Properties

Label 243.9.b.a
Level $243$
Weight $9$
Character orbit 243.b
Self dual yes
Analytic conductor $98.993$
Analytic rank $0$
Dimension $1$
CM discriminant -3
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [243,9,Mod(242,243)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("243.242"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(243, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 243.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,0,256,0,0,-4273] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(98.9930022449\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 256 q^{4} - 4273 q^{7} - 35806 q^{13} + 65536 q^{16} - 258526 q^{19} + 390625 q^{25} - 1093888 q^{28} + 1225967 q^{31} + 2964959 q^{37} + 3344879 q^{43} + 12493728 q^{49} - 9166336 q^{52} + 24133919 q^{61}+ \cdots + 176908034 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
242.1
0
0 0 256.000 0 0 −4273.00 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 243.9.b.a 1
3.b odd 2 1 CM 243.9.b.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
243.9.b.a 1 1.a even 1 1 trivial
243.9.b.a 1 3.b odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{9}^{\mathrm{new}}(243, [\chi])\):

\( T_{2} \) Copy content Toggle raw display
\( T_{7} + 4273 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 4273 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T + 35806 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T + 258526 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T - 1225967 \) Copy content Toggle raw display
$37$ \( T - 2964959 \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T - 3344879 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T - 24133919 \) Copy content Toggle raw display
$67$ \( T + 31874833 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T + 55236481 \) Copy content Toggle raw display
$79$ \( T + 18887038 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T - 176908034 \) Copy content Toggle raw display
show more
show less