Defining parameters
| Level: | \( N \) | = | \( 243 = 3^{5} \) |
| Weight: | \( k \) | = | \( 9 \) |
| Nonzero newspaces: | \( 5 \) | ||
| Sturm bound: | \(39366\) | ||
| Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{9}(\Gamma_1(243))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 17685 | 13920 | 3765 |
| Cusp forms | 17307 | 13728 | 3579 |
| Eisenstein series | 378 | 192 | 186 |
Trace form
Decomposition of \(S_{9}^{\mathrm{new}}(\Gamma_1(243))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
| Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
|---|---|---|---|---|
| 243.9.b | \(\chi_{243}(242, \cdot)\) | 243.9.b.a | 1 | 1 |
| 243.9.b.b | 1 | |||
| 243.9.b.c | 6 | |||
| 243.9.b.d | 8 | |||
| 243.9.b.e | 8 | |||
| 243.9.b.f | 8 | |||
| 243.9.b.g | 8 | |||
| 243.9.b.h | 8 | |||
| 243.9.b.i | 48 | |||
| 243.9.d | \(\chi_{243}(80, \cdot)\) | n/a | 192 | 2 |
| 243.9.f | \(\chi_{243}(26, \cdot)\) | n/a | 552 | 6 |
| 243.9.h | \(\chi_{243}(8, \cdot)\) | n/a | 1278 | 18 |
| 243.9.j | \(\chi_{243}(2, \cdot)\) | n/a | 11610 | 54 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{9}^{\mathrm{old}}(\Gamma_1(243))\) into lower level spaces
\( S_{9}^{\mathrm{old}}(\Gamma_1(243)) \cong \) \(S_{9}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 5}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(81))\)\(^{\oplus 2}\)