Properties

Label 243.9
Level 243
Weight 9
Dimension 13728
Nonzero newspaces 5
Sturm bound 39366
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 243 = 3^{5} \)
Weight: \( k \) = \( 9 \)
Nonzero newspaces: \( 5 \)
Sturm bound: \(39366\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(\Gamma_1(243))\).

Total New Old
Modular forms 17685 13920 3765
Cusp forms 17307 13728 3579
Eisenstein series 378 192 186

Trace form

\( 13728 q - 36 q^{2} - 54 q^{3} - 60 q^{4} - 36 q^{5} - 54 q^{6} - 60 q^{7} - 36 q^{8} - 54 q^{9} - 84 q^{10} - 36 q^{11} - 54 q^{12} - 60 q^{13} - 36 q^{14} - 54 q^{15} + 1476 q^{16} - 36 q^{17} - 54 q^{18}+ \cdots + 1165147092 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(\Gamma_1(243))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
243.9.b \(\chi_{243}(242, \cdot)\) 243.9.b.a 1 1
243.9.b.b 1
243.9.b.c 6
243.9.b.d 8
243.9.b.e 8
243.9.b.f 8
243.9.b.g 8
243.9.b.h 8
243.9.b.i 48
243.9.d \(\chi_{243}(80, \cdot)\) n/a 192 2
243.9.f \(\chi_{243}(26, \cdot)\) n/a 552 6
243.9.h \(\chi_{243}(8, \cdot)\) n/a 1278 18
243.9.j \(\chi_{243}(2, \cdot)\) n/a 11610 54

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{9}^{\mathrm{old}}(\Gamma_1(243))\) into lower level spaces

\( S_{9}^{\mathrm{old}}(\Gamma_1(243)) \cong \) \(S_{9}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 5}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(81))\)\(^{\oplus 2}\)