i 0.158403i
\(777\) 0 0
\(778\) 1.12836e11 0.307985
\(779\) − 4.27145e11i − 1.15991i
\(780\) 0 0
\(781\) −2.81205e11 −0.755821
\(782\) 6.66570e11i 1.78246i
\(783\) 0 0
\(784\) −5.62472e11 −1.48880
\(785\) 3.30396e11i 0.870075i
\(786\) 0 0
\(787\) 2.02266e11 0.527260 0.263630 0.964624i \(-0.415080\pi\)
0.263630 + 0.964624i \(0.415080\pi\)
\(788\) − 1.17211e11i − 0.303992i
\(789\) 0 0
\(790\) 6.39370e11 1.64151
\(791\) 4.69353e11i 1.19893i
\(792\) 0 0
\(793\) 3.98291e11 1.00718
\(794\) − 8.03369e11i − 2.02131i
\(795\) 0 0
\(796\) 3.33871e11 0.831624
\(797\) 4.43023e11i 1.09798i 0.835830 + 0.548989i \(0.184987\pi\)
−0.835830 + 0.548989i \(0.815013\pi\)
\(798\) 0 0
\(799\) 2.98839e11 0.733248
\(800\) − 1.51436e11i − 0.369717i
\(801\) 0 0
\(802\) 7.87899e11 1.90447
\(803\) − 3.37483e11i − 0.811688i
\(804\) 0 0
\(805\) 5.20142e11 1.23862
\(806\) 4.15755e11i 0.985139i
\(807\) 0 0
\(808\) 1.33767e11 0.313836
\(809\) − 3.05754e11i − 0.713801i −0.934142 0.356901i \(-0.883833\pi\)
0.934142 0.356901i \(-0.116167\pi\)
\(810\) 0 0
\(811\) 4.20897e11 0.972954 0.486477 0.873693i \(-0.338282\pi\)
0.486477 + 0.873693i \(0.338282\pi\)
\(812\) − 8.36495e11i − 1.92415i
\(813\) 0 0
\(814\) −1.90280e11 −0.433407
\(815\) − 4.29850e10i − 0.0974287i
\(816\) 0 0
\(817\) 4.54943e11 1.02110
\(818\) 4.43170e11i 0.989822i
\(819\) 0 0
\(820\) −3.49045e11 −0.772016
\(821\) − 6.69864e10i − 0.147440i −0.997279 0.0737198i \(-0.976513\pi\)
0.997279 0.0737198i \(-0.0234870\pi\)
\(822\) 0 0
\(823\) 5.08513e11 1.10842 0.554208 0.832378i \(-0.313021\pi\)
0.554208 + 0.832378i \(0.313021\pi\)
\(824\) 1.01987e11i 0.221227i
\(825\) 0 0
\(826\) −5.14661e10 −0.110561
\(827\) − 7.82451e11i − 1.67277i −0.548145 0.836383i \(-0.684666\pi\)
0.548145 0.836383i \(-0.315334\pi\)
\(828\) 0 0
\(829\) −4.82359e11 −1.02130 −0.510648 0.859790i \(-0.670595\pi\)
−0.510648 + 0.859790i \(0.670595\pi\)
\(830\) 1.01755e12i 2.14409i
\(831\) 0 0
\(832\) −9.79042e11 −2.04319
\(833\) 1.26512e12i 2.62755i
\(834\) 0 0
\(835\) 2.35938e10 0.0485347
\(836\) − 5.82164e11i − 1.19185i
\(837\) 0 0
\(838\) 5.74573e11 1.16512
\(839\) 3.86136e11i 0.779277i 0.920968 + 0.389639i \(0.127400\pi\)
−0.920968 + 0.389639i \(0.872600\pi\)
\(840\) 0 0
\(841\) 2.28753e10 0.0457281
\(842\) − 6.30966e11i − 1.25533i
\(843\) 0 0
\(844\) −4.91972e11 −0.969551
\(845\) − 6.43199e11i − 1.26159i
\(846\) 0 0
\(847\) −4.71245e11 −0.915615
\(848\) − 5.28403e11i − 1.02184i
\(849\) 0 0
\(850\) −2.82114e11 −0.540443
\(851\) 1.94520e11i 0.370890i
\(852\) 0 0
\(853\) 2.57621e11 0.486615 0.243308 0.969949i \(-0.421768\pi\)
0.243308 + 0.969949i \(0.421768\pi\)
\(854\) 8.47832e11i 1.59396i
\(855\) 0 0
\(856\) 1.23149e11 0.229369
\(857\) 6.41541e11i 1.18933i 0.803975 + 0.594664i \(0.202715\pi\)
−0.803975 + 0.594664i \(0.797285\pi\)
\(858\) 0 0
\(859\) −8.28926e11 −1.52245 −0.761225 0.648488i \(-0.775402\pi\)
−0.761225 + 0.648488i \(0.775402\pi\)
\(860\) − 3.71761e11i − 0.679626i
\(861\) 0 0
\(862\) −3.79926e11 −0.688130
\(863\) 4.48523e11i 0.808614i 0.914623 + 0.404307i \(0.132487\pi\)
−0.914623 + 0.404307i \(0.867513\pi\)
\(864\) 0 0
\(865\) −7.28044e10 −0.130045
\(866\) 5.14490e11i 0.914757i
\(867\) 0 0
\(868\) −4.76597e11 −0.839600
\(869\) − 4.99480e11i − 0.875869i
\(870\) 0 0
\(871\) −1.32709e12 −2.30584
\(872\) − 7.66791e10i − 0.132621i
\(873\) 0 0
\(874\) −1.10513e12 −1.89394
\(875\) 1.07222e12i 1.82916i
\(876\) 0 0
\(877\) 6.69421e11 1.13162 0.565810 0.824535i \(-0.308563\pi\)
0.565810 + 0.824535i \(0.308563\pi\)
\(878\) − 7.32538e11i − 1.23268i
\(879\) 0 0
\(880\) 2.81277e11 0.469033
\(881\) 6.33338e11i 1.05131i 0.850697 + 0.525656i \(0.176180\pi\)
−0.850697 + 0.525656i \(0.823820\pi\)
\(882\) 0 0
\(883\) 4.65710e11 0.766077 0.383039 0.923732i \(-0.374878\pi\)
0.383039 + 0.923732i \(0.374878\pi\)
\(884\) 1.58990e12i 2.60351i
\(885\) 0 0
\(886\) 2.84249e11 0.461280
\(887\) − 5.04766e11i − 0.815447i −0.913106 0.407723i \(-0.866323\pi\)
0.913106 0.407723i \(-0.133677\pi\)
\(888\) 0 0
\(889\) 1.32342e12 2.11880
\(890\) − 3.05251e11i − 0.486515i
\(891\) 0 0
\(892\) −1.14259e11 −0.180480
\(893\) 4.95454e11i 0.779108i
\(894\) 0 0
\(895\) 4.40073e9 0.00685855
\(896\) − 5.27275e11i − 0.818098i
\(897\) 0 0
\(898\) −3.72471e11 −0.572780
\(899\) 2.71984e11i 0.416395i
\(900\) 0 0
\(901\) −1.18849e12 −1.80341
\(902\) 5.06342e11i 0.764923i
\(903\) 0 0
\(904\) −1.16584e11 −0.174568
\(905\) − 1.69245e11i − 0.252303i
\(906\) 0 0
\(907\) 1.13679e12 1.67978 0.839890 0.542757i \(-0.182620\pi\)
0.839890 + 0.542757i \(0.182620\pi\)
\(908\) 1.11397e12i 1.63881i
\(909\) 0 0
\(910\) 2.30378e12 3.35950
\(911\) − 7.72292e11i − 1.12126i −0.828065 0.560632i \(-0.810558\pi\)
0.828065 0.560632i \(-0.189442\pi\)
\(912\) 0 0
\(913\) 7.94917e11 1.14403
\(914\) − 3.11495e11i − 0.446340i
\(915\) 0 0
\(916\) 1.17324e12 1.66650
\(917\) 1.07342e12i 1.51807i
\(918\) 0 0
\(919\) −6.31111e11 −0.884797 −0.442398 0.896819i \(-0.645872\pi\)
−0.442398 + 0.896819i \(0.645872\pi\)
\(920\) 1.29199e11i 0.180347i
\(921\) 0 0
\(922\) −1.39127e12 −1.92525
\(923\) 1.27325e12i 1.75431i
\(924\) 0 0
\(925\) −8.23272e10 −0.112454
\(926\) − 1.52442e11i − 0.207329i
\(927\) 0 0
\(928\) −1.03675e12 −1.39792
\(929\) 8.53537e11i 1.14593i 0.819579 + 0.572967i \(0.194208\pi\)
−0.819579 + 0.572967i \(0.805792\pi\)
\(930\) 0 0
\(931\) −2.09747e12 −2.79188
\(932\) 5.83273e11i 0.773051i
\(933\) 0 0
\(934\) 1.64775e12 2.16523
\(935\) − 6.32650e11i − 0.827784i
\(936\) 0 0
\(937\) −1.41122e12 −1.83078 −0.915390 0.402569i \(-0.868117\pi\)
−0.915390 + 0.402569i \(0.868117\pi\)
\(938\) − 2.82496e12i − 3.64922i
\(939\) 0 0
\(940\) 4.04865e11 0.518560
\(941\) 4.05332e11i 0.516955i 0.966017 + 0.258477i \(0.0832207\pi\)
−0.966017 + 0.258477i \(0.916779\pi\)
\(942\) 0 0
\(943\) 5.17623e11 0.654586
\(944\) 2.84514e10i 0.0358274i
\(945\) 0 0
\(946\) −5.39295e11 −0.673382
\(947\) 3.98605e11i 0.495613i 0.968810 + 0.247806i \(0.0797097\pi\)
−0.968810 + 0.247806i \(0.920290\pi\)
\(948\) 0 0
\(949\) −1.52806e12 −1.88398
\(950\) − 4.67725e11i − 0.574244i
\(951\) 0 0
\(952\) −4.84196e11 −0.589486
\(953\) 1.49082e11i 0.180740i 0.995908 + 0.0903700i \(0.0288050\pi\)
−0.995908 + 0.0903700i \(0.971195\pi\)
\(954\) 0 0
\(955\) −6.82412e11 −0.820414
\(956\) − 1.04921e12i − 1.25613i
\(957\) 0 0
\(958\) −1.02415e11 −0.121591
\(959\) − 2.50061e12i − 2.95646i
\(960\) 0 0
\(961\) −6.97927e11 −0.818307
\(962\) 8.61555e11i 1.00596i
\(963\) 0 0
\(964\) −3.46320e11 −0.401023
\(965\) − 8.61435e11i − 0.993375i
\(966\) 0 0
\(967\) 5.08196e11 0.581199 0.290600 0.956845i \(-0.406145\pi\)
0.290600 + 0.956845i \(0.406145\pi\)
\(968\) − 1.17054e11i − 0.133317i
\(969\) 0 0
\(970\) −7.23353e11 −0.817078
\(971\) 1.03968e12i 1.16956i 0.811193 + 0.584778i \(0.198818\pi\)
−0.811193 + 0.584778i \(0.801182\pi\)
\(972\) 0 0
\(973\) 1.31081e12 1.46247
\(974\) 1.37188e12i 1.52433i
\(975\) 0 0
\(976\) 4.68697e11 0.516527
\(977\) 4.47633e10i 0.0491296i 0.999698 + 0.0245648i \(0.00782001\pi\)
−0.999698 + 0.0245648i \(0.992180\pi\)
\(978\) 0 0
\(979\) −2.38464e11 −0.259592
\(980\) 1.71397e12i 1.85823i
\(981\) 0 0
\(982\) −9.75507e10 −0.104902
\(983\) 8.78713e11i 0.941094i 0.882375 + 0.470547i \(0.155943\pi\)
−0.882375 + 0.470547i \(0.844057\pi\)
\(984\) 0 0
\(985\) 2.11179e11 0.224339
\(986\) 1.93140e12i 2.04345i
\(987\) 0 0
\(988\) −2.63594e12 −2.76635
\(989\) 5.51310e11i 0.576250i
\(990\) 0 0
\(991\) 3.97816e11 0.412465 0.206233 0.978503i \(-0.433880\pi\)
0.206233 + 0.978503i \(0.433880\pi\)
\(992\) 5.90695e11i 0.609982i
\(993\) 0 0
\(994\) −2.71033e12 −2.77636
\(995\) 6.01537e11i 0.613720i
\(996\) 0 0
\(997\) 9.36739e11 0.948065 0.474032 0.880507i \(-0.342798\pi\)
0.474032 + 0.880507i \(0.342798\pi\)
\(998\) 1.58891e12i 1.60168i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 243.9.b.i.242.39 yes 48
3.2 odd 2 inner 243.9.b.i.242.10 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
243.9.b.i.242.10 48 3.2 odd 2 inner
243.9.b.i.242.39 yes 48 1.1 even 1 trivial