Properties

Label 243.3.f.d.53.2
Level $243$
Weight $3$
Character 243.53
Analytic conductor $6.621$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [243,3,Mod(26,243)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(243, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("243.26"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 243.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30,3,0,3,21] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.62127042396\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(5\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 53.2
Character \(\chi\) \(=\) 243.53
Dual form 243.3.f.d.188.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.663577 + 1.82316i) q^{2} +(0.180586 + 0.151529i) q^{4} +(4.25686 + 0.750600i) q^{5} +(6.80967 - 5.71399i) q^{7} +(-7.11704 + 4.10903i) q^{8} +(-4.19322 + 7.26288i) q^{10} +(7.26396 - 1.28083i) q^{11} +(15.2310 - 5.54364i) q^{13} +(5.89880 + 16.2068i) q^{14} +(-2.60498 - 14.7736i) q^{16} +(9.06825 + 5.23555i) q^{17} +(-8.63742 - 14.9604i) q^{19} +(0.654990 + 0.780587i) q^{20} +(-2.48503 + 14.0933i) q^{22} +(-8.47110 + 10.0955i) q^{23} +(-5.93484 - 2.16011i) q^{25} +31.4473i q^{26} +2.09556 q^{28} +(-14.3092 + 39.3143i) q^{29} +(28.3928 + 23.8244i) q^{31} +(-3.70957 - 0.654097i) q^{32} +(-15.5628 + 13.0587i) q^{34} +(33.2767 - 19.2123i) q^{35} +(-31.9875 + 55.4041i) q^{37} +(33.0069 - 5.82001i) q^{38} +(-33.3805 + 12.1495i) q^{40} +(-8.70442 - 23.9152i) q^{41} +(0.430521 + 2.44161i) q^{43} +(1.50585 + 0.869403i) q^{44} +(-12.7845 - 22.1433i) q^{46} +(-30.0028 - 35.7559i) q^{47} +(5.21313 - 29.5652i) q^{49} +(7.87646 - 9.38679i) q^{50} +(3.59053 + 1.30685i) q^{52} -50.7217i q^{53} +31.8831 q^{55} +(-24.9858 + 68.6478i) q^{56} +(-62.1811 - 52.1761i) q^{58} +(-4.12626 - 0.727571i) q^{59} +(27.8569 - 23.3747i) q^{61} +(-62.2766 + 35.9554i) q^{62} +(33.6571 - 58.2957i) q^{64} +(68.9974 - 12.1661i) q^{65} +(-16.2651 + 5.92003i) q^{67} +(0.844255 + 2.31957i) q^{68} +(12.9455 + 73.4178i) q^{70} +(-51.5041 - 29.7359i) q^{71} +(26.3451 + 45.6310i) q^{73} +(-79.7845 - 95.0834i) q^{74} +(0.707153 - 4.01046i) q^{76} +(42.1465 - 50.2282i) q^{77} +(1.46560 + 0.533436i) q^{79} -64.8443i q^{80} +49.3774 q^{82} +(38.6733 - 106.254i) q^{83} +(34.6725 + 29.0937i) q^{85} +(-4.73713 - 0.835284i) q^{86} +(-46.4349 + 38.9635i) q^{88} +(41.4518 - 23.9322i) q^{89} +(72.0419 - 124.780i) q^{91} +(-3.05952 + 0.539476i) q^{92} +(85.0981 - 30.9732i) q^{94} +(-25.5390 - 70.1678i) q^{95} +(-6.38452 - 36.2084i) q^{97} +(50.4428 + 29.1232i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q + 3 q^{2} + 3 q^{4} + 21 q^{5} + 3 q^{7} - 9 q^{8} - 3 q^{10} + 57 q^{11} + 3 q^{13} - 114 q^{14} + 27 q^{16} - 9 q^{17} - 3 q^{19} - 183 q^{20} + 75 q^{22} + 48 q^{23} + 21 q^{25} - 12 q^{28} - 78 q^{29}+ \cdots + 882 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{11}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.663577 + 1.82316i −0.331789 + 0.911582i 0.655858 + 0.754884i \(0.272307\pi\)
−0.987647 + 0.156698i \(0.949915\pi\)
\(3\) 0 0
\(4\) 0.180586 + 0.151529i 0.0451464 + 0.0378823i
\(5\) 4.25686 + 0.750600i 0.851372 + 0.150120i 0.582274 0.812993i \(-0.302163\pi\)
0.269099 + 0.963113i \(0.413274\pi\)
\(6\) 0 0
\(7\) 6.80967 5.71399i 0.972810 0.816284i −0.0101795 0.999948i \(-0.503240\pi\)
0.982989 + 0.183664i \(0.0587958\pi\)
\(8\) −7.11704 + 4.10903i −0.889630 + 0.513628i
\(9\) 0 0
\(10\) −4.19322 + 7.26288i −0.419322 + 0.726288i
\(11\) 7.26396 1.28083i 0.660360 0.116439i 0.166582 0.986028i \(-0.446727\pi\)
0.493778 + 0.869588i \(0.335616\pi\)
\(12\) 0 0
\(13\) 15.2310 5.54364i 1.17162 0.426434i 0.318383 0.947962i \(-0.396860\pi\)
0.853234 + 0.521528i \(0.174638\pi\)
\(14\) 5.89880 + 16.2068i 0.421343 + 1.15763i
\(15\) 0 0
\(16\) −2.60498 14.7736i −0.162811 0.923348i
\(17\) 9.06825 + 5.23555i 0.533426 + 0.307974i 0.742411 0.669945i \(-0.233682\pi\)
−0.208984 + 0.977919i \(0.567016\pi\)
\(18\) 0 0
\(19\) −8.63742 14.9604i −0.454601 0.787392i 0.544064 0.839044i \(-0.316885\pi\)
−0.998665 + 0.0516517i \(0.983551\pi\)
\(20\) 0.654990 + 0.780587i 0.0327495 + 0.0390293i
\(21\) 0 0
\(22\) −2.48503 + 14.0933i −0.112956 + 0.640606i
\(23\) −8.47110 + 10.0955i −0.368309 + 0.438933i −0.918088 0.396377i \(-0.870267\pi\)
0.549779 + 0.835310i \(0.314712\pi\)
\(24\) 0 0
\(25\) −5.93484 2.16011i −0.237394 0.0864042i
\(26\) 31.4473i 1.20951i
\(27\) 0 0
\(28\) 2.09556 0.0748416
\(29\) −14.3092 + 39.3143i −0.493421 + 1.35566i 0.404109 + 0.914711i \(0.367582\pi\)
−0.897530 + 0.440953i \(0.854641\pi\)
\(30\) 0 0
\(31\) 28.3928 + 23.8244i 0.915896 + 0.768528i 0.973232 0.229827i \(-0.0738159\pi\)
−0.0573351 + 0.998355i \(0.518260\pi\)
\(32\) −3.70957 0.654097i −0.115924 0.0204405i
\(33\) 0 0
\(34\) −15.5628 + 13.0587i −0.457728 + 0.384080i
\(35\) 33.2767 19.2123i 0.950764 0.548924i
\(36\) 0 0
\(37\) −31.9875 + 55.4041i −0.864528 + 1.49741i 0.00298644 + 0.999996i \(0.499049\pi\)
−0.867515 + 0.497411i \(0.834284\pi\)
\(38\) 33.0069 5.82001i 0.868604 0.153158i
\(39\) 0 0
\(40\) −33.3805 + 12.1495i −0.834513 + 0.303738i
\(41\) −8.70442 23.9152i −0.212303 0.583297i 0.787136 0.616779i \(-0.211563\pi\)
−0.999439 + 0.0334815i \(0.989341\pi\)
\(42\) 0 0
\(43\) 0.430521 + 2.44161i 0.0100121 + 0.0567815i 0.989404 0.145185i \(-0.0463778\pi\)
−0.979392 + 0.201967i \(0.935267\pi\)
\(44\) 1.50585 + 0.869403i 0.0342239 + 0.0197592i
\(45\) 0 0
\(46\) −12.7845 22.1433i −0.277923 0.481377i
\(47\) −30.0028 35.7559i −0.638357 0.760765i 0.345752 0.938326i \(-0.387624\pi\)
−0.984110 + 0.177561i \(0.943179\pi\)
\(48\) 0 0
\(49\) 5.21313 29.5652i 0.106390 0.603370i
\(50\) 7.87646 9.38679i 0.157529 0.187736i
\(51\) 0 0
\(52\) 3.59053 + 1.30685i 0.0690486 + 0.0251316i
\(53\) 50.7217i 0.957013i −0.878084 0.478507i \(-0.841178\pi\)
0.878084 0.478507i \(-0.158822\pi\)
\(54\) 0 0
\(55\) 31.8831 0.579692
\(56\) −24.9858 + 68.6478i −0.446174 + 1.22585i
\(57\) 0 0
\(58\) −62.1811 52.1761i −1.07209 0.899588i
\(59\) −4.12626 0.727571i −0.0699366 0.0123317i 0.138570 0.990353i \(-0.455749\pi\)
−0.208507 + 0.978021i \(0.566860\pi\)
\(60\) 0 0
\(61\) 27.8569 23.3747i 0.456671 0.383192i −0.385234 0.922819i \(-0.625879\pi\)
0.841904 + 0.539627i \(0.181435\pi\)
\(62\) −62.2766 + 35.9554i −1.00446 + 0.579926i
\(63\) 0 0
\(64\) 33.6571 58.2957i 0.525892 0.910871i
\(65\) 68.9974 12.1661i 1.06150 0.187171i
\(66\) 0 0
\(67\) −16.2651 + 5.92003i −0.242763 + 0.0883586i −0.460536 0.887641i \(-0.652343\pi\)
0.217773 + 0.975999i \(0.430121\pi\)
\(68\) 0.844255 + 2.31957i 0.0124155 + 0.0341113i
\(69\) 0 0
\(70\) 12.9455 + 73.4178i 0.184936 + 1.04883i
\(71\) −51.5041 29.7359i −0.725410 0.418815i 0.0913309 0.995821i \(-0.470888\pi\)
−0.816740 + 0.577005i \(0.804221\pi\)
\(72\) 0 0
\(73\) 26.3451 + 45.6310i 0.360892 + 0.625083i 0.988108 0.153762i \(-0.0491391\pi\)
−0.627216 + 0.778845i \(0.715806\pi\)
\(74\) −79.7845 95.0834i −1.07817 1.28491i
\(75\) 0 0
\(76\) 0.707153 4.01046i 0.00930464 0.0527692i
\(77\) 42.1465 50.2282i 0.547357 0.652315i
\(78\) 0 0
\(79\) 1.46560 + 0.533436i 0.0185519 + 0.00675236i 0.351279 0.936271i \(-0.385747\pi\)
−0.332728 + 0.943023i \(0.607969\pi\)
\(80\) 64.8443i 0.810554i
\(81\) 0 0
\(82\) 49.3774 0.602163
\(83\) 38.6733 106.254i 0.465943 1.28017i −0.455007 0.890488i \(-0.650363\pi\)
0.920950 0.389680i \(-0.127414\pi\)
\(84\) 0 0
\(85\) 34.6725 + 29.0937i 0.407911 + 0.342278i
\(86\) −4.73713 0.835284i −0.0550829 0.00971261i
\(87\) 0 0
\(88\) −46.4349 + 38.9635i −0.527670 + 0.442768i
\(89\) 41.4518 23.9322i 0.465750 0.268901i −0.248709 0.968578i \(-0.580006\pi\)
0.714459 + 0.699677i \(0.246673\pi\)
\(90\) 0 0
\(91\) 72.0419 124.780i 0.791670 1.37121i
\(92\) −3.05952 + 0.539476i −0.0332556 + 0.00586387i
\(93\) 0 0
\(94\) 85.0981 30.9732i 0.905299 0.329502i
\(95\) −25.5390 70.1678i −0.268831 0.738608i
\(96\) 0 0
\(97\) −6.38452 36.2084i −0.0658198 0.373283i −0.999870 0.0161402i \(-0.994862\pi\)
0.934050 0.357142i \(-0.116249\pi\)
\(98\) 50.4428 + 29.1232i 0.514722 + 0.297175i
\(99\) 0 0
\(100\) −0.744428 1.28939i −0.00744428 0.0128939i
\(101\) −54.8285 65.3421i −0.542857 0.646952i 0.422969 0.906144i \(-0.360988\pi\)
−0.965826 + 0.259193i \(0.916544\pi\)
\(102\) 0 0
\(103\) 4.03589 22.8887i 0.0391834 0.222220i −0.958928 0.283649i \(-0.908455\pi\)
0.998111 + 0.0614294i \(0.0195659\pi\)
\(104\) −85.6209 + 102.039i −0.823278 + 0.981145i
\(105\) 0 0
\(106\) 92.4740 + 33.6578i 0.872396 + 0.317526i
\(107\) 95.7625i 0.894977i 0.894290 + 0.447488i \(0.147681\pi\)
−0.894290 + 0.447488i \(0.852319\pi\)
\(108\) 0 0
\(109\) −102.160 −0.937249 −0.468625 0.883397i \(-0.655250\pi\)
−0.468625 + 0.883397i \(0.655250\pi\)
\(110\) −21.1569 + 58.1281i −0.192335 + 0.528437i
\(111\) 0 0
\(112\) −102.155 85.7183i −0.912099 0.765342i
\(113\) −16.0622 2.83220i −0.142144 0.0250638i 0.102124 0.994772i \(-0.467436\pi\)
−0.244267 + 0.969708i \(0.578547\pi\)
\(114\) 0 0
\(115\) −43.6380 + 36.6166i −0.379461 + 0.318405i
\(116\) −8.54130 + 4.93132i −0.0736319 + 0.0425114i
\(117\) 0 0
\(118\) 4.06457 7.04005i 0.0344455 0.0596614i
\(119\) 91.6676 16.1635i 0.770316 0.135828i
\(120\) 0 0
\(121\) −62.5782 + 22.7766i −0.517175 + 0.188236i
\(122\) 24.1307 + 66.2986i 0.197793 + 0.543431i
\(123\) 0 0
\(124\) 1.51724 + 8.60468i 0.0122358 + 0.0693926i
\(125\) −117.228 67.6816i −0.937824 0.541453i
\(126\) 0 0
\(127\) 40.7309 + 70.5479i 0.320715 + 0.555495i 0.980636 0.195840i \(-0.0627433\pi\)
−0.659920 + 0.751336i \(0.729410\pi\)
\(128\) 74.2636 + 88.5040i 0.580185 + 0.691437i
\(129\) 0 0
\(130\) −23.6043 + 133.867i −0.181572 + 1.02974i
\(131\) 93.4951 111.423i 0.713703 0.850558i −0.280300 0.959913i \(-0.590434\pi\)
0.994003 + 0.109354i \(0.0348783\pi\)
\(132\) 0 0
\(133\) −144.302 52.5215i −1.08498 0.394899i
\(134\) 33.5824i 0.250615i
\(135\) 0 0
\(136\) −86.0521 −0.632736
\(137\) −64.2995 + 176.661i −0.469339 + 1.28950i 0.448939 + 0.893563i \(0.351802\pi\)
−0.918278 + 0.395936i \(0.870420\pi\)
\(138\) 0 0
\(139\) 67.3058 + 56.4763i 0.484214 + 0.406304i 0.851947 0.523627i \(-0.175422\pi\)
−0.367733 + 0.929931i \(0.619866\pi\)
\(140\) 8.92053 + 1.57293i 0.0637181 + 0.0112352i
\(141\) 0 0
\(142\) 88.3904 74.1683i 0.622467 0.522312i
\(143\) 103.537 59.7772i 0.724036 0.418022i
\(144\) 0 0
\(145\) −90.4216 + 156.615i −0.623597 + 1.08010i
\(146\) −100.675 + 17.7517i −0.689554 + 0.121587i
\(147\) 0 0
\(148\) −14.1718 + 5.15812i −0.0957556 + 0.0348522i
\(149\) 21.5015 + 59.0748i 0.144305 + 0.396475i 0.990697 0.136085i \(-0.0434521\pi\)
−0.846392 + 0.532561i \(0.821230\pi\)
\(150\) 0 0
\(151\) −20.0380 113.641i −0.132702 0.752591i −0.976432 0.215824i \(-0.930756\pi\)
0.843730 0.536767i \(-0.180355\pi\)
\(152\) 122.946 + 70.9828i 0.808854 + 0.466992i
\(153\) 0 0
\(154\) 63.6068 + 110.170i 0.413031 + 0.715391i
\(155\) 102.982 + 122.729i 0.664398 + 0.791798i
\(156\) 0 0
\(157\) 9.08750 51.5377i 0.0578821 0.328266i −0.942093 0.335352i \(-0.891145\pi\)
0.999975 + 0.00708651i \(0.00225573\pi\)
\(158\) −1.94508 + 2.31806i −0.0123107 + 0.0146713i
\(159\) 0 0
\(160\) −15.3001 5.56880i −0.0956259 0.0348050i
\(161\) 117.151i 0.727643i
\(162\) 0 0
\(163\) −251.388 −1.54226 −0.771128 0.636681i \(-0.780307\pi\)
−0.771128 + 0.636681i \(0.780307\pi\)
\(164\) 2.05196 5.63771i 0.0125120 0.0343763i
\(165\) 0 0
\(166\) 168.056 + 141.015i 1.01238 + 0.849490i
\(167\) 8.33626 + 1.46991i 0.0499177 + 0.00880185i 0.198551 0.980091i \(-0.436376\pi\)
−0.148634 + 0.988892i \(0.547487\pi\)
\(168\) 0 0
\(169\) 71.7908 60.2396i 0.424797 0.356447i
\(170\) −76.0504 + 43.9077i −0.447355 + 0.258281i
\(171\) 0 0
\(172\) −0.292229 + 0.506155i −0.00169901 + 0.00294276i
\(173\) −192.095 + 33.8715i −1.11037 + 0.195789i −0.698611 0.715502i \(-0.746198\pi\)
−0.411764 + 0.911291i \(0.635087\pi\)
\(174\) 0 0
\(175\) −52.7571 + 19.2020i −0.301469 + 0.109726i
\(176\) −37.8449 103.978i −0.215028 0.590785i
\(177\) 0 0
\(178\) 16.1259 + 91.4543i 0.0905947 + 0.513788i
\(179\) 183.204 + 105.773i 1.02349 + 0.590910i 0.915112 0.403200i \(-0.132102\pi\)
0.108374 + 0.994110i \(0.465436\pi\)
\(180\) 0 0
\(181\) −43.8874 76.0153i −0.242472 0.419974i 0.718946 0.695066i \(-0.244625\pi\)
−0.961418 + 0.275092i \(0.911292\pi\)
\(182\) 179.690 + 214.146i 0.987305 + 1.17662i
\(183\) 0 0
\(184\) 18.8067 106.658i 0.102210 0.579662i
\(185\) −177.753 + 211.838i −0.960826 + 1.14507i
\(186\) 0 0
\(187\) 72.5772 + 26.4160i 0.388114 + 0.141262i
\(188\) 11.0033i 0.0585283i
\(189\) 0 0
\(190\) 144.874 0.762497
\(191\) 109.875 301.878i 0.575260 1.58051i −0.220816 0.975316i \(-0.570872\pi\)
0.796075 0.605197i \(-0.206906\pi\)
\(192\) 0 0
\(193\) 47.2668 + 39.6615i 0.244906 + 0.205500i 0.756975 0.653444i \(-0.226676\pi\)
−0.512069 + 0.858944i \(0.671121\pi\)
\(194\) 70.2505 + 12.3871i 0.362116 + 0.0638508i
\(195\) 0 0
\(196\) 5.42140 4.54910i 0.0276602 0.0232097i
\(197\) −194.174 + 112.106i −0.985652 + 0.569067i −0.903972 0.427592i \(-0.859362\pi\)
−0.0816805 + 0.996659i \(0.526029\pi\)
\(198\) 0 0
\(199\) 2.60375 4.50982i 0.0130842 0.0226624i −0.859409 0.511288i \(-0.829168\pi\)
0.872493 + 0.488626i \(0.162502\pi\)
\(200\) 51.1145 9.01286i 0.255572 0.0450643i
\(201\) 0 0
\(202\) 155.512 56.6019i 0.769863 0.280207i
\(203\) 127.200 + 349.480i 0.626602 + 1.72157i
\(204\) 0 0
\(205\) −19.1028 108.337i −0.0931843 0.528474i
\(206\) 39.0517 + 22.5465i 0.189571 + 0.109449i
\(207\) 0 0
\(208\) −121.576 210.576i −0.584499 1.01238i
\(209\) −81.9037 97.6090i −0.391884 0.467029i
\(210\) 0 0
\(211\) −4.00322 + 22.7034i −0.0189726 + 0.107599i −0.992823 0.119589i \(-0.961842\pi\)
0.973851 + 0.227188i \(0.0729533\pi\)
\(212\) 7.68583 9.15961i 0.0362539 0.0432057i
\(213\) 0 0
\(214\) −174.591 63.5458i −0.815845 0.296943i
\(215\) 10.7167i 0.0498452i
\(216\) 0 0
\(217\) 329.478 1.51833
\(218\) 67.7912 186.255i 0.310969 0.854380i
\(219\) 0 0
\(220\) 5.75762 + 4.83122i 0.0261710 + 0.0219601i
\(221\) 167.143 + 29.4718i 0.756302 + 0.133356i
\(222\) 0 0
\(223\) −144.086 + 120.902i −0.646124 + 0.542163i −0.905892 0.423508i \(-0.860798\pi\)
0.259768 + 0.965671i \(0.416354\pi\)
\(224\) −28.9984 + 16.7422i −0.129457 + 0.0747421i
\(225\) 0 0
\(226\) 15.8221 27.4047i 0.0700093 0.121260i
\(227\) −123.590 + 21.7922i −0.544447 + 0.0960007i −0.439106 0.898435i \(-0.644705\pi\)
−0.105341 + 0.994436i \(0.533594\pi\)
\(228\) 0 0
\(229\) 123.108 44.8078i 0.537591 0.195667i −0.0589335 0.998262i \(-0.518770\pi\)
0.596525 + 0.802595i \(0.296548\pi\)
\(230\) −37.8009 103.857i −0.164352 0.451553i
\(231\) 0 0
\(232\) −59.7040 338.598i −0.257345 1.45948i
\(233\) −352.009 203.233i −1.51077 0.872243i −0.999921 0.0125723i \(-0.995998\pi\)
−0.510848 0.859671i \(-0.670669\pi\)
\(234\) 0 0
\(235\) −100.879 174.728i −0.429274 0.743524i
\(236\) −0.634895 0.756638i −0.00269023 0.00320609i
\(237\) 0 0
\(238\) −31.3599 + 177.851i −0.131764 + 0.747273i
\(239\) 123.624 147.330i 0.517257 0.616443i −0.442673 0.896683i \(-0.645970\pi\)
0.959930 + 0.280240i \(0.0904141\pi\)
\(240\) 0 0
\(241\) 325.853 + 118.601i 1.35209 + 0.492119i 0.913598 0.406618i \(-0.133292\pi\)
0.438488 + 0.898737i \(0.355514\pi\)
\(242\) 129.204i 0.533903i
\(243\) 0 0
\(244\) 8.57251 0.0351332
\(245\) 44.3832 121.942i 0.181156 0.497722i
\(246\) 0 0
\(247\) −214.492 179.980i −0.868389 0.728665i
\(248\) −299.968 52.8924i −1.20955 0.213276i
\(249\) 0 0
\(250\) 201.184 168.814i 0.804738 0.675255i
\(251\) 370.198 213.734i 1.47489 0.851530i 0.475294 0.879827i \(-0.342342\pi\)
0.999600 + 0.0282966i \(0.00900829\pi\)
\(252\) 0 0
\(253\) −48.6032 + 84.1831i −0.192107 + 0.332740i
\(254\) −155.649 + 27.4450i −0.612789 + 0.108051i
\(255\) 0 0
\(256\) 42.3814 15.4256i 0.165552 0.0602561i
\(257\) −97.1579 266.939i −0.378046 1.03867i −0.972165 0.234297i \(-0.924721\pi\)
0.594119 0.804377i \(-0.297501\pi\)
\(258\) 0 0
\(259\) 98.7536 + 560.060i 0.381288 + 2.16239i
\(260\) 14.3035 + 8.25811i 0.0550133 + 0.0317620i
\(261\) 0 0
\(262\) 141.101 + 244.395i 0.538555 + 0.932805i
\(263\) 222.694 + 265.396i 0.846746 + 1.00911i 0.999782 + 0.0208915i \(0.00665046\pi\)
−0.153036 + 0.988221i \(0.548905\pi\)
\(264\) 0 0
\(265\) 38.0717 215.915i 0.143667 0.814775i
\(266\) 191.511 228.234i 0.719965 0.858021i
\(267\) 0 0
\(268\) −3.83431 1.39557i −0.0143071 0.00520737i
\(269\) 297.900i 1.10743i 0.832705 + 0.553717i \(0.186791\pi\)
−0.832705 + 0.553717i \(0.813209\pi\)
\(270\) 0 0
\(271\) 368.678 1.36044 0.680218 0.733010i \(-0.261885\pi\)
0.680218 + 0.733010i \(0.261885\pi\)
\(272\) 53.7252 147.609i 0.197519 0.542680i
\(273\) 0 0
\(274\) −279.415 234.457i −1.01976 0.855682i
\(275\) −45.8772 8.08939i −0.166826 0.0294160i
\(276\) 0 0
\(277\) −216.688 + 181.823i −0.782268 + 0.656401i −0.943819 0.330463i \(-0.892795\pi\)
0.161550 + 0.986864i \(0.448351\pi\)
\(278\) −147.628 + 85.2331i −0.531036 + 0.306594i
\(279\) 0 0
\(280\) −157.888 + 273.470i −0.563886 + 0.976678i
\(281\) −276.855 + 48.8169i −0.985248 + 0.173726i −0.642985 0.765879i \(-0.722304\pi\)
−0.342263 + 0.939604i \(0.611193\pi\)
\(282\) 0 0
\(283\) −409.918 + 149.198i −1.44847 + 0.527201i −0.942165 0.335151i \(-0.891213\pi\)
−0.506309 + 0.862352i \(0.668991\pi\)
\(284\) −4.79504 13.1743i −0.0168839 0.0463882i
\(285\) 0 0
\(286\) 40.2787 + 228.432i 0.140835 + 0.798713i
\(287\) −195.925 113.118i −0.682667 0.394138i
\(288\) 0 0
\(289\) −89.6779 155.327i −0.310304 0.537463i
\(290\) −225.533 268.780i −0.777699 0.926826i
\(291\) 0 0
\(292\) −2.15690 + 12.2324i −0.00738663 + 0.0418917i
\(293\) −237.292 + 282.794i −0.809872 + 0.965167i −0.999862 0.0166187i \(-0.994710\pi\)
0.189990 + 0.981786i \(0.439154\pi\)
\(294\) 0 0
\(295\) −17.0188 6.19434i −0.0576908 0.0209977i
\(296\) 525.751i 1.77619i
\(297\) 0 0
\(298\) −121.971 −0.409299
\(299\) −73.0580 + 200.725i −0.244341 + 0.671321i
\(300\) 0 0
\(301\) 16.8830 + 14.1665i 0.0560897 + 0.0470649i
\(302\) 220.483 + 38.8772i 0.730078 + 0.128732i
\(303\) 0 0
\(304\) −198.519 + 166.577i −0.653023 + 0.547951i
\(305\) 136.128 78.5936i 0.446321 0.257684i
\(306\) 0 0
\(307\) 183.104 317.145i 0.596429 1.03304i −0.396915 0.917855i \(-0.629919\pi\)
0.993344 0.115189i \(-0.0367475\pi\)
\(308\) 15.2221 2.68407i 0.0494224 0.00871450i
\(309\) 0 0
\(310\) −292.091 + 106.312i −0.942229 + 0.342943i
\(311\) −163.214 448.426i −0.524803 1.44189i −0.865115 0.501573i \(-0.832755\pi\)
0.340312 0.940313i \(-0.389467\pi\)
\(312\) 0 0
\(313\) −17.5673 99.6288i −0.0561254 0.318303i 0.943800 0.330517i \(-0.107223\pi\)
−0.999925 + 0.0122141i \(0.996112\pi\)
\(314\) 87.9315 + 50.7673i 0.280037 + 0.161679i
\(315\) 0 0
\(316\) 0.183836 + 0.318413i 0.000581759 + 0.00100764i
\(317\) 238.169 + 283.839i 0.751321 + 0.895390i 0.997266 0.0738942i \(-0.0235427\pi\)
−0.245945 + 0.969284i \(0.579098\pi\)
\(318\) 0 0
\(319\) −53.5866 + 303.905i −0.167983 + 0.952680i
\(320\) 187.030 222.894i 0.584469 0.696544i
\(321\) 0 0
\(322\) −213.585 77.7385i −0.663307 0.241424i
\(323\) 180.887i 0.560021i
\(324\) 0 0
\(325\) −102.369 −0.314980
\(326\) 166.815 458.321i 0.511703 1.40589i
\(327\) 0 0
\(328\) 160.218 + 134.439i 0.488469 + 0.409874i
\(329\) −408.618 72.0504i −1.24200 0.218998i
\(330\) 0 0
\(331\) 273.215 229.254i 0.825422 0.692611i −0.128813 0.991669i \(-0.541117\pi\)
0.954235 + 0.299058i \(0.0966723\pi\)
\(332\) 23.0844 13.3278i 0.0695314 0.0401440i
\(333\) 0 0
\(334\) −8.21164 + 14.2230i −0.0245857 + 0.0425838i
\(335\) −73.6820 + 12.9921i −0.219946 + 0.0387825i
\(336\) 0 0
\(337\) 377.038 137.231i 1.11881 0.407212i 0.284590 0.958649i \(-0.408143\pi\)
0.834217 + 0.551437i \(0.185920\pi\)
\(338\) 62.1879 + 170.860i 0.183988 + 0.505503i
\(339\) 0 0
\(340\) 1.85281 + 10.5078i 0.00544943 + 0.0309053i
\(341\) 236.759 + 136.693i 0.694308 + 0.400859i
\(342\) 0 0
\(343\) 84.3548 + 146.107i 0.245932 + 0.425967i
\(344\) −13.0967 15.6080i −0.0380717 0.0453721i
\(345\) 0 0
\(346\) 65.7165 372.697i 0.189932 1.07716i
\(347\) −36.8193 + 43.8795i −0.106107 + 0.126454i −0.816484 0.577367i \(-0.804080\pi\)
0.710377 + 0.703821i \(0.248524\pi\)
\(348\) 0 0
\(349\) −352.495 128.298i −1.01001 0.367615i −0.216576 0.976266i \(-0.569489\pi\)
−0.793438 + 0.608651i \(0.791711\pi\)
\(350\) 108.927i 0.311220i
\(351\) 0 0
\(352\) −27.7839 −0.0789316
\(353\) −75.2545 + 206.760i −0.213185 + 0.585722i −0.999484 0.0321247i \(-0.989773\pi\)
0.786298 + 0.617847i \(0.211995\pi\)
\(354\) 0 0
\(355\) −196.926 165.241i −0.554721 0.465466i
\(356\) 11.1120 + 1.95935i 0.0312136 + 0.00550379i
\(357\) 0 0
\(358\) −314.411 + 263.822i −0.878244 + 0.736934i
\(359\) −174.426 + 100.705i −0.485866 + 0.280515i −0.722858 0.690997i \(-0.757172\pi\)
0.236992 + 0.971512i \(0.423838\pi\)
\(360\) 0 0
\(361\) 31.2901 54.1960i 0.0866761 0.150127i
\(362\) 167.711 29.5720i 0.463290 0.0816906i
\(363\) 0 0
\(364\) 31.9176 11.6171i 0.0876857 0.0319150i
\(365\) 77.8968 + 214.020i 0.213416 + 0.586355i
\(366\) 0 0
\(367\) 27.6384 + 156.745i 0.0753089 + 0.427098i 0.999030 + 0.0440325i \(0.0140205\pi\)
−0.923721 + 0.383065i \(0.874868\pi\)
\(368\) 171.213 + 98.8500i 0.465253 + 0.268614i
\(369\) 0 0
\(370\) −268.262 464.643i −0.725032 1.25579i
\(371\) −289.823 345.398i −0.781195 0.930992i
\(372\) 0 0
\(373\) −8.96857 + 50.8633i −0.0240444 + 0.136363i −0.994467 0.105050i \(-0.966500\pi\)
0.970423 + 0.241413i \(0.0776108\pi\)
\(374\) −96.3212 + 114.791i −0.257543 + 0.306928i
\(375\) 0 0
\(376\) 360.453 + 131.194i 0.958653 + 0.348921i
\(377\) 678.122i 1.79873i
\(378\) 0 0
\(379\) 147.231 0.388472 0.194236 0.980955i \(-0.437777\pi\)
0.194236 + 0.980955i \(0.437777\pi\)
\(380\) 6.02050 16.5412i 0.0158434 0.0435295i
\(381\) 0 0
\(382\) 477.463 + 400.639i 1.24990 + 1.04879i
\(383\) 112.007 + 19.7499i 0.292447 + 0.0515663i 0.317947 0.948109i \(-0.397007\pi\)
−0.0255000 + 0.999675i \(0.508118\pi\)
\(384\) 0 0
\(385\) 217.113 182.180i 0.563930 0.473194i
\(386\) −103.675 + 59.8566i −0.268587 + 0.155069i
\(387\) 0 0
\(388\) 4.33368 7.50616i 0.0111693 0.0193458i
\(389\) 356.902 62.9314i 0.917485 0.161777i 0.305085 0.952325i \(-0.401315\pi\)
0.612400 + 0.790548i \(0.290204\pi\)
\(390\) 0 0
\(391\) −129.673 + 47.1973i −0.331646 + 0.120709i
\(392\) 84.3819 + 231.837i 0.215260 + 0.591422i
\(393\) 0 0
\(394\) −75.5387 428.401i −0.191723 1.08731i
\(395\) 5.83848 + 3.37085i 0.0147810 + 0.00853379i
\(396\) 0 0
\(397\) 368.516 + 638.289i 0.928252 + 1.60778i 0.786246 + 0.617914i \(0.212022\pi\)
0.142006 + 0.989866i \(0.454645\pi\)
\(398\) 6.49436 + 7.73968i 0.0163175 + 0.0194464i
\(399\) 0 0
\(400\) −16.4523 + 93.3058i −0.0411308 + 0.233265i
\(401\) −142.250 + 169.527i −0.354739 + 0.422761i −0.913673 0.406451i \(-0.866766\pi\)
0.558934 + 0.829212i \(0.311211\pi\)
\(402\) 0 0
\(403\) 564.525 + 205.470i 1.40081 + 0.509852i
\(404\) 20.1080i 0.0497722i
\(405\) 0 0
\(406\) −721.566 −1.77726
\(407\) −161.393 + 443.424i −0.396543 + 1.08949i
\(408\) 0 0
\(409\) 341.033 + 286.161i 0.833823 + 0.699660i 0.956165 0.292828i \(-0.0945962\pi\)
−0.122343 + 0.992488i \(0.539041\pi\)
\(410\) 210.193 + 37.0626i 0.512665 + 0.0903967i
\(411\) 0 0
\(412\) 4.19713 3.52181i 0.0101872 0.00854807i
\(413\) −32.2558 + 18.6229i −0.0781012 + 0.0450917i
\(414\) 0 0
\(415\) 244.381 423.280i 0.588870 1.01995i
\(416\) −60.1266 + 10.6019i −0.144535 + 0.0254854i
\(417\) 0 0
\(418\) 232.307 84.5527i 0.555758 0.202279i
\(419\) 197.412 + 542.386i 0.471151 + 1.29448i 0.916828 + 0.399283i \(0.130741\pi\)
−0.445676 + 0.895194i \(0.647037\pi\)
\(420\) 0 0
\(421\) −58.3454 330.893i −0.138588 0.785970i −0.972294 0.233762i \(-0.924896\pi\)
0.833706 0.552208i \(-0.186215\pi\)
\(422\) −38.7356 22.3640i −0.0917905 0.0529953i
\(423\) 0 0
\(424\) 208.417 + 360.989i 0.491549 + 0.851388i
\(425\) −42.5093 50.6606i −0.100022 0.119201i
\(426\) 0 0
\(427\) 56.1334 318.348i 0.131460 0.745546i
\(428\) −14.5108 + 17.2933i −0.0339038 + 0.0404050i
\(429\) 0 0
\(430\) −19.5384 7.11138i −0.0454380 0.0165381i
\(431\) 113.799i 0.264034i 0.991247 + 0.132017i \(0.0421454\pi\)
−0.991247 + 0.132017i \(0.957855\pi\)
\(432\) 0 0
\(433\) −204.214 −0.471625 −0.235812 0.971799i \(-0.575775\pi\)
−0.235812 + 0.971799i \(0.575775\pi\)
\(434\) −218.634 + 600.692i −0.503765 + 1.38408i
\(435\) 0 0
\(436\) −18.4487 15.4803i −0.0423134 0.0355052i
\(437\) 224.201 + 39.5327i 0.513046 + 0.0904639i
\(438\) 0 0
\(439\) 309.361 259.584i 0.704694 0.591309i −0.218411 0.975857i \(-0.570087\pi\)
0.923105 + 0.384548i \(0.125643\pi\)
\(440\) −226.913 + 131.008i −0.515712 + 0.297746i
\(441\) 0 0
\(442\) −164.644 + 285.172i −0.372498 + 0.645185i
\(443\) 651.568 114.889i 1.47081 0.259343i 0.619909 0.784674i \(-0.287169\pi\)
0.850898 + 0.525331i \(0.176058\pi\)
\(444\) 0 0
\(445\) 194.418 70.7624i 0.436894 0.159017i
\(446\) −124.813 342.920i −0.279849 0.768879i
\(447\) 0 0
\(448\) −103.908 589.291i −0.231937 1.31538i
\(449\) −403.851 233.164i −0.899446 0.519295i −0.0224253 0.999749i \(-0.507139\pi\)
−0.877020 + 0.480453i \(0.840472\pi\)
\(450\) 0 0
\(451\) −93.8599 162.570i −0.208115 0.360466i
\(452\) −2.47145 2.94535i −0.00546780 0.00651627i
\(453\) 0 0
\(454\) 42.2805 239.785i 0.0931289 0.528160i
\(455\) 400.333 477.098i 0.879852 1.04857i
\(456\) 0 0
\(457\) −802.579 292.115i −1.75619 0.639201i −0.756303 0.654222i \(-0.772996\pi\)
−0.999887 + 0.0150210i \(0.995218\pi\)
\(458\) 254.180i 0.554979i
\(459\) 0 0
\(460\) −13.4289 −0.0291932
\(461\) −28.0154 + 76.9718i −0.0607710 + 0.166967i −0.966362 0.257184i \(-0.917205\pi\)
0.905591 + 0.424151i \(0.139428\pi\)
\(462\) 0 0
\(463\) −501.465 420.779i −1.08308 0.908810i −0.0869046 0.996217i \(-0.527698\pi\)
−0.996173 + 0.0874069i \(0.972142\pi\)
\(464\) 618.087 + 108.985i 1.33208 + 0.234882i
\(465\) 0 0
\(466\) 604.112 506.910i 1.29638 1.08779i
\(467\) 113.391 65.4664i 0.242808 0.140185i −0.373659 0.927566i \(-0.621897\pi\)
0.616466 + 0.787381i \(0.288564\pi\)
\(468\) 0 0
\(469\) −76.9332 + 133.252i −0.164037 + 0.284120i
\(470\) 385.499 67.9739i 0.820212 0.144625i
\(471\) 0 0
\(472\) 32.3564 11.7768i 0.0685516 0.0249508i
\(473\) 6.25457 + 17.1843i 0.0132232 + 0.0363304i
\(474\) 0 0
\(475\) 18.9456 + 107.446i 0.0398854 + 0.226201i
\(476\) 19.0031 + 10.9714i 0.0399225 + 0.0230493i
\(477\) 0 0
\(478\) 186.572 + 323.152i 0.390318 + 0.676051i
\(479\) 101.346 + 120.780i 0.211579 + 0.252150i 0.861388 0.507947i \(-0.169596\pi\)
−0.649809 + 0.760098i \(0.725151\pi\)
\(480\) 0 0
\(481\) −180.063 + 1021.19i −0.374351 + 2.12305i
\(482\) −432.457 + 515.382i −0.897214 + 1.06926i
\(483\) 0 0
\(484\) −14.7520 5.36931i −0.0304794 0.0110936i
\(485\) 158.926i 0.327683i
\(486\) 0 0
\(487\) −698.201 −1.43368 −0.716839 0.697239i \(-0.754412\pi\)
−0.716839 + 0.697239i \(0.754412\pi\)
\(488\) −102.211 + 280.824i −0.209450 + 0.575458i
\(489\) 0 0
\(490\) 192.868 + 161.836i 0.393609 + 0.330277i
\(491\) −41.5804 7.33174i −0.0846851 0.0149323i 0.131145 0.991363i \(-0.458135\pi\)
−0.215830 + 0.976431i \(0.569246\pi\)
\(492\) 0 0
\(493\) −335.591 + 281.595i −0.680713 + 0.571186i
\(494\) 470.466 271.623i 0.952359 0.549845i
\(495\) 0 0
\(496\) 278.009 481.525i 0.560501 0.970816i
\(497\) −520.636 + 91.8022i −1.04756 + 0.184713i
\(498\) 0 0
\(499\) 451.394 164.294i 0.904597 0.329247i 0.152504 0.988303i \(-0.451266\pi\)
0.752094 + 0.659056i \(0.229044\pi\)
\(500\) −10.9139 29.9858i −0.0218279 0.0599716i
\(501\) 0 0
\(502\) 144.017 + 816.761i 0.286887 + 1.62701i
\(503\) 73.7969 + 42.6067i 0.146714 + 0.0847051i 0.571560 0.820560i \(-0.306339\pi\)
−0.424846 + 0.905266i \(0.639672\pi\)
\(504\) 0 0
\(505\) −184.352 319.307i −0.365053 0.632290i
\(506\) −121.228 144.474i −0.239580 0.285521i
\(507\) 0 0
\(508\) −3.33467 + 18.9119i −0.00656431 + 0.0372281i
\(509\) −255.368 + 304.336i −0.501706 + 0.597910i −0.956154 0.292863i \(-0.905392\pi\)
0.454449 + 0.890773i \(0.349836\pi\)
\(510\) 0 0
\(511\) 440.137 + 160.197i 0.861324 + 0.313496i
\(512\) 549.639i 1.07351i
\(513\) 0 0
\(514\) 551.146 1.07227
\(515\) 34.3604 94.4045i 0.0667193 0.183310i
\(516\) 0 0
\(517\) −263.736 221.301i −0.510129 0.428049i
\(518\) −1086.61 191.599i −2.09771 0.369882i
\(519\) 0 0
\(520\) −441.067 + 370.099i −0.848206 + 0.711729i
\(521\) −19.7109 + 11.3801i −0.0378328 + 0.0218428i −0.518797 0.854897i \(-0.673620\pi\)
0.480964 + 0.876740i \(0.340287\pi\)
\(522\) 0 0
\(523\) −380.270 + 658.647i −0.727093 + 1.25936i 0.231013 + 0.972951i \(0.425796\pi\)
−0.958107 + 0.286412i \(0.907537\pi\)
\(524\) 33.7677 5.95416i 0.0644423 0.0113629i
\(525\) 0 0
\(526\) −631.636 + 229.897i −1.20083 + 0.437066i
\(527\) 132.739 + 364.697i 0.251877 + 0.692025i
\(528\) 0 0
\(529\) 61.7010 + 349.924i 0.116637 + 0.661482i
\(530\) 368.385 + 212.687i 0.695067 + 0.401297i
\(531\) 0 0
\(532\) −18.1003 31.3506i −0.0340231 0.0589297i
\(533\) −265.154 315.999i −0.497476 0.592868i
\(534\) 0 0
\(535\) −71.8793 + 407.648i −0.134354 + 0.761958i
\(536\) 91.4342 108.967i 0.170586 0.203297i
\(537\) 0 0
\(538\) −543.120 197.680i −1.00952 0.367434i
\(539\) 221.437i 0.410830i
\(540\) 0 0
\(541\) −158.844 −0.293612 −0.146806 0.989165i \(-0.546899\pi\)
−0.146806 + 0.989165i \(0.546899\pi\)
\(542\) −244.646 + 672.161i −0.451377 + 1.24015i
\(543\) 0 0
\(544\) −30.2147 25.3531i −0.0555417 0.0466050i
\(545\) −434.882 76.6814i −0.797948 0.140700i
\(546\) 0 0
\(547\) −504.099 + 422.989i −0.921570 + 0.773289i −0.974285 0.225320i \(-0.927657\pi\)
0.0527145 + 0.998610i \(0.483213\pi\)
\(548\) −38.3809 + 22.1592i −0.0700382 + 0.0404366i
\(549\) 0 0
\(550\) 45.1914 78.2737i 0.0821661 0.142316i
\(551\) 711.753 125.501i 1.29175 0.227770i
\(552\) 0 0
\(553\) 13.0283 4.74192i 0.0235594 0.00857490i
\(554\) −187.704 515.712i −0.338816 0.930888i
\(555\) 0 0
\(556\) 3.59665 + 20.3976i 0.00646879 + 0.0366863i
\(557\) 817.907 + 472.219i 1.46842 + 0.847790i 0.999374 0.0353864i \(-0.0112662\pi\)
0.469041 + 0.883176i \(0.344600\pi\)
\(558\) 0 0
\(559\) 20.0927 + 34.8015i 0.0359439 + 0.0622567i
\(560\) −370.520 441.568i −0.661643 0.788515i
\(561\) 0 0
\(562\) 94.7132 537.145i 0.168529 0.955774i
\(563\) 680.250 810.691i 1.20826 1.43995i 0.342479 0.939526i \(-0.388734\pi\)
0.865781 0.500423i \(-0.166822\pi\)
\(564\) 0 0
\(565\) −66.2489 24.1126i −0.117255 0.0426772i
\(566\) 846.352i 1.49532i
\(567\) 0 0
\(568\) 488.742 0.860462
\(569\) 61.1104 167.899i 0.107400 0.295078i −0.874338 0.485317i \(-0.838704\pi\)
0.981738 + 0.190239i \(0.0609264\pi\)
\(570\) 0 0
\(571\) 461.490 + 387.236i 0.808213 + 0.678171i 0.950181 0.311700i \(-0.100898\pi\)
−0.141968 + 0.989871i \(0.545343\pi\)
\(572\) 27.7553 + 4.89401i 0.0485233 + 0.00855596i
\(573\) 0 0
\(574\) 336.244 282.142i 0.585790 0.491536i
\(575\) 72.0819 41.6165i 0.125360 0.0723766i
\(576\) 0 0
\(577\) 87.1430 150.936i 0.151028 0.261588i −0.780578 0.625059i \(-0.785075\pi\)
0.931606 + 0.363471i \(0.118408\pi\)
\(578\) 342.694 60.4263i 0.592897 0.104544i
\(579\) 0 0
\(580\) −40.0606 + 14.5809i −0.0690700 + 0.0251394i
\(581\) −343.782 944.532i −0.591707 1.62570i
\(582\) 0 0
\(583\) −64.9660 368.440i −0.111434 0.631973i
\(584\) −374.998 216.505i −0.642121 0.370728i
\(585\) 0 0
\(586\) −358.118 620.279i −0.611123 1.05850i
\(587\) −656.356 782.215i −1.11815 1.33256i −0.937088 0.349092i \(-0.886490\pi\)
−0.181065 0.983471i \(-0.557955\pi\)
\(588\) 0 0
\(589\) 111.183 630.550i 0.188766 1.07054i
\(590\) 22.5866 26.9176i 0.0382823 0.0456231i
\(591\) 0 0
\(592\) 901.843 + 328.244i 1.52338 + 0.554466i
\(593\) 848.172i 1.43031i −0.698967 0.715153i \(-0.746357\pi\)
0.698967 0.715153i \(-0.253643\pi\)
\(594\) 0 0
\(595\) 402.349 0.676216
\(596\) −5.06871 + 13.9262i −0.00850455 + 0.0233661i
\(597\) 0 0
\(598\) −317.475 266.393i −0.530895 0.445474i
\(599\) 313.067 + 55.2021i 0.522649 + 0.0921571i 0.428747 0.903424i \(-0.358955\pi\)
0.0939015 + 0.995581i \(0.470066\pi\)
\(600\) 0 0
\(601\) −417.180 + 350.055i −0.694143 + 0.582455i −0.920101 0.391682i \(-0.871893\pi\)
0.225958 + 0.974137i \(0.427449\pi\)
\(602\) −37.0311 + 21.3799i −0.0615134 + 0.0355148i
\(603\) 0 0
\(604\) 13.6014 23.5583i 0.0225189 0.0390039i
\(605\) −283.483 + 49.9857i −0.468567 + 0.0826210i
\(606\) 0 0
\(607\) −400.257 + 145.682i −0.659402 + 0.240003i −0.649978 0.759953i \(-0.725222\pi\)
−0.00942378 + 0.999956i \(0.503000\pi\)
\(608\) 22.2555 + 61.1465i 0.0366044 + 0.100570i
\(609\) 0 0
\(610\) 52.9575 + 300.337i 0.0868155 + 0.492355i
\(611\) −655.192 378.275i −1.07233 0.619108i
\(612\) 0 0
\(613\) −43.8571 75.9627i −0.0715450 0.123920i 0.828034 0.560679i \(-0.189460\pi\)
−0.899579 + 0.436759i \(0.856126\pi\)
\(614\) 456.703 + 544.278i 0.743817 + 0.886446i
\(615\) 0 0
\(616\) −93.5693 + 530.658i −0.151898 + 0.861457i
\(617\) −443.723 + 528.809i −0.719163 + 0.857065i −0.994549 0.104269i \(-0.966750\pi\)
0.275387 + 0.961334i \(0.411194\pi\)
\(618\) 0 0
\(619\) −651.792 237.233i −1.05298 0.383252i −0.243190 0.969979i \(-0.578194\pi\)
−0.809785 + 0.586727i \(0.800416\pi\)
\(620\) 37.7678i 0.0609158i
\(621\) 0 0
\(622\) 925.860 1.48852
\(623\) 145.525 399.825i 0.233587 0.641774i
\(624\) 0 0
\(625\) −327.268 274.611i −0.523629 0.439377i
\(626\) 193.297 + 34.0835i 0.308781 + 0.0544464i
\(627\) 0 0
\(628\) 9.45055 7.92995i 0.0150486 0.0126273i
\(629\) −580.142 + 334.945i −0.922324 + 0.532504i
\(630\) 0 0
\(631\) −58.9015 + 102.020i −0.0933463 + 0.161681i −0.908917 0.416977i \(-0.863090\pi\)
0.815571 + 0.578657i \(0.196423\pi\)
\(632\) −12.6227 + 2.22572i −0.0199726 + 0.00352170i
\(633\) 0 0
\(634\) −675.528 + 245.872i −1.06550 + 0.387811i
\(635\) 120.432 + 330.885i 0.189657 + 0.521079i
\(636\) 0 0
\(637\) −84.4972 479.207i −0.132649 0.752288i
\(638\) −518.510 299.362i −0.812711 0.469219i
\(639\) 0 0
\(640\) 249.699 + 432.491i 0.390155 + 0.675768i
\(641\) −235.696 280.891i −0.367700 0.438208i 0.550192 0.835038i \(-0.314555\pi\)
−0.917892 + 0.396830i \(0.870110\pi\)
\(642\) 0 0
\(643\) 166.808 946.016i 0.259422 1.47125i −0.525041 0.851077i \(-0.675950\pi\)
0.784463 0.620176i \(-0.212939\pi\)
\(644\) −17.7517 + 21.1557i −0.0275648 + 0.0328505i
\(645\) 0 0
\(646\) 329.786 + 120.032i 0.510505 + 0.185809i
\(647\) 181.832i 0.281039i 0.990078 + 0.140519i \(0.0448772\pi\)
−0.990078 + 0.140519i \(0.955123\pi\)
\(648\) 0 0
\(649\) −30.9049 −0.0476192
\(650\) 67.9295 186.635i 0.104507 0.287130i
\(651\) 0 0
\(652\) −45.3970 38.0926i −0.0696273 0.0584242i
\(653\) 867.398 + 152.946i 1.32833 + 0.234220i 0.792378 0.610030i \(-0.208843\pi\)
0.535950 + 0.844250i \(0.319954\pi\)
\(654\) 0 0
\(655\) 481.630 404.135i 0.735313 0.617001i
\(656\) −330.638 + 190.894i −0.504021 + 0.290997i
\(657\) 0 0
\(658\) 402.509 697.167i 0.611717 1.05952i
\(659\) 62.7839 11.0705i 0.0952715 0.0167989i −0.125809 0.992054i \(-0.540153\pi\)
0.221081 + 0.975256i \(0.429042\pi\)
\(660\) 0 0
\(661\) 430.936 156.848i 0.651945 0.237289i 0.00519031 0.999987i \(-0.498348\pi\)
0.646755 + 0.762698i \(0.276126\pi\)
\(662\) 236.669 + 650.243i 0.357506 + 0.982240i
\(663\) 0 0
\(664\) 161.361 + 915.123i 0.243013 + 1.37820i
\(665\) −574.850 331.890i −0.864436 0.499082i
\(666\) 0 0
\(667\) −275.681 477.493i −0.413315 0.715882i
\(668\) 1.28267 + 1.52863i 0.00192017 + 0.00228837i
\(669\) 0 0
\(670\) 25.2070 142.956i 0.0376223 0.213367i
\(671\) 172.412 205.473i 0.256948 0.306219i
\(672\) 0 0
\(673\) 1031.32 + 375.371i 1.53243 + 0.557758i 0.964214 0.265124i \(-0.0854129\pi\)
0.568213 + 0.822882i \(0.307635\pi\)
\(674\) 778.465i 1.15499i
\(675\) 0 0
\(676\) 22.0924 0.0326811
\(677\) 167.823 461.089i 0.247892 0.681077i −0.751871 0.659310i \(-0.770849\pi\)
0.999763 0.0217671i \(-0.00692923\pi\)
\(678\) 0 0
\(679\) −250.371 210.086i −0.368735 0.309405i
\(680\) −366.312 64.5907i −0.538694 0.0949863i
\(681\) 0 0
\(682\) −406.322 + 340.944i −0.595780 + 0.499918i
\(683\) 684.465 395.176i 1.00215 0.578589i 0.0932631 0.995642i \(-0.470270\pi\)
0.908882 + 0.417053i \(0.136937\pi\)
\(684\) 0 0
\(685\) −406.316 + 703.760i −0.593162 + 1.02739i
\(686\) −322.353 + 56.8395i −0.469902 + 0.0828563i
\(687\) 0 0
\(688\) 34.9497 12.7207i 0.0507990 0.0184893i
\(689\) −281.183 772.544i −0.408103 1.12125i
\(690\) 0 0
\(691\) −37.4889 212.610i −0.0542531 0.307685i 0.945591 0.325359i \(-0.105485\pi\)
−0.999844 + 0.0176740i \(0.994374\pi\)
\(692\) −39.8221 22.9913i −0.0575464 0.0332244i
\(693\) 0 0
\(694\) −55.5671 96.2451i −0.0800679 0.138682i
\(695\) 244.120 + 290.931i 0.351252 + 0.418606i
\(696\) 0 0
\(697\) 46.2755 262.441i 0.0663924 0.376530i
\(698\) 467.815 557.521i 0.670223 0.798740i
\(699\) 0 0
\(700\) −12.4368 4.52664i −0.0177669 0.00646663i
\(701\) 503.242i 0.717891i −0.933358 0.358946i \(-0.883136\pi\)
0.933358 0.358946i \(-0.116864\pi\)
\(702\) 0 0
\(703\) 1105.16 1.57206
\(704\) 169.817 466.567i 0.241217 0.662737i
\(705\) 0 0
\(706\) −327.020 274.402i −0.463201 0.388672i
\(707\) −746.728 131.668i −1.05619 0.186235i
\(708\) 0 0
\(709\) 987.327 828.466i 1.39256 1.16850i 0.428273 0.903650i \(-0.359122\pi\)
0.964290 0.264849i \(-0.0853221\pi\)
\(710\) 431.936 249.379i 0.608361 0.351237i
\(711\) 0 0
\(712\) −196.676 + 340.653i −0.276230 + 0.478445i
\(713\) −481.036 + 84.8197i −0.674665 + 0.118962i
\(714\) 0 0
\(715\) 485.612 176.748i 0.679177 0.247200i
\(716\) 17.0563 + 46.8618i 0.0238217 + 0.0654495i
\(717\) 0 0
\(718\) −67.8563 384.832i −0.0945074 0.535978i
\(719\) 497.326 + 287.131i 0.691691 + 0.399348i 0.804245 0.594298i \(-0.202570\pi\)
−0.112554 + 0.993646i \(0.535903\pi\)
\(720\) 0 0
\(721\) −103.302 178.925i −0.143277 0.248162i
\(722\) 78.0448 + 93.0102i 0.108095 + 0.128823i
\(723\) 0 0
\(724\) 3.59310 20.3775i 0.00496285 0.0281457i
\(725\) 169.846 202.414i 0.234270 0.279192i
\(726\) 0 0
\(727\) −524.941 191.063i −0.722065 0.262810i −0.0452628 0.998975i \(-0.514413\pi\)
−0.676802 + 0.736165i \(0.736635\pi\)
\(728\) 1184.09i 1.62650i
\(729\) 0 0
\(730\) −441.884 −0.605320
\(731\) −8.87909 + 24.3951i −0.0121465 + 0.0333722i
\(732\) 0 0
\(733\) 863.874 + 724.876i 1.17855 + 0.988917i 0.999988 + 0.00498788i \(0.00158770\pi\)
0.178558 + 0.983929i \(0.442857\pi\)
\(734\) −304.112 53.6231i −0.414321 0.0730560i
\(735\) 0 0
\(736\) 38.0275 31.9089i 0.0516678 0.0433545i
\(737\) −110.567 + 63.8358i −0.150023 + 0.0866157i
\(738\) 0 0
\(739\) −163.517 + 283.219i −0.221268 + 0.383247i −0.955193 0.295983i \(-0.904353\pi\)
0.733926 + 0.679230i \(0.237686\pi\)
\(740\) −64.1992 + 11.3201i −0.0867557 + 0.0152974i
\(741\) 0 0
\(742\) 822.037 299.197i 1.10787 0.403231i
\(743\) 127.652 + 350.722i 0.171807 + 0.472034i 0.995474 0.0950393i \(-0.0302977\pi\)
−0.823667 + 0.567074i \(0.808075\pi\)
\(744\) 0 0
\(745\) 47.1873 + 267.612i 0.0633386 + 0.359211i
\(746\) −86.7808 50.1029i −0.116328 0.0671621i
\(747\) 0 0
\(748\) 9.10361 + 15.7679i 0.0121706 + 0.0210801i
\(749\) 547.186 + 652.111i 0.730555 + 0.870642i
\(750\) 0 0
\(751\) −200.348 + 1136.23i −0.266774 + 1.51295i 0.497160 + 0.867659i \(0.334376\pi\)
−0.763934 + 0.645294i \(0.776735\pi\)
\(752\) −450.086 + 536.392i −0.598519 + 0.713287i
\(753\) 0 0
\(754\) −1236.33 449.986i −1.63969 0.596799i
\(755\) 498.796i 0.660657i
\(756\) 0 0
\(757\) −372.849 −0.492535 −0.246268 0.969202i \(-0.579204\pi\)
−0.246268 + 0.969202i \(0.579204\pi\)
\(758\) −97.6991 + 268.426i −0.128891 + 0.354124i
\(759\) 0 0
\(760\) 470.083 + 394.447i 0.618531 + 0.519009i
\(761\) 1138.05 + 200.669i 1.49547 + 0.263691i 0.860740 0.509046i \(-0.170002\pi\)
0.634727 + 0.772737i \(0.281113\pi\)
\(762\) 0 0
\(763\) −695.677 + 583.742i −0.911765 + 0.765062i
\(764\) 65.5851 37.8656i 0.0858444 0.0495623i
\(765\) 0 0
\(766\) −110.333 + 191.102i −0.144037 + 0.249480i
\(767\) −66.8805 + 11.7928i −0.0871976 + 0.0153753i
\(768\) 0 0
\(769\) −998.338 + 363.365i −1.29823 + 0.472517i −0.896419 0.443207i \(-0.853841\pi\)
−0.401809 + 0.915723i \(0.631618\pi\)
\(770\) 188.072 + 516.723i 0.244249 + 0.671069i
\(771\) 0 0
\(772\) 2.52581 + 14.3246i 0.00327178 + 0.0185552i
\(773\) 808.848 + 466.989i 1.04638 + 0.604125i 0.921632 0.388064i \(-0.126856\pi\)
0.124743 + 0.992189i \(0.460189\pi\)
\(774\) 0 0
\(775\) −117.044 202.725i −0.151024 0.261581i
\(776\) 194.220 + 231.463i 0.250284 + 0.298277i
\(777\) 0 0
\(778\) −122.098 + 692.450i −0.156938 + 0.890039i
\(779\) −282.598 + 336.787i −0.362771 + 0.432333i
\(780\) 0 0
\(781\) −412.210 150.032i −0.527798 0.192103i
\(782\) 267.735i 0.342372i
\(783\) 0 0
\(784\) −450.363 −0.574443
\(785\) 77.3684 212.568i 0.0985585 0.270787i
\(786\) 0 0
\(787\) 628.689 + 527.532i 0.798842 + 0.670308i 0.947917 0.318518i \(-0.103185\pi\)
−0.149075 + 0.988826i \(0.547630\pi\)
\(788\) −52.0523 9.17823i −0.0660562 0.0116475i
\(789\) 0 0
\(790\) −10.0199 + 8.40768i −0.0126834 + 0.0106426i
\(791\) −125.562 + 72.4931i −0.158738 + 0.0916473i
\(792\) 0 0
\(793\) 294.708 510.450i 0.371637 0.643694i
\(794\) −1408.24 + 248.311i −1.77361 + 0.312735i
\(795\) 0 0
\(796\) 1.15357 0.419865i 0.00144921 0.000527469i
\(797\) 11.7271 + 32.2200i 0.0147141 + 0.0404266i 0.946832 0.321728i \(-0.104264\pi\)
−0.932118 + 0.362154i \(0.882041\pi\)
\(798\) 0 0
\(799\) −84.8706 481.325i −0.106221 0.602409i
\(800\) 20.6028 + 11.8950i 0.0257535 + 0.0148688i
\(801\) 0 0
\(802\) −214.682 371.840i −0.267683 0.463641i
\(803\) 249.815 + 297.718i 0.311103 + 0.370758i
\(804\) 0 0
\(805\) −87.9332 + 498.694i −0.109234 + 0.619495i
\(806\) −749.212 + 892.877i −0.929544 + 1.10779i
\(807\) 0 0
\(808\) 658.710 + 239.751i 0.815235 + 0.296721i
\(809\) 521.511i 0.644636i 0.946631 + 0.322318i \(0.104462\pi\)
−0.946631 + 0.322318i \(0.895538\pi\)
\(810\) 0 0
\(811\) −684.645 −0.844199 −0.422099 0.906550i \(-0.638707\pi\)
−0.422099 + 0.906550i \(0.638707\pi\)
\(812\) −29.9859 + 82.3856i −0.0369284 + 0.101460i
\(813\) 0 0
\(814\) −701.337 588.492i −0.861594 0.722963i
\(815\) −1070.12 188.691i −1.31303 0.231523i
\(816\) 0 0
\(817\) 32.8089 27.5300i 0.0401578 0.0336964i
\(818\) −748.021 + 431.870i −0.914451 + 0.527958i
\(819\) 0 0
\(820\) 12.9666 22.4588i 0.0158129 0.0273887i
\(821\) 1334.77 235.356i 1.62579 0.286670i 0.714870 0.699257i \(-0.246486\pi\)
0.910918 + 0.412587i \(0.135375\pi\)
\(822\) 0 0
\(823\) 611.555 222.588i 0.743080 0.270459i 0.0573894 0.998352i \(-0.481722\pi\)
0.685691 + 0.727893i \(0.259500\pi\)
\(824\) 65.3265 + 179.483i 0.0792798 + 0.217819i
\(825\) 0 0
\(826\) −12.5484 71.1653i −0.0151917 0.0861565i
\(827\) 1042.15 + 601.688i 1.26016 + 0.727555i 0.973106 0.230359i \(-0.0739900\pi\)
0.287056 + 0.957914i \(0.407323\pi\)
\(828\) 0 0
\(829\) 753.210 + 1304.60i 0.908577 + 1.57370i 0.816043 + 0.577992i \(0.196163\pi\)
0.0925344 + 0.995709i \(0.470503\pi\)
\(830\) 609.543 + 726.426i 0.734390 + 0.875211i
\(831\) 0 0
\(832\) 189.461 1074.49i 0.227718 1.29145i
\(833\) 202.064 240.810i 0.242574 0.289088i
\(834\) 0 0
\(835\) 34.3830 + 12.5144i 0.0411773 + 0.0149873i
\(836\) 30.0376i 0.0359301i
\(837\) 0 0
\(838\) −1119.86 −1.33635
\(839\) 20.3353 55.8707i 0.0242375 0.0665920i −0.926984 0.375101i \(-0.877608\pi\)
0.951221 + 0.308509i \(0.0998301\pi\)
\(840\) 0 0
\(841\) −696.614 584.528i −0.828316 0.695039i
\(842\) 641.990 + 113.200i 0.762458 + 0.134442i
\(843\) 0 0
\(844\) −4.16316 + 3.49330i −0.00493265 + 0.00413899i
\(845\) 350.819 202.546i 0.415171 0.239699i
\(846\) 0 0
\(847\) −295.992 + 512.672i −0.349459 + 0.605280i
\(848\) −749.341 + 132.129i −0.883656 + 0.155812i
\(849\) 0 0
\(850\) 120.571 43.8841i 0.141848 0.0516284i
\(851\) −288.360 792.263i −0.338848 0.930979i
\(852\) 0 0
\(853\) −61.0451 346.204i −0.0715652 0.405866i −0.999455 0.0330117i \(-0.989490\pi\)
0.927890 0.372855i \(-0.121621\pi\)
\(854\) 543.152 + 313.589i 0.636009 + 0.367200i
\(855\) 0 0
\(856\) −393.491 681.546i −0.459685 0.796198i
\(857\) 795.906 + 948.524i 0.928712 + 1.10680i 0.994049 + 0.108933i \(0.0347434\pi\)
−0.0653368 + 0.997863i \(0.520812\pi\)
\(858\) 0 0
\(859\) −46.1722 + 261.855i −0.0537511 + 0.304837i −0.999817 0.0191371i \(-0.993908\pi\)
0.946066 + 0.323975i \(0.105019\pi\)
\(860\) −1.62390 + 1.93529i −0.00188825 + 0.00225033i
\(861\) 0 0
\(862\) −207.474 75.5143i −0.240689 0.0876036i
\(863\) 297.514i 0.344744i 0.985032 + 0.172372i \(0.0551431\pi\)
−0.985032 + 0.172372i \(0.944857\pi\)
\(864\) 0 0
\(865\) −843.145 −0.974734
\(866\) 135.512 372.315i 0.156480 0.429925i
\(867\) 0 0
\(868\) 59.4989 + 49.9255i 0.0685472 + 0.0575179i
\(869\) 11.3293 + 1.99767i 0.0130372 + 0.00229881i
\(870\) 0 0
\(871\) −214.916 + 180.336i −0.246747 + 0.207045i
\(872\) 727.078 419.779i 0.833805 0.481398i
\(873\) 0 0
\(874\) −220.849 + 382.522i −0.252688 + 0.437669i
\(875\) −1185.02 + 208.950i −1.35430 + 0.238800i
\(876\) 0 0
\(877\) 339.196 123.457i 0.386768 0.140772i −0.141315 0.989965i \(-0.545133\pi\)
0.528083 + 0.849193i \(0.322911\pi\)
\(878\) 267.980 + 736.270i 0.305217 + 0.838576i
\(879\) 0 0
\(880\) −83.0547 471.027i −0.0943804 0.535258i
\(881\) −782.766 451.930i −0.888497 0.512974i −0.0150464 0.999887i \(-0.504790\pi\)
−0.873451 + 0.486913i \(0.838123\pi\)
\(882\) 0 0
\(883\) 462.202 + 800.558i 0.523445 + 0.906634i 0.999628 + 0.0272872i \(0.00868687\pi\)
−0.476182 + 0.879347i \(0.657980\pi\)
\(884\) 25.7177 + 30.6492i 0.0290925 + 0.0346710i
\(885\) 0 0
\(886\) −222.904 + 1264.15i −0.251585 + 1.42681i
\(887\) −179.583 + 214.019i −0.202462 + 0.241284i −0.857716 0.514124i \(-0.828117\pi\)
0.655254 + 0.755408i \(0.272561\pi\)
\(888\) 0 0
\(889\) 680.474 + 247.672i 0.765437 + 0.278596i
\(890\) 401.412i 0.451025i
\(891\) 0 0
\(892\) −44.3400 −0.0497086
\(893\) −275.778 + 757.694i −0.308822 + 0.848482i
\(894\) 0 0
\(895\) 700.481 + 587.773i 0.782660 + 0.656730i
\(896\) 1011.42 + 178.341i 1.12882 + 0.199041i
\(897\) 0 0
\(898\) 693.082 581.565i 0.771806 0.647622i
\(899\) −1342.92 + 775.333i −1.49379 + 0.862440i
\(900\) 0 0
\(901\) 265.556 459.957i 0.294735 0.510496i
\(902\) 358.675 63.2441i 0.397644 0.0701154i
\(903\) 0 0
\(904\) 125.953 45.8432i 0.139329 0.0507115i
\(905\) −129.766 356.528i −0.143388 0.393954i
\(906\) 0 0
\(907\) −102.632 582.052i −0.113155 0.641733i −0.987647 0.156694i \(-0.949916\pi\)
0.874492 0.485039i \(-0.161195\pi\)
\(908\) −25.6206 14.7921i −0.0282166 0.0162908i
\(909\) 0 0
\(910\) 604.176 + 1046.46i 0.663930 + 1.14996i
\(911\) 243.127 + 289.748i 0.266880 + 0.318055i 0.882796 0.469757i \(-0.155658\pi\)
−0.615916 + 0.787812i \(0.711214\pi\)
\(912\) 0 0
\(913\) 144.828 821.358i 0.158628 0.899626i
\(914\) 1065.15 1269.39i 1.16537 1.38883i
\(915\) 0 0
\(916\) 29.0213 + 10.5629i 0.0316826 + 0.0115315i
\(917\) 1292.98i 1.41002i
\(918\) 0 0
\(919\) 86.9159 0.0945766 0.0472883 0.998881i \(-0.484942\pi\)
0.0472883 + 0.998881i \(0.484942\pi\)
\(920\) 160.115 439.912i 0.174038 0.478165i
\(921\) 0 0
\(922\) −121.742 102.153i −0.132041 0.110796i
\(923\) −949.305 167.388i −1.02850 0.181352i
\(924\) 0 0
\(925\) 309.520 259.718i 0.334616 0.280776i
\(926\) 1099.91 635.033i 1.18781 0.685781i
\(927\) 0 0
\(928\) 78.7963 136.479i 0.0849098 0.147068i
\(929\) −665.919 + 117.419i −0.716813 + 0.126393i −0.520146 0.854077i \(-0.674123\pi\)
−0.196666 + 0.980471i \(0.563012\pi\)
\(930\) 0 0
\(931\) −487.336 + 177.376i −0.523454 + 0.190522i
\(932\) −32.7721 90.0406i −0.0351632 0.0966101i
\(933\) 0 0
\(934\) 44.1122 + 250.173i 0.0472293 + 0.267851i
\(935\) 289.124 + 166.926i 0.309223 + 0.178530i
\(936\) 0 0
\(937\) 168.348 + 291.587i 0.179667 + 0.311192i 0.941766 0.336268i \(-0.109165\pi\)
−0.762100 + 0.647460i \(0.775831\pi\)
\(938\) −191.890 228.685i −0.204573 0.243801i
\(939\) 0 0
\(940\) 8.25908 46.8396i 0.00878626 0.0498293i
\(941\) −151.608 + 180.680i −0.161114 + 0.192008i −0.840562 0.541716i \(-0.817775\pi\)
0.679448 + 0.733724i \(0.262219\pi\)
\(942\) 0 0
\(943\) 315.171 + 114.713i 0.334222 + 0.121647i
\(944\) 62.8549i 0.0665836i
\(945\) 0 0
\(946\) −35.4802 −0.0375055
\(947\) 218.744 600.994i 0.230986 0.634630i −0.769003 0.639245i \(-0.779247\pi\)
0.999989 + 0.00461549i \(0.00146916\pi\)
\(948\) 0 0
\(949\) 654.225 + 548.960i 0.689384 + 0.578461i
\(950\) −208.463 36.7576i −0.219435 0.0386922i
\(951\) 0 0
\(952\) −585.986 + 491.701i −0.615532 + 0.516493i
\(953\) −742.976 + 428.957i −0.779618 + 0.450112i −0.836295 0.548280i \(-0.815283\pi\)
0.0566772 + 0.998393i \(0.481949\pi\)
\(954\) 0 0
\(955\) 694.310 1202.58i 0.727027 1.25925i
\(956\) 44.6496 7.87293i 0.0467046 0.00823528i
\(957\) 0 0
\(958\) −287.453 + 104.624i −0.300055 + 0.109211i
\(959\) 571.583 + 1570.41i 0.596020 + 1.63755i
\(960\) 0 0
\(961\) 71.6736 + 406.481i 0.0745823 + 0.422977i
\(962\) −1742.31 1005.92i −1.81113 1.04566i
\(963\) 0 0
\(964\) 40.8728 + 70.7938i 0.0423992 + 0.0734376i
\(965\) 171.438 + 204.312i 0.177656 + 0.211722i
\(966\) 0 0
\(967\) 99.4203 563.840i 0.102813 0.583082i −0.889258 0.457406i \(-0.848779\pi\)
0.992071 0.125677i \(-0.0401101\pi\)
\(968\) 351.782 419.238i 0.363411 0.433097i
\(969\) 0 0
\(970\) 289.749 + 105.460i 0.298710 + 0.108722i
\(971\) 140.513i 0.144710i 0.997379 + 0.0723548i \(0.0230514\pi\)
−0.997379 + 0.0723548i \(0.976949\pi\)
\(972\) 0 0
\(973\) 781.035 0.802708
\(974\) 463.311 1272.94i 0.475678 1.30692i
\(975\) 0 0
\(976\) −417.895 350.655i −0.428171 0.359278i
\(977\) 1522.14 + 268.395i 1.55798 + 0.274713i 0.885228 0.465158i \(-0.154003\pi\)
0.672748 + 0.739871i \(0.265114\pi\)
\(978\) 0 0
\(979\) 270.451 226.935i 0.276252 0.231803i
\(980\) 26.4927 15.2956i 0.0270334 0.0156077i
\(981\) 0 0
\(982\) 40.9588 70.9427i 0.0417095 0.0722430i
\(983\) −1034.31 + 182.378i −1.05220 + 0.185532i −0.672894 0.739739i \(-0.734949\pi\)
−0.379308 + 0.925270i \(0.623838\pi\)
\(984\) 0 0
\(985\) −910.717 + 331.474i −0.924585 + 0.336522i
\(986\) −290.702 798.698i −0.294830 0.810039i
\(987\) 0 0
\(988\) −11.4619 65.0037i −0.0116011 0.0657932i
\(989\) −28.2961 16.3368i −0.0286109 0.0165185i
\(990\) 0 0
\(991\) −255.730 442.938i −0.258053 0.446961i 0.707667 0.706546i \(-0.249748\pi\)
−0.965720 + 0.259585i \(0.916414\pi\)
\(992\) −89.7415 106.950i −0.0904652 0.107812i
\(993\) 0 0
\(994\) 178.112 1010.12i 0.179187 1.01622i
\(995\) 14.4689 17.2433i 0.0145416 0.0173300i
\(996\) 0 0
\(997\) −307.012 111.743i −0.307936 0.112079i 0.183430 0.983033i \(-0.441280\pi\)
−0.491366 + 0.870953i \(0.663502\pi\)
\(998\) 931.987i 0.933855i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 243.3.f.d.53.2 30
3.2 odd 2 243.3.f.a.53.4 30
9.2 odd 6 243.3.f.b.215.2 30
9.4 even 3 27.3.f.a.5.2 30
9.5 odd 6 81.3.f.a.44.4 30
9.7 even 3 243.3.f.c.215.4 30
27.2 odd 18 27.3.f.a.11.2 yes 30
27.7 even 9 243.3.f.a.188.4 30
27.11 odd 18 243.3.f.c.26.4 30
27.13 even 9 729.3.b.a.728.9 30
27.14 odd 18 729.3.b.a.728.22 30
27.16 even 9 243.3.f.b.26.2 30
27.20 odd 18 inner 243.3.f.d.188.2 30
27.25 even 9 81.3.f.a.35.4 30
36.31 odd 6 432.3.bc.a.113.1 30
108.83 even 18 432.3.bc.a.65.1 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.3.f.a.5.2 30 9.4 even 3
27.3.f.a.11.2 yes 30 27.2 odd 18
81.3.f.a.35.4 30 27.25 even 9
81.3.f.a.44.4 30 9.5 odd 6
243.3.f.a.53.4 30 3.2 odd 2
243.3.f.a.188.4 30 27.7 even 9
243.3.f.b.26.2 30 27.16 even 9
243.3.f.b.215.2 30 9.2 odd 6
243.3.f.c.26.4 30 27.11 odd 18
243.3.f.c.215.4 30 9.7 even 3
243.3.f.d.53.2 30 1.1 even 1 trivial
243.3.f.d.188.2 30 27.20 odd 18 inner
432.3.bc.a.65.1 30 108.83 even 18
432.3.bc.a.113.1 30 36.31 odd 6
729.3.b.a.728.9 30 27.13 even 9
729.3.b.a.728.22 30 27.14 odd 18