Properties

Label 243.3.f.b.26.2
Level $243$
Weight $3$
Character 243.26
Analytic conductor $6.621$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [243,3,Mod(26,243)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(243, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("243.26"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 243.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30,-3,0,3,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.62127042396\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(5\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 26.2
Character \(\chi\) \(=\) 243.26
Dual form 243.3.f.b.215.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.91070 - 0.336907i) q^{2} +(-0.221521 - 0.0806271i) q^{4} +(2.77847 + 3.31125i) q^{5} +(-8.35329 + 3.04035i) q^{7} +(7.11704 + 4.10903i) q^{8} +(-4.19322 - 7.26288i) q^{10} +(4.74121 - 5.65036i) q^{11} +(-2.81458 - 15.9623i) q^{13} +(16.9849 - 2.99490i) q^{14} +(-11.4918 - 9.64276i) q^{16} +(-9.06825 + 5.23555i) q^{17} +(-8.63742 + 14.9604i) q^{19} +(-0.348513 - 0.957532i) q^{20} +(-10.9627 + 9.19876i) q^{22} +(4.50738 - 12.3839i) q^{23} +(1.09671 - 6.21978i) q^{25} +31.4473i q^{26} +2.09556 q^{28} +(-41.2018 - 7.26498i) q^{29} +(-34.8289 - 12.6767i) q^{31} +(-2.42125 - 2.88553i) q^{32} +(19.0905 - 6.94839i) q^{34} +(-33.2767 - 19.2123i) q^{35} +(-31.9875 - 55.4041i) q^{37} +(21.5437 - 25.6748i) q^{38} +(6.16847 + 34.9831i) q^{40} +(-25.0634 + 4.41935i) q^{41} +(1.89923 + 1.59364i) q^{43} +(-1.50585 + 0.869403i) q^{44} +(-12.7845 + 22.1433i) q^{46} +(15.9642 + 43.8612i) q^{47} +(22.9976 - 19.2973i) q^{49} +(-4.19097 + 11.5146i) q^{50} +(-0.663503 + 3.76291i) q^{52} -50.7217i q^{53} +31.8831 q^{55} +(-71.9436 - 12.6856i) q^{56} +(76.2764 + 27.7623i) q^{58} +(-2.69322 - 3.20966i) q^{59} +(-34.1715 + 12.4374i) q^{61} +(62.2766 + 35.9554i) q^{62} +(33.6571 + 58.2957i) q^{64} +(45.0349 - 53.6705i) q^{65} +(3.00568 + 17.0460i) q^{67} +(2.43093 - 0.428639i) q^{68} +(57.1089 + 47.9201i) q^{70} +(51.5041 - 29.7359i) q^{71} +(26.3451 - 45.6310i) q^{73} +(42.4524 + 116.637i) q^{74} +(3.11959 - 2.61764i) q^{76} +(-22.4257 + 61.6140i) q^{77} +(-0.270833 + 1.53597i) q^{79} -64.8443i q^{80} +49.3774 q^{82} +(111.355 + 19.6349i) q^{83} +(-42.5321 - 15.4804i) q^{85} +(-3.09194 - 3.68483i) q^{86} +(56.9609 - 20.7321i) q^{88} +(-41.4518 - 23.9322i) q^{89} +(72.0419 + 124.780i) q^{91} +(-1.99696 + 2.37988i) q^{92} +(-15.7255 - 89.1837i) q^{94} +(-73.5366 + 12.9665i) q^{95} +(-28.1651 - 23.6334i) q^{97} +(-50.4428 + 29.1232i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q - 3 q^{2} + 3 q^{4} + 6 q^{5} + 3 q^{7} + 9 q^{8} - 3 q^{10} + 51 q^{11} + 3 q^{13} - 129 q^{14} - 9 q^{16} + 9 q^{17} - 3 q^{19} + 30 q^{20} - 33 q^{22} + 168 q^{23} - 6 q^{25} - 12 q^{28} - 246 q^{29}+ \cdots - 882 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.91070 0.336907i −0.955348 0.168454i −0.325820 0.945432i \(-0.605640\pi\)
−0.629527 + 0.776978i \(0.716751\pi\)
\(3\) 0 0
\(4\) −0.221521 0.0806271i −0.0553803 0.0201568i
\(5\) 2.77847 + 3.31125i 0.555694 + 0.662250i 0.968629 0.248510i \(-0.0799409\pi\)
−0.412935 + 0.910760i \(0.635496\pi\)
\(6\) 0 0
\(7\) −8.35329 + 3.04035i −1.19333 + 0.434336i −0.860891 0.508790i \(-0.830093\pi\)
−0.332437 + 0.943126i \(0.607871\pi\)
\(8\) 7.11704 + 4.10903i 0.889630 + 0.513628i
\(9\) 0 0
\(10\) −4.19322 7.26288i −0.419322 0.726288i
\(11\) 4.74121 5.65036i 0.431019 0.513669i −0.506197 0.862418i \(-0.668949\pi\)
0.937216 + 0.348749i \(0.113393\pi\)
\(12\) 0 0
\(13\) −2.81458 15.9623i −0.216506 1.22787i −0.878274 0.478158i \(-0.841304\pi\)
0.661767 0.749709i \(-0.269807\pi\)
\(14\) 16.9849 2.99490i 1.21321 0.213921i
\(15\) 0 0
\(16\) −11.4918 9.64276i −0.718237 0.602673i
\(17\) −9.06825 + 5.23555i −0.533426 + 0.307974i −0.742411 0.669945i \(-0.766318\pi\)
0.208984 + 0.977919i \(0.432984\pi\)
\(18\) 0 0
\(19\) −8.63742 + 14.9604i −0.454601 + 0.787392i −0.998665 0.0516517i \(-0.983551\pi\)
0.544064 + 0.839044i \(0.316885\pi\)
\(20\) −0.348513 0.957532i −0.0174256 0.0478766i
\(21\) 0 0
\(22\) −10.9627 + 9.19876i −0.498303 + 0.418126i
\(23\) 4.50738 12.3839i 0.195973 0.538431i −0.802316 0.596899i \(-0.796399\pi\)
0.998289 + 0.0584677i \(0.0186215\pi\)
\(24\) 0 0
\(25\) 1.09671 6.21978i 0.0438686 0.248791i
\(26\) 31.4473i 1.20951i
\(27\) 0 0
\(28\) 2.09556 0.0748416
\(29\) −41.2018 7.26498i −1.42075 0.250517i −0.590108 0.807324i \(-0.700915\pi\)
−0.830642 + 0.556807i \(0.812026\pi\)
\(30\) 0 0
\(31\) −34.8289 12.6767i −1.12351 0.408925i −0.287580 0.957757i \(-0.592851\pi\)
−0.835933 + 0.548831i \(0.815073\pi\)
\(32\) −2.42125 2.88553i −0.0756640 0.0901728i
\(33\) 0 0
\(34\) 19.0905 6.94839i 0.561487 0.204364i
\(35\) −33.2767 19.2123i −0.950764 0.548924i
\(36\) 0 0
\(37\) −31.9875 55.4041i −0.864528 1.49741i −0.867515 0.497411i \(-0.834284\pi\)
0.00298644 0.999996i \(-0.499049\pi\)
\(38\) 21.5437 25.6748i 0.566941 0.675654i
\(39\) 0 0
\(40\) 6.16847 + 34.9831i 0.154212 + 0.874578i
\(41\) −25.0634 + 4.41935i −0.611302 + 0.107789i −0.470724 0.882281i \(-0.656007\pi\)
−0.140578 + 0.990070i \(0.544896\pi\)
\(42\) 0 0
\(43\) 1.89923 + 1.59364i 0.0441682 + 0.0370615i 0.664605 0.747195i \(-0.268600\pi\)
−0.620436 + 0.784257i \(0.713044\pi\)
\(44\) −1.50585 + 0.869403i −0.0342239 + 0.0197592i
\(45\) 0 0
\(46\) −12.7845 + 22.1433i −0.277923 + 0.481377i
\(47\) 15.9642 + 43.8612i 0.339663 + 0.933216i 0.985490 + 0.169733i \(0.0542904\pi\)
−0.645827 + 0.763484i \(0.723487\pi\)
\(48\) 0 0
\(49\) 22.9976 19.2973i 0.469339 0.393822i
\(50\) −4.19097 + 11.5146i −0.0838195 + 0.230292i
\(51\) 0 0
\(52\) −0.663503 + 3.76291i −0.0127597 + 0.0723637i
\(53\) 50.7217i 0.957013i −0.878084 0.478507i \(-0.841178\pi\)
0.878084 0.478507i \(-0.158822\pi\)
\(54\) 0 0
\(55\) 31.8831 0.579692
\(56\) −71.9436 12.6856i −1.28471 0.226529i
\(57\) 0 0
\(58\) 76.2764 + 27.7623i 1.31511 + 0.478661i
\(59\) −2.69322 3.20966i −0.0456479 0.0544010i 0.742737 0.669583i \(-0.233527\pi\)
−0.788385 + 0.615182i \(0.789083\pi\)
\(60\) 0 0
\(61\) −34.1715 + 12.4374i −0.560189 + 0.203892i −0.606568 0.795032i \(-0.707454\pi\)
0.0463786 + 0.998924i \(0.485232\pi\)
\(62\) 62.2766 + 35.9554i 1.00446 + 0.579926i
\(63\) 0 0
\(64\) 33.6571 + 58.2957i 0.525892 + 0.910871i
\(65\) 45.0349 53.6705i 0.692844 0.825700i
\(66\) 0 0
\(67\) 3.00568 + 17.0460i 0.0448608 + 0.254419i 0.998988 0.0449841i \(-0.0143237\pi\)
−0.954127 + 0.299403i \(0.903213\pi\)
\(68\) 2.43093 0.428639i 0.0357490 0.00630352i
\(69\) 0 0
\(70\) 57.1089 + 47.9201i 0.815842 + 0.684572i
\(71\) 51.5041 29.7359i 0.725410 0.418815i −0.0913309 0.995821i \(-0.529112\pi\)
0.816740 + 0.577005i \(0.195779\pi\)
\(72\) 0 0
\(73\) 26.3451 45.6310i 0.360892 0.625083i −0.627216 0.778845i \(-0.715806\pi\)
0.988108 + 0.153762i \(0.0491391\pi\)
\(74\) 42.4524 + 116.637i 0.573681 + 1.57618i
\(75\) 0 0
\(76\) 3.11959 2.61764i 0.0410472 0.0344427i
\(77\) −22.4257 + 61.6140i −0.291243 + 0.800182i
\(78\) 0 0
\(79\) −0.270833 + 1.53597i −0.00342826 + 0.0194426i −0.986474 0.163918i \(-0.947587\pi\)
0.983046 + 0.183361i \(0.0586977\pi\)
\(80\) 64.8443i 0.810554i
\(81\) 0 0
\(82\) 49.3774 0.602163
\(83\) 111.355 + 19.6349i 1.34163 + 0.236565i 0.797948 0.602726i \(-0.205919\pi\)
0.543681 + 0.839292i \(0.317030\pi\)
\(84\) 0 0
\(85\) −42.5321 15.4804i −0.500377 0.182122i
\(86\) −3.09194 3.68483i −0.0359528 0.0428469i
\(87\) 0 0
\(88\) 56.9609 20.7321i 0.647283 0.235592i
\(89\) −41.4518 23.9322i −0.465750 0.268901i 0.248709 0.968578i \(-0.419994\pi\)
−0.714459 + 0.699677i \(0.753327\pi\)
\(90\) 0 0
\(91\) 72.0419 + 124.780i 0.791670 + 1.37121i
\(92\) −1.99696 + 2.37988i −0.0217061 + 0.0258683i
\(93\) 0 0
\(94\) −15.7255 89.1837i −0.167293 0.948763i
\(95\) −73.5366 + 12.9665i −0.774069 + 0.136489i
\(96\) 0 0
\(97\) −28.1651 23.6334i −0.290362 0.243643i 0.485957 0.873983i \(-0.338471\pi\)
−0.776319 + 0.630340i \(0.782916\pi\)
\(98\) −50.4428 + 29.1232i −0.514722 + 0.297175i
\(99\) 0 0
\(100\) −0.744428 + 1.28939i −0.00744428 + 0.0128939i
\(101\) 29.1737 + 80.1540i 0.288848 + 0.793604i 0.996228 + 0.0867704i \(0.0276546\pi\)
−0.707380 + 0.706833i \(0.750123\pi\)
\(102\) 0 0
\(103\) 17.8042 14.9395i 0.172856 0.145044i −0.552255 0.833675i \(-0.686233\pi\)
0.725112 + 0.688631i \(0.241788\pi\)
\(104\) 45.5579 125.169i 0.438057 1.20355i
\(105\) 0 0
\(106\) −17.0885 + 96.9137i −0.161212 + 0.914280i
\(107\) 95.7625i 0.894977i 0.894290 + 0.447488i \(0.147681\pi\)
−0.894290 + 0.447488i \(0.852319\pi\)
\(108\) 0 0
\(109\) −102.160 −0.937249 −0.468625 0.883397i \(-0.655250\pi\)
−0.468625 + 0.883397i \(0.655250\pi\)
\(110\) −60.9188 10.7416i −0.553807 0.0976512i
\(111\) 0 0
\(112\) 125.312 + 45.6097i 1.11885 + 0.407230i
\(113\) −10.4839 12.4942i −0.0927777 0.110568i 0.717658 0.696396i \(-0.245214\pi\)
−0.810436 + 0.585827i \(0.800770\pi\)
\(114\) 0 0
\(115\) 53.5299 19.4833i 0.465477 0.169420i
\(116\) 8.54130 + 4.93132i 0.0736319 + 0.0425114i
\(117\) 0 0
\(118\) 4.06457 + 7.04005i 0.0344455 + 0.0596614i
\(119\) 59.8318 71.3048i 0.502788 0.599200i
\(120\) 0 0
\(121\) 11.5640 + 65.5826i 0.0955701 + 0.542005i
\(122\) 69.4817 12.2515i 0.569522 0.100422i
\(123\) 0 0
\(124\) 6.69325 + 5.61631i 0.0539778 + 0.0452928i
\(125\) 117.228 67.6816i 0.937824 0.541453i
\(126\) 0 0
\(127\) 40.7309 70.5479i 0.320715 0.555495i −0.659920 0.751336i \(-0.729410\pi\)
0.980636 + 0.195840i \(0.0627433\pi\)
\(128\) −39.5149 108.566i −0.308710 0.848173i
\(129\) 0 0
\(130\) −104.130 + 87.3754i −0.800999 + 0.672118i
\(131\) −49.7477 + 136.681i −0.379753 + 1.04336i 0.591705 + 0.806155i \(0.298455\pi\)
−0.971459 + 0.237210i \(0.923767\pi\)
\(132\) 0 0
\(133\) 26.6659 151.230i 0.200495 1.13707i
\(134\) 33.5824i 0.250615i
\(135\) 0 0
\(136\) −86.0521 −0.632736
\(137\) −185.143 32.6457i −1.35141 0.238290i −0.549379 0.835574i \(-0.685135\pi\)
−0.802030 + 0.597284i \(0.796247\pi\)
\(138\) 0 0
\(139\) −82.5628 30.0504i −0.593977 0.216190i 0.0275008 0.999622i \(-0.491245\pi\)
−0.621478 + 0.783432i \(0.713467\pi\)
\(140\) 5.82246 + 6.93894i 0.0415890 + 0.0495639i
\(141\) 0 0
\(142\) −108.427 + 39.4641i −0.763569 + 0.277916i
\(143\) −103.537 59.7772i −0.724036 0.418022i
\(144\) 0 0
\(145\) −90.4216 156.615i −0.623597 1.08010i
\(146\) −65.7109 + 78.3112i −0.450074 + 0.536378i
\(147\) 0 0
\(148\) 2.61885 + 14.8522i 0.0176949 + 0.100353i
\(149\) 61.9110 10.9166i 0.415510 0.0732657i 0.0380150 0.999277i \(-0.487897\pi\)
0.377495 + 0.926011i \(0.376785\pi\)
\(150\) 0 0
\(151\) −88.3972 74.1741i −0.585412 0.491219i 0.301307 0.953527i \(-0.402577\pi\)
−0.886719 + 0.462308i \(0.847021\pi\)
\(152\) −122.946 + 70.9828i −0.808854 + 0.466992i
\(153\) 0 0
\(154\) 63.6068 110.170i 0.413031 0.715391i
\(155\) −54.7954 150.549i −0.353519 0.971284i
\(156\) 0 0
\(157\) 40.0892 33.6389i 0.255346 0.214260i −0.506125 0.862460i \(-0.668922\pi\)
0.761470 + 0.648200i \(0.224478\pi\)
\(158\) 1.03496 2.84352i 0.00655036 0.0179970i
\(159\) 0 0
\(160\) 2.82735 16.0347i 0.0176710 0.100217i
\(161\) 117.151i 0.727643i
\(162\) 0 0
\(163\) −251.388 −1.54226 −0.771128 0.636681i \(-0.780307\pi\)
−0.771128 + 0.636681i \(0.780307\pi\)
\(164\) 5.90838 + 1.04181i 0.0360267 + 0.00635248i
\(165\) 0 0
\(166\) −206.151 75.0327i −1.24187 0.452004i
\(167\) 5.44111 + 6.48446i 0.0325815 + 0.0388291i 0.782089 0.623167i \(-0.214154\pi\)
−0.749508 + 0.661996i \(0.769710\pi\)
\(168\) 0 0
\(169\) −88.0644 + 32.0528i −0.521091 + 0.189662i
\(170\) 76.0504 + 43.9077i 0.447355 + 0.258281i
\(171\) 0 0
\(172\) −0.292229 0.506155i −0.00169901 0.00294276i
\(173\) −125.381 + 149.423i −0.724746 + 0.863718i −0.995083 0.0990474i \(-0.968420\pi\)
0.270337 + 0.962766i \(0.412865\pi\)
\(174\) 0 0
\(175\) 9.74912 + 55.2900i 0.0557093 + 0.315943i
\(176\) −108.970 + 19.2144i −0.619148 + 0.109173i
\(177\) 0 0
\(178\) 71.1388 + 59.6925i 0.399656 + 0.335351i
\(179\) −183.204 + 105.773i −1.02349 + 0.590910i −0.915112 0.403200i \(-0.867898\pi\)
−0.108374 + 0.994110i \(0.534564\pi\)
\(180\) 0 0
\(181\) −43.8874 + 76.0153i −0.242472 + 0.419974i −0.961418 0.275092i \(-0.911292\pi\)
0.718946 + 0.695066i \(0.244625\pi\)
\(182\) −95.6108 262.689i −0.525334 1.44334i
\(183\) 0 0
\(184\) 82.9651 69.6160i 0.450897 0.378348i
\(185\) 94.5803 259.857i 0.511245 1.40463i
\(186\) 0 0
\(187\) −13.4117 + 76.0617i −0.0717205 + 0.406747i
\(188\) 11.0033i 0.0585283i
\(189\) 0 0
\(190\) 144.874 0.762497
\(191\) 316.371 + 55.7848i 1.65639 + 0.292067i 0.922154 0.386823i \(-0.126428\pi\)
0.734240 + 0.678890i \(0.237539\pi\)
\(192\) 0 0
\(193\) −57.9813 21.1035i −0.300421 0.109344i 0.187412 0.982281i \(-0.439990\pi\)
−0.487833 + 0.872937i \(0.662212\pi\)
\(194\) 45.8528 + 54.6452i 0.236354 + 0.281676i
\(195\) 0 0
\(196\) −6.65034 + 2.42052i −0.0339303 + 0.0123496i
\(197\) 194.174 + 112.106i 0.985652 + 0.569067i 0.903972 0.427592i \(-0.140638\pi\)
0.0816805 + 0.996659i \(0.473971\pi\)
\(198\) 0 0
\(199\) 2.60375 + 4.50982i 0.0130842 + 0.0226624i 0.872493 0.488626i \(-0.162502\pi\)
−0.859409 + 0.511288i \(0.829168\pi\)
\(200\) 33.3626 39.7600i 0.166813 0.198800i
\(201\) 0 0
\(202\) −28.7375 162.979i −0.142265 0.806825i
\(203\) 366.258 64.5812i 1.80423 0.318134i
\(204\) 0 0
\(205\) −84.2714 70.7121i −0.411080 0.344937i
\(206\) −39.0517 + 22.5465i −0.189571 + 0.109449i
\(207\) 0 0
\(208\) −121.576 + 210.576i −0.584499 + 1.01238i
\(209\) 43.5800 + 119.735i 0.208517 + 0.572895i
\(210\) 0 0
\(211\) −17.6601 + 14.8186i −0.0836973 + 0.0702303i −0.683676 0.729785i \(-0.739620\pi\)
0.599979 + 0.800016i \(0.295176\pi\)
\(212\) −4.08954 + 11.2359i −0.0192903 + 0.0529996i
\(213\) 0 0
\(214\) 32.2631 182.973i 0.150762 0.855014i
\(215\) 10.7167i 0.0498452i
\(216\) 0 0
\(217\) 329.478 1.51833
\(218\) 195.197 + 34.4185i 0.895399 + 0.157883i
\(219\) 0 0
\(220\) −7.06277 2.57064i −0.0321035 0.0116847i
\(221\) 109.095 + 130.014i 0.493641 + 0.588299i
\(222\) 0 0
\(223\) 176.747 64.3308i 0.792589 0.288479i 0.0861771 0.996280i \(-0.472535\pi\)
0.706412 + 0.707801i \(0.250313\pi\)
\(224\) 28.9984 + 16.7422i 0.129457 + 0.0747421i
\(225\) 0 0
\(226\) 15.8221 + 27.4047i 0.0700093 + 0.121260i
\(227\) −80.6673 + 96.1356i −0.355363 + 0.423505i −0.913878 0.405990i \(-0.866927\pi\)
0.558515 + 0.829494i \(0.311371\pi\)
\(228\) 0 0
\(229\) −22.7495 129.019i −0.0993429 0.563401i −0.993330 0.115308i \(-0.963214\pi\)
0.893987 0.448093i \(-0.147897\pi\)
\(230\) −108.843 + 19.1920i −0.473232 + 0.0834436i
\(231\) 0 0
\(232\) −263.383 221.004i −1.13527 0.952605i
\(233\) 352.009 203.233i 1.51077 0.872243i 0.510848 0.859671i \(-0.329331\pi\)
0.999921 0.0125723i \(-0.00400199\pi\)
\(234\) 0 0
\(235\) −100.879 + 174.728i −0.429274 + 0.743524i
\(236\) 0.337820 + 0.928154i 0.00143144 + 0.00393285i
\(237\) 0 0
\(238\) −138.343 + 116.084i −0.581275 + 0.487748i
\(239\) −65.7792 + 180.727i −0.275227 + 0.756179i 0.722660 + 0.691204i \(0.242919\pi\)
−0.997887 + 0.0649757i \(0.979303\pi\)
\(240\) 0 0
\(241\) −60.2152 + 341.497i −0.249855 + 1.41700i 0.559085 + 0.829110i \(0.311152\pi\)
−0.808941 + 0.587890i \(0.799959\pi\)
\(242\) 129.204i 0.533903i
\(243\) 0 0
\(244\) 8.57251 0.0351332
\(245\) 127.796 + 22.5339i 0.521617 + 0.0919752i
\(246\) 0 0
\(247\) 263.113 + 95.7655i 1.06524 + 0.387714i
\(248\) −195.790 233.333i −0.789476 0.940861i
\(249\) 0 0
\(250\) −246.789 + 89.8240i −0.987157 + 0.359296i
\(251\) −370.198 213.734i −1.47489 0.851530i −0.475294 0.879827i \(-0.657658\pi\)
−0.999600 + 0.0282966i \(0.990992\pi\)
\(252\) 0 0
\(253\) −48.6032 84.1831i −0.192107 0.332740i
\(254\) −101.592 + 121.073i −0.399970 + 0.476666i
\(255\) 0 0
\(256\) −7.83177 44.4162i −0.0305928 0.173501i
\(257\) −279.755 + 49.3284i −1.08854 + 0.191939i −0.688990 0.724771i \(-0.741945\pi\)
−0.399552 + 0.916711i \(0.630834\pi\)
\(258\) 0 0
\(259\) 435.649 + 365.553i 1.68204 + 1.41140i
\(260\) −14.3035 + 8.25811i −0.0550133 + 0.0317620i
\(261\) 0 0
\(262\) 141.101 244.395i 0.538555 0.932805i
\(263\) −118.493 325.557i −0.450544 1.23786i −0.932342 0.361577i \(-0.882238\pi\)
0.481798 0.876282i \(-0.339984\pi\)
\(264\) 0 0
\(265\) 167.952 140.929i 0.633782 0.531806i
\(266\) −101.901 + 279.970i −0.383086 + 1.05252i
\(267\) 0 0
\(268\) 0.708552 4.01840i 0.00264385 0.0149940i
\(269\) 297.900i 1.10743i 0.832705 + 0.553717i \(0.186791\pi\)
−0.832705 + 0.553717i \(0.813209\pi\)
\(270\) 0 0
\(271\) 368.678 1.36044 0.680218 0.733010i \(-0.261885\pi\)
0.680218 + 0.733010i \(0.261885\pi\)
\(272\) 154.696 + 27.2770i 0.568734 + 0.100283i
\(273\) 0 0
\(274\) 342.753 + 124.752i 1.25092 + 0.455299i
\(275\) −29.9442 35.6861i −0.108888 0.129768i
\(276\) 0 0
\(277\) 265.808 96.7461i 0.959594 0.349264i 0.185720 0.982603i \(-0.440538\pi\)
0.773874 + 0.633339i \(0.218316\pi\)
\(278\) 147.628 + 85.2331i 0.531036 + 0.306594i
\(279\) 0 0
\(280\) −157.888 273.470i −0.563886 0.976678i
\(281\) −180.704 + 215.355i −0.643075 + 0.766387i −0.984853 0.173394i \(-0.944527\pi\)
0.341778 + 0.939781i \(0.388971\pi\)
\(282\) 0 0
\(283\) 75.7498 + 429.598i 0.267667 + 1.51802i 0.761331 + 0.648363i \(0.224546\pi\)
−0.493664 + 0.869653i \(0.664343\pi\)
\(284\) −13.8068 + 2.43450i −0.0486153 + 0.00857219i
\(285\) 0 0
\(286\) 177.688 + 149.098i 0.621288 + 0.521323i
\(287\) 195.925 113.118i 0.682667 0.394138i
\(288\) 0 0
\(289\) −89.6779 + 155.327i −0.310304 + 0.537463i
\(290\) 120.004 + 329.707i 0.413805 + 1.13692i
\(291\) 0 0
\(292\) −9.51509 + 7.98411i −0.0325859 + 0.0273428i
\(293\) 126.261 346.898i 0.430924 1.18395i −0.514323 0.857596i \(-0.671957\pi\)
0.945247 0.326356i \(-0.105821\pi\)
\(294\) 0 0
\(295\) 3.14495 17.8359i 0.0106608 0.0604606i
\(296\) 525.751i 1.77619i
\(297\) 0 0
\(298\) −121.971 −0.409299
\(299\) −210.362 37.0925i −0.703552 0.124055i
\(300\) 0 0
\(301\) −20.7101 7.53785i −0.0688043 0.0250427i
\(302\) 143.910 + 171.506i 0.476524 + 0.567900i
\(303\) 0 0
\(304\) 243.519 88.6338i 0.801051 0.291559i
\(305\) −136.128 78.5936i −0.446321 0.257684i
\(306\) 0 0
\(307\) 183.104 + 317.145i 0.596429 + 1.03304i 0.993344 + 0.115189i \(0.0367475\pi\)
−0.396915 + 0.917855i \(0.629919\pi\)
\(308\) 9.93552 11.8407i 0.0322582 0.0384438i
\(309\) 0 0
\(310\) 53.9762 + 306.114i 0.174117 + 0.987465i
\(311\) −469.956 + 82.8659i −1.51111 + 0.266450i −0.866933 0.498425i \(-0.833912\pi\)
−0.644179 + 0.764875i \(0.722801\pi\)
\(312\) 0 0
\(313\) −77.4975 65.0281i −0.247596 0.207758i 0.510540 0.859854i \(-0.329445\pi\)
−0.758136 + 0.652096i \(0.773890\pi\)
\(314\) −87.9315 + 50.7673i −0.280037 + 0.161679i
\(315\) 0 0
\(316\) 0.183836 0.318413i 0.000581759 0.00100764i
\(317\) −126.727 348.179i −0.399770 1.09836i −0.962397 0.271647i \(-0.912432\pi\)
0.562627 0.826711i \(-0.309791\pi\)
\(318\) 0 0
\(319\) −236.396 + 198.360i −0.741053 + 0.621818i
\(320\) −99.5167 + 273.420i −0.310990 + 0.854437i
\(321\) 0 0
\(322\) 39.4689 223.839i 0.122574 0.695152i
\(323\) 180.887i 0.560021i
\(324\) 0 0
\(325\) −102.369 −0.314980
\(326\) 480.325 + 84.6943i 1.47339 + 0.259798i
\(327\) 0 0
\(328\) −196.536 71.5334i −0.599196 0.218090i
\(329\) −266.707 317.848i −0.810658 0.966105i
\(330\) 0 0
\(331\) −335.147 + 121.984i −1.01253 + 0.368531i −0.794404 0.607390i \(-0.792217\pi\)
−0.218126 + 0.975921i \(0.569994\pi\)
\(332\) −23.0844 13.3278i −0.0695314 0.0401440i
\(333\) 0 0
\(334\) −8.21164 14.2230i −0.0245857 0.0425838i
\(335\) −48.0925 + 57.3144i −0.143560 + 0.171088i
\(336\) 0 0
\(337\) −69.6738 395.140i −0.206747 1.17252i −0.894667 0.446734i \(-0.852587\pi\)
0.687920 0.725787i \(-0.258524\pi\)
\(338\) 179.063 31.5736i 0.529772 0.0934132i
\(339\) 0 0
\(340\) 8.17361 + 6.85847i 0.0240400 + 0.0201720i
\(341\) −236.759 + 136.693i −0.694308 + 0.400859i
\(342\) 0 0
\(343\) 84.3548 146.107i 0.245932 0.425967i
\(344\) 6.96859 + 19.1460i 0.0202575 + 0.0556571i
\(345\) 0 0
\(346\) 289.907 243.261i 0.837881 0.703065i
\(347\) 19.5911 53.8262i 0.0564586 0.155119i −0.908257 0.418413i \(-0.862587\pi\)
0.964716 + 0.263294i \(0.0848089\pi\)
\(348\) 0 0
\(349\) 65.1384 369.418i 0.186643 1.05851i −0.737183 0.675693i \(-0.763844\pi\)
0.923826 0.382812i \(-0.125044\pi\)
\(350\) 108.927i 0.311220i
\(351\) 0 0
\(352\) −27.7839 −0.0789316
\(353\) −216.687 38.2077i −0.613843 0.108237i −0.141922 0.989878i \(-0.545328\pi\)
−0.471921 + 0.881641i \(0.656439\pi\)
\(354\) 0 0
\(355\) 241.565 + 87.9226i 0.680466 + 0.247669i
\(356\) 7.25286 + 8.64362i 0.0203732 + 0.0242798i
\(357\) 0 0
\(358\) 385.683 140.377i 1.07733 0.392114i
\(359\) 174.426 + 100.705i 0.485866 + 0.280515i 0.722858 0.690997i \(-0.242828\pi\)
−0.236992 + 0.971512i \(0.576162\pi\)
\(360\) 0 0
\(361\) 31.2901 + 54.1960i 0.0866761 + 0.150127i
\(362\) 109.466 130.456i 0.302391 0.360376i
\(363\) 0 0
\(364\) −5.89814 33.4500i −0.0162037 0.0918956i
\(365\) 224.295 39.5492i 0.614506 0.108354i
\(366\) 0 0
\(367\) 121.926 + 102.308i 0.332223 + 0.278768i 0.793605 0.608433i \(-0.208202\pi\)
−0.461382 + 0.887202i \(0.652646\pi\)
\(368\) −171.213 + 98.8500i −0.465253 + 0.268614i
\(369\) 0 0
\(370\) −268.262 + 464.643i −0.725032 + 1.25579i
\(371\) 154.212 + 423.693i 0.415665 + 1.14203i
\(372\) 0 0
\(373\) −39.5646 + 33.1987i −0.106071 + 0.0890044i −0.694281 0.719704i \(-0.744277\pi\)
0.588210 + 0.808709i \(0.299833\pi\)
\(374\) 51.2515 140.812i 0.137036 0.376503i
\(375\) 0 0
\(376\) −66.6091 + 377.759i −0.177152 + 1.00468i
\(377\) 678.122i 1.79873i
\(378\) 0 0
\(379\) 147.231 0.388472 0.194236 0.980955i \(-0.437777\pi\)
0.194236 + 0.980955i \(0.437777\pi\)
\(380\) 17.3353 + 3.05669i 0.0456193 + 0.00804392i
\(381\) 0 0
\(382\) −585.695 213.175i −1.53323 0.558051i
\(383\) 73.1074 + 87.1261i 0.190881 + 0.227483i 0.852994 0.521921i \(-0.174784\pi\)
−0.662113 + 0.749404i \(0.730340\pi\)
\(384\) 0 0
\(385\) −266.329 + 96.9357i −0.691763 + 0.251781i
\(386\) 103.675 + 59.8566i 0.268587 + 0.155069i
\(387\) 0 0
\(388\) 4.33368 + 7.50616i 0.0111693 + 0.0193458i
\(389\) 232.951 277.620i 0.598846 0.713677i −0.378434 0.925628i \(-0.623537\pi\)
0.977280 + 0.211952i \(0.0679819\pi\)
\(390\) 0 0
\(391\) 23.9627 + 135.899i 0.0612856 + 0.347568i
\(392\) 242.968 42.8418i 0.619816 0.109290i
\(393\) 0 0
\(394\) −333.237 279.619i −0.845779 0.709693i
\(395\) −5.83848 + 3.37085i −0.0147810 + 0.00853379i
\(396\) 0 0
\(397\) 368.516 638.289i 0.928252 1.60778i 0.142006 0.989866i \(-0.454645\pi\)
0.786246 0.617914i \(-0.212022\pi\)
\(398\) −3.45558 9.49412i −0.00868235 0.0238546i
\(399\) 0 0
\(400\) −72.5791 + 60.9011i −0.181448 + 0.152253i
\(401\) 75.6898 207.956i 0.188753 0.518593i −0.808833 0.588038i \(-0.799900\pi\)
0.997586 + 0.0694446i \(0.0221227\pi\)
\(402\) 0 0
\(403\) −104.320 + 591.628i −0.258859 + 1.46806i
\(404\) 20.1080i 0.0497722i
\(405\) 0 0
\(406\) −721.566 −1.77726
\(407\) −464.713 81.9414i −1.14180 0.201330i
\(408\) 0 0
\(409\) −418.339 152.263i −1.02283 0.372281i −0.224486 0.974477i \(-0.572070\pi\)
−0.798348 + 0.602196i \(0.794293\pi\)
\(410\) 137.194 + 163.501i 0.334618 + 0.398783i
\(411\) 0 0
\(412\) −5.14854 + 1.87391i −0.0124964 + 0.00454834i
\(413\) 32.2558 + 18.6229i 0.0781012 + 0.0450917i
\(414\) 0 0
\(415\) 244.381 + 423.280i 0.588870 + 1.01995i
\(416\) −39.2448 + 46.7702i −0.0943385 + 0.112428i
\(417\) 0 0
\(418\) −42.9285 243.460i −0.102700 0.582440i
\(419\) 568.426 100.229i 1.35663 0.239210i 0.552423 0.833564i \(-0.313703\pi\)
0.804203 + 0.594354i \(0.202592\pi\)
\(420\) 0 0
\(421\) −257.389 215.975i −0.611376 0.513005i 0.283703 0.958912i \(-0.408437\pi\)
−0.895079 + 0.445907i \(0.852881\pi\)
\(422\) 38.7356 22.3640i 0.0917905 0.0529953i
\(423\) 0 0
\(424\) 208.417 360.989i 0.491549 0.851388i
\(425\) 22.6187 + 62.1444i 0.0532205 + 0.146222i
\(426\) 0 0
\(427\) 247.631 207.787i 0.579932 0.486620i
\(428\) 7.72105 21.2134i 0.0180398 0.0495640i
\(429\) 0 0
\(430\) 3.61054 20.4764i 0.00839661 0.0476195i
\(431\) 113.799i 0.264034i 0.991247 + 0.132017i \(0.0421454\pi\)
−0.991247 + 0.132017i \(0.957855\pi\)
\(432\) 0 0
\(433\) −204.214 −0.471625 −0.235812 0.971799i \(-0.575775\pi\)
−0.235812 + 0.971799i \(0.575775\pi\)
\(434\) −629.531 111.003i −1.45053 0.255768i
\(435\) 0 0
\(436\) 22.6306 + 8.23687i 0.0519051 + 0.0188919i
\(437\) 146.337 + 174.398i 0.334867 + 0.399079i
\(438\) 0 0
\(439\) −379.487 + 138.122i −0.864435 + 0.314629i −0.735912 0.677078i \(-0.763246\pi\)
−0.128524 + 0.991706i \(0.541024\pi\)
\(440\) 226.913 + 131.008i 0.515712 + 0.297746i
\(441\) 0 0
\(442\) −164.644 285.172i −0.372498 0.645185i
\(443\) 425.281 506.830i 0.960001 1.14409i −0.0295005 0.999565i \(-0.509392\pi\)
0.989502 0.144520i \(-0.0461639\pi\)
\(444\) 0 0
\(445\) −35.9270 203.752i −0.0807348 0.457870i
\(446\) −359.384 + 63.3690i −0.805793 + 0.142083i
\(447\) 0 0
\(448\) −458.387 384.632i −1.02318 0.858554i
\(449\) 403.851 233.164i 0.899446 0.519295i 0.0224253 0.999749i \(-0.492861\pi\)
0.877020 + 0.480453i \(0.159528\pi\)
\(450\) 0 0
\(451\) −93.8599 + 162.570i −0.208115 + 0.360466i
\(452\) 1.31503 + 3.61301i 0.00290936 + 0.00799339i
\(453\) 0 0
\(454\) 186.519 156.508i 0.410836 0.344732i
\(455\) −213.013 + 585.247i −0.468159 + 1.28626i
\(456\) 0 0
\(457\) 148.311 841.111i 0.324531 1.84051i −0.188421 0.982088i \(-0.560337\pi\)
0.512952 0.858417i \(-0.328552\pi\)
\(458\) 254.180i 0.554979i
\(459\) 0 0
\(460\) −13.4289 −0.0291932
\(461\) −80.6673 14.2238i −0.174983 0.0308543i 0.0854699 0.996341i \(-0.472761\pi\)
−0.260453 + 0.965486i \(0.583872\pi\)
\(462\) 0 0
\(463\) 615.138 + 223.892i 1.32859 + 0.483568i 0.906201 0.422847i \(-0.138969\pi\)
0.422390 + 0.906414i \(0.361191\pi\)
\(464\) 403.428 + 480.786i 0.869456 + 1.03618i
\(465\) 0 0
\(466\) −741.053 + 269.721i −1.59024 + 0.578801i
\(467\) −113.391 65.4664i −0.242808 0.140185i 0.373659 0.927566i \(-0.378103\pi\)
−0.616466 + 0.787381i \(0.711436\pi\)
\(468\) 0 0
\(469\) −76.9332 133.252i −0.164037 0.284120i
\(470\) 251.617 299.865i 0.535355 0.638011i
\(471\) 0 0
\(472\) −5.97921 33.9098i −0.0126678 0.0718428i
\(473\) 18.0093 3.17553i 0.0380747 0.00671360i
\(474\) 0 0
\(475\) 83.5779 + 70.1301i 0.175953 + 0.147642i
\(476\) −19.0031 + 10.9714i −0.0399225 + 0.0230493i
\(477\) 0 0
\(478\) 186.572 323.152i 0.390318 0.676051i
\(479\) −53.9253 148.158i −0.112579 0.309308i 0.870589 0.492010i \(-0.163738\pi\)
−0.983168 + 0.182702i \(0.941516\pi\)
\(480\) 0 0
\(481\) −794.343 + 666.533i −1.65144 + 1.38572i
\(482\) 230.106 632.210i 0.477397 1.31164i
\(483\) 0 0
\(484\) 2.72607 15.4603i 0.00563237 0.0319428i
\(485\) 158.926i 0.327683i
\(486\) 0 0
\(487\) −698.201 −1.43368 −0.716839 0.697239i \(-0.754412\pi\)
−0.716839 + 0.697239i \(0.754412\pi\)
\(488\) −294.306 51.8941i −0.603086 0.106340i
\(489\) 0 0
\(490\) −236.588 86.1109i −0.482832 0.175737i
\(491\) −27.1397 32.3438i −0.0552743 0.0658733i 0.737699 0.675130i \(-0.235912\pi\)
−0.792973 + 0.609257i \(0.791468\pi\)
\(492\) 0 0
\(493\) 411.664 149.833i 0.835018 0.303922i
\(494\) −470.466 271.623i −0.952359 0.549845i
\(495\) 0 0
\(496\) 278.009 + 481.525i 0.560501 + 0.970816i
\(497\) −339.821 + 404.983i −0.683745 + 0.814855i
\(498\) 0 0
\(499\) −83.4143 473.066i −0.167163 0.948028i −0.946806 0.321804i \(-0.895711\pi\)
0.779643 0.626224i \(-0.215400\pi\)
\(500\) −31.4254 + 5.54115i −0.0628509 + 0.0110823i
\(501\) 0 0
\(502\) 635.328 + 533.103i 1.26559 + 1.06196i
\(503\) −73.7969 + 42.6067i −0.146714 + 0.0847051i −0.571560 0.820560i \(-0.693661\pi\)
0.424846 + 0.905266i \(0.360328\pi\)
\(504\) 0 0
\(505\) −184.352 + 319.307i −0.365053 + 0.632290i
\(506\) 64.5039 + 177.223i 0.127478 + 0.350243i
\(507\) 0 0
\(508\) −14.7108 + 12.3438i −0.0289583 + 0.0242989i
\(509\) 135.879 373.323i 0.266952 0.733445i −0.731704 0.681622i \(-0.761275\pi\)
0.998656 0.0518226i \(-0.0165030\pi\)
\(510\) 0 0
\(511\) −81.3340 + 461.268i −0.159166 + 0.902677i
\(512\) 549.639i 1.07351i
\(513\) 0 0
\(514\) 551.146 1.07227
\(515\) 98.9369 + 17.4452i 0.192111 + 0.0338743i
\(516\) 0 0
\(517\) 323.521 + 117.752i 0.625765 + 0.227760i
\(518\) −709.235 845.234i −1.36918 1.63173i
\(519\) 0 0
\(520\) 541.049 196.926i 1.04048 0.378703i
\(521\) 19.7109 + 11.3801i 0.0378328 + 0.0218428i 0.518797 0.854897i \(-0.326380\pi\)
−0.480964 + 0.876740i \(0.659713\pi\)
\(522\) 0 0
\(523\) −380.270 658.647i −0.727093 1.25936i −0.958107 0.286412i \(-0.907537\pi\)
0.231013 0.972951i \(-0.425796\pi\)
\(524\) 22.0403 26.2666i 0.0420617 0.0501272i
\(525\) 0 0
\(526\) 116.722 + 661.961i 0.221904 + 1.25848i
\(527\) 382.207 67.3933i 0.725250 0.127881i
\(528\) 0 0
\(529\) 272.192 + 228.397i 0.514541 + 0.431752i
\(530\) −368.385 + 212.687i −0.695067 + 0.401297i
\(531\) 0 0
\(532\) −18.1003 + 31.3506i −0.0340231 + 0.0589297i
\(533\) 141.086 + 387.630i 0.264701 + 0.727261i
\(534\) 0 0
\(535\) −317.094 + 266.073i −0.592698 + 0.497333i
\(536\) −48.6511 + 133.668i −0.0907670 + 0.249380i
\(537\) 0 0
\(538\) 100.365 569.195i 0.186551 1.05798i
\(539\) 221.437i 0.410830i
\(540\) 0 0
\(541\) −158.844 −0.293612 −0.146806 0.989165i \(-0.546899\pi\)
−0.146806 + 0.989165i \(0.546899\pi\)
\(542\) −704.431 124.210i −1.29969 0.229170i
\(543\) 0 0
\(544\) 37.0638 + 13.4901i 0.0681320 + 0.0247980i
\(545\) −283.849 338.278i −0.520824 0.620693i
\(546\) 0 0
\(547\) 618.369 225.068i 1.13047 0.411459i 0.292009 0.956416i \(-0.405676\pi\)
0.838464 + 0.544957i \(0.183454\pi\)
\(548\) 38.3809 + 22.1592i 0.0700382 + 0.0404366i
\(549\) 0 0
\(550\) 45.1914 + 78.2737i 0.0821661 + 0.142316i
\(551\) 464.564 553.646i 0.843129 1.00480i
\(552\) 0 0
\(553\) −2.40754 13.6538i −0.00435359 0.0246904i
\(554\) −540.472 + 95.2997i −0.975581 + 0.172021i
\(555\) 0 0
\(556\) 15.8665 + 13.3136i 0.0285369 + 0.0239453i
\(557\) −817.907 + 472.219i −1.46842 + 0.847790i −0.999374 0.0353864i \(-0.988734\pi\)
−0.469041 + 0.883176i \(0.655400\pi\)
\(558\) 0 0
\(559\) 20.0927 34.8015i 0.0359439 0.0622567i
\(560\) 197.150 + 541.664i 0.352053 + 0.967257i
\(561\) 0 0
\(562\) 417.825 350.597i 0.743460 0.623837i
\(563\) −361.954 + 994.460i −0.642902 + 1.76636i −0.000488026 1.00000i \(0.500155\pi\)
−0.642414 + 0.766358i \(0.722067\pi\)
\(564\) 0 0
\(565\) 12.2423 69.4295i 0.0216678 0.122884i
\(566\) 846.352i 1.49532i
\(567\) 0 0
\(568\) 488.742 0.860462
\(569\) 175.960 + 31.0266i 0.309245 + 0.0545282i 0.326117 0.945329i \(-0.394260\pi\)
−0.0168721 + 0.999858i \(0.505371\pi\)
\(570\) 0 0
\(571\) −566.101 206.044i −0.991420 0.360847i −0.205150 0.978731i \(-0.565768\pi\)
−0.786270 + 0.617883i \(0.787990\pi\)
\(572\) 18.1160 + 21.5898i 0.0316713 + 0.0377444i
\(573\) 0 0
\(574\) −412.464 + 150.125i −0.718578 + 0.261541i
\(575\) −72.0819 41.6165i −0.125360 0.0723766i
\(576\) 0 0
\(577\) 87.1430 + 150.936i 0.151028 + 0.261588i 0.931606 0.363471i \(-0.118408\pi\)
−0.780578 + 0.625059i \(0.785075\pi\)
\(578\) 223.678 266.569i 0.386986 0.461192i
\(579\) 0 0
\(580\) 7.40290 + 41.9839i 0.0127636 + 0.0723861i
\(581\) −989.880 + 174.543i −1.70375 + 0.300417i
\(582\) 0 0
\(583\) −286.596 240.482i −0.491588 0.412491i
\(584\) 374.998 216.505i 0.642121 0.370728i
\(585\) 0 0
\(586\) −358.118 + 620.279i −0.611123 + 1.05850i
\(587\) 349.240 + 959.528i 0.594957 + 1.63463i 0.761178 + 0.648543i \(0.224621\pi\)
−0.166221 + 0.986088i \(0.553157\pi\)
\(588\) 0 0
\(589\) 490.481 411.562i 0.832735 0.698747i
\(590\) −12.0181 + 33.0194i −0.0203696 + 0.0559650i
\(591\) 0 0
\(592\) −166.654 + 945.141i −0.281510 + 1.59652i
\(593\) 848.172i 1.43031i −0.698967 0.715153i \(-0.746357\pi\)
0.698967 0.715153i \(-0.253643\pi\)
\(594\) 0 0
\(595\) 402.349 0.676216
\(596\) −14.5948 2.57345i −0.0244879 0.00431787i
\(597\) 0 0
\(598\) 389.441 + 141.745i 0.651239 + 0.237032i
\(599\) 204.340 + 243.523i 0.341135 + 0.406549i 0.909150 0.416470i \(-0.136733\pi\)
−0.568015 + 0.823018i \(0.692288\pi\)
\(600\) 0 0
\(601\) 511.747 186.261i 0.851492 0.309918i 0.120843 0.992672i \(-0.461440\pi\)
0.730648 + 0.682754i \(0.239218\pi\)
\(602\) 37.0311 + 21.3799i 0.0615134 + 0.0355148i
\(603\) 0 0
\(604\) 13.6014 + 23.5583i 0.0225189 + 0.0390039i
\(605\) −185.030 + 220.511i −0.305835 + 0.364480i
\(606\) 0 0
\(607\) 73.9645 + 419.473i 0.121853 + 0.691060i 0.983128 + 0.182921i \(0.0585553\pi\)
−0.861275 + 0.508139i \(0.830334\pi\)
\(608\) 64.0821 11.2994i 0.105398 0.0185846i
\(609\) 0 0
\(610\) 233.620 + 196.031i 0.382984 + 0.321362i
\(611\) 655.192 378.275i 1.07233 0.619108i
\(612\) 0 0
\(613\) −43.8571 + 75.9627i −0.0715450 + 0.123920i −0.899579 0.436759i \(-0.856126\pi\)
0.828034 + 0.560679i \(0.189460\pi\)
\(614\) −243.007 667.656i −0.395777 1.08739i
\(615\) 0 0
\(616\) −412.778 + 346.362i −0.670095 + 0.562276i
\(617\) 236.100 648.680i 0.382658 1.05135i −0.587574 0.809170i \(-0.699917\pi\)
0.970233 0.242175i \(-0.0778608\pi\)
\(618\) 0 0
\(619\) 120.446 683.085i 0.194582 1.10353i −0.718431 0.695598i \(-0.755139\pi\)
0.913013 0.407931i \(-0.133750\pi\)
\(620\) 37.7678i 0.0609158i
\(621\) 0 0
\(622\) 925.860 1.48852
\(623\) 419.021 + 73.8847i 0.672586 + 0.118595i
\(624\) 0 0
\(625\) 401.454 + 146.117i 0.642326 + 0.233788i
\(626\) 126.166 + 150.358i 0.201543 + 0.240189i
\(627\) 0 0
\(628\) −11.5928 + 4.21944i −0.0184599 + 0.00671885i
\(629\) 580.142 + 334.945i 0.922324 + 0.532504i
\(630\) 0 0
\(631\) −58.9015 102.020i −0.0933463 0.161681i 0.815571 0.578657i \(-0.196423\pi\)
−0.908917 + 0.416977i \(0.863090\pi\)
\(632\) −8.23886 + 9.81869i −0.0130362 + 0.0155359i
\(633\) 0 0
\(634\) 124.832 + 707.960i 0.196897 + 1.11666i
\(635\) 346.771 61.1451i 0.546097 0.0962916i
\(636\) 0 0
\(637\) −372.757 312.780i −0.585176 0.491021i
\(638\) 518.510 299.362i 0.812711 0.469219i
\(639\) 0 0
\(640\) 249.699 432.491i 0.390155 0.675768i
\(641\) 125.411 + 344.564i 0.195649 + 0.537542i 0.998260 0.0589610i \(-0.0187788\pi\)
−0.802611 + 0.596503i \(0.796557\pi\)
\(642\) 0 0
\(643\) 735.870 617.468i 1.14443 0.960292i 0.144857 0.989453i \(-0.453728\pi\)
0.999575 + 0.0291603i \(0.00928333\pi\)
\(644\) 9.44551 25.9513i 0.0146669 0.0402971i
\(645\) 0 0
\(646\) −60.9420 + 345.619i −0.0943375 + 0.535014i
\(647\) 181.832i 0.281039i 0.990078 + 0.140519i \(0.0448772\pi\)
−0.990078 + 0.140519i \(0.955123\pi\)
\(648\) 0 0
\(649\) −30.9049 −0.0476192
\(650\) 195.595 + 34.4887i 0.300916 + 0.0530596i
\(651\) 0 0
\(652\) 55.6876 + 20.2686i 0.0854105 + 0.0310869i
\(653\) 566.154 + 674.716i 0.867005 + 1.03326i 0.999117 + 0.0420211i \(0.0133797\pi\)
−0.132112 + 0.991235i \(0.542176\pi\)
\(654\) 0 0
\(655\) −590.807 + 215.036i −0.901995 + 0.328299i
\(656\) 330.638 + 190.894i 0.504021 + 0.290997i
\(657\) 0 0
\(658\) 402.509 + 697.167i 0.611717 + 1.05952i
\(659\) 40.9793 48.8372i 0.0621841 0.0741081i −0.734056 0.679089i \(-0.762375\pi\)
0.796240 + 0.604981i \(0.206819\pi\)
\(660\) 0 0
\(661\) −79.6337 451.625i −0.120475 0.683246i −0.983893 0.178757i \(-0.942792\pi\)
0.863419 0.504488i \(-0.168319\pi\)
\(662\) 681.462 120.160i 1.02940 0.181511i
\(663\) 0 0
\(664\) 711.839 + 597.304i 1.07205 + 0.899555i
\(665\) 574.850 331.890i 0.864436 0.499082i
\(666\) 0 0
\(667\) −275.681 + 477.493i −0.413315 + 0.715882i
\(668\) −0.682497 1.87515i −0.00102170 0.00280710i
\(669\) 0 0
\(670\) 111.200 93.3077i 0.165970 0.139265i
\(671\) −91.7387 + 252.050i −0.136719 + 0.375633i
\(672\) 0 0
\(673\) −190.581 + 1080.84i −0.283181 + 1.60600i 0.428530 + 0.903527i \(0.359032\pi\)
−0.711711 + 0.702472i \(0.752080\pi\)
\(674\) 778.465i 1.15499i
\(675\) 0 0
\(676\) 22.0924 0.0326811
\(677\) 483.226 + 85.2058i 0.713776 + 0.125858i 0.518732 0.854937i \(-0.326404\pi\)
0.195043 + 0.980795i \(0.437515\pi\)
\(678\) 0 0
\(679\) 307.125 + 111.785i 0.452320 + 0.164631i
\(680\) −239.093 284.940i −0.351608 0.419030i
\(681\) 0 0
\(682\) 498.427 181.413i 0.730832 0.266001i
\(683\) −684.465 395.176i −1.00215 0.578589i −0.0932631 0.995642i \(-0.529730\pi\)
−0.908882 + 0.417053i \(0.863063\pi\)
\(684\) 0 0
\(685\) −406.316 703.760i −0.593162 1.02739i
\(686\) −210.401 + 250.746i −0.306707 + 0.365519i
\(687\) 0 0
\(688\) −6.45845 36.6277i −0.00938728 0.0532379i
\(689\) −809.634 + 142.760i −1.17509 + 0.207199i
\(690\) 0 0
\(691\) −165.381 138.771i −0.239336 0.200827i 0.515228 0.857053i \(-0.327707\pi\)
−0.754564 + 0.656226i \(0.772152\pi\)
\(692\) 39.8221 22.9913i 0.0575464 0.0332244i
\(693\) 0 0
\(694\) −55.5671 + 96.2451i −0.0800679 + 0.138682i
\(695\) −129.894 356.880i −0.186898 0.513497i
\(696\) 0 0
\(697\) 204.143 171.296i 0.292888 0.245762i
\(698\) −248.919 + 683.900i −0.356618 + 0.979800i
\(699\) 0 0
\(700\) 2.29824 13.0339i 0.00328319 0.0186199i
\(701\) 503.242i 0.717891i −0.933358 0.358946i \(-0.883136\pi\)
0.933358 0.358946i \(-0.116864\pi\)
\(702\) 0 0
\(703\) 1105.16 1.57206
\(704\) 488.967 + 86.2181i 0.694556 + 0.122469i
\(705\) 0 0
\(706\) 401.150 + 146.007i 0.568201 + 0.206808i
\(707\) −487.392 580.851i −0.689381 0.821572i
\(708\) 0 0
\(709\) −1211.14 + 440.817i −1.70823 + 0.621745i −0.996720 0.0809298i \(-0.974211\pi\)
−0.711511 + 0.702675i \(0.751989\pi\)
\(710\) −431.936 249.379i −0.608361 0.351237i
\(711\) 0 0
\(712\) −196.676 340.653i −0.276230 0.478445i
\(713\) −313.974 + 374.180i −0.440357 + 0.524797i
\(714\) 0 0
\(715\) −89.7375 508.926i −0.125507 0.711785i
\(716\) 49.1117 8.65971i 0.0685917 0.0120946i
\(717\) 0 0
\(718\) −299.346 251.181i −0.416917 0.349835i
\(719\) −497.326 + 287.131i −0.691691 + 0.399348i −0.804245 0.594298i \(-0.797430\pi\)
0.112554 + 0.993646i \(0.464097\pi\)
\(720\) 0 0
\(721\) −103.302 + 178.925i −0.143277 + 0.248162i
\(722\) −41.5268 114.094i −0.0575163 0.158025i
\(723\) 0 0
\(724\) 15.8509 13.3005i 0.0218935 0.0183708i
\(725\) −90.3731 + 248.298i −0.124653 + 0.342480i
\(726\) 0 0
\(727\) 97.0052 550.144i 0.133432 0.756732i −0.842506 0.538686i \(-0.818921\pi\)
0.975939 0.218045i \(-0.0699681\pi\)
\(728\) 1184.09i 1.62650i
\(729\) 0 0
\(730\) −441.884 −0.605320
\(731\) −25.5663 4.50803i −0.0349744 0.00616694i
\(732\) 0 0
\(733\) −1059.70 385.699i −1.44570 0.526192i −0.504313 0.863521i \(-0.668254\pi\)
−0.941387 + 0.337329i \(0.890477\pi\)
\(734\) −198.495 236.557i −0.270429 0.322285i
\(735\) 0 0
\(736\) −46.6477 + 16.9784i −0.0633800 + 0.0230684i
\(737\) 110.567 + 63.8358i 0.150023 + 0.0866157i
\(738\) 0 0
\(739\) −163.517 283.219i −0.221268 0.383247i 0.733926 0.679230i \(-0.237686\pi\)
−0.955193 + 0.295983i \(0.904353\pi\)
\(740\) −41.9031 + 49.9381i −0.0566258 + 0.0674839i
\(741\) 0 0
\(742\) −151.906 861.504i −0.204726 1.16106i
\(743\) 367.560 64.8107i 0.494697 0.0872284i 0.0792668 0.996853i \(-0.474742\pi\)
0.415430 + 0.909625i \(0.363631\pi\)
\(744\) 0 0
\(745\) 208.165 + 174.672i 0.279417 + 0.234459i
\(746\) 86.7808 50.1029i 0.116328 0.0671621i
\(747\) 0 0
\(748\) 9.10361 15.7679i 0.0121706 0.0210801i
\(749\) −291.152 799.932i −0.388720 1.06800i
\(750\) 0 0
\(751\) −883.828 + 741.620i −1.17687 + 0.987510i −0.176874 + 0.984234i \(0.556598\pi\)
−0.999995 + 0.00327622i \(0.998957\pi\)
\(752\) 239.486 657.982i 0.318465 0.874976i
\(753\) 0 0
\(754\) 228.464 1295.68i 0.303003 1.71841i
\(755\) 498.796i 0.660657i
\(756\) 0 0
\(757\) −372.849 −0.492535 −0.246268 0.969202i \(-0.579204\pi\)
−0.246268 + 0.969202i \(0.579204\pi\)
\(758\) −281.313 49.6031i −0.371126 0.0654395i
\(759\) 0 0
\(760\) −576.643 209.881i −0.758740 0.276159i
\(761\) 742.809 + 885.246i 0.976096 + 1.16327i 0.986573 + 0.163321i \(0.0522207\pi\)
−0.0104767 + 0.999945i \(0.503335\pi\)
\(762\) 0 0
\(763\) 853.374 310.603i 1.11845 0.407081i
\(764\) −65.5851 37.8656i −0.0858444 0.0495623i
\(765\) 0 0
\(766\) −110.333 191.102i −0.144037 0.249480i
\(767\) −43.6532 + 52.0238i −0.0569142 + 0.0678277i
\(768\) 0 0
\(769\) 184.485 + 1046.27i 0.239903 + 1.36056i 0.832038 + 0.554718i \(0.187174\pi\)
−0.592135 + 0.805839i \(0.701715\pi\)
\(770\) 541.531 95.4865i 0.703287 0.124009i
\(771\) 0 0
\(772\) 11.1426 + 9.34972i 0.0144334 + 0.0121110i
\(773\) −808.848 + 466.989i −1.04638 + 0.604125i −0.921632 0.388064i \(-0.873144\pi\)
−0.124743 + 0.992189i \(0.539811\pi\)
\(774\) 0 0
\(775\) −117.044 + 202.725i −0.151024 + 0.261581i
\(776\) −103.342 283.931i −0.133173 0.365890i
\(777\) 0 0
\(778\) −538.631 + 451.965i −0.692327 + 0.580932i
\(779\) 150.367 413.131i 0.193026 0.530335i
\(780\) 0 0
\(781\) 76.1734 432.001i 0.0975331 0.553138i
\(782\) 267.735i 0.342372i
\(783\) 0 0
\(784\) −450.363 −0.574443
\(785\) 222.773 + 39.2810i 0.283788 + 0.0500395i
\(786\) 0 0
\(787\) −771.201 280.694i −0.979925 0.356663i −0.198114 0.980179i \(-0.563482\pi\)
−0.781811 + 0.623516i \(0.785704\pi\)
\(788\) −33.9747 40.4895i −0.0431151 0.0513826i
\(789\) 0 0
\(790\) 12.2912 4.47363i 0.0155585 0.00566283i
\(791\) 125.562 + 72.4931i 0.158738 + 0.0916473i
\(792\) 0 0
\(793\) 294.708 + 510.450i 0.371637 + 0.643694i
\(794\) −919.166 + 1095.42i −1.15764 + 1.37962i
\(795\) 0 0
\(796\) −0.213171 1.20895i −0.000267803 0.00151879i
\(797\) 33.7669 5.95402i 0.0423675 0.00747053i −0.152424 0.988315i \(-0.548708\pi\)
0.194792 + 0.980845i \(0.437597\pi\)
\(798\) 0 0
\(799\) −374.404 314.163i −0.468591 0.393195i
\(800\) −20.6028 + 11.8950i −0.0257535 + 0.0148688i
\(801\) 0 0
\(802\) −214.682 + 371.840i −0.267683 + 0.463641i
\(803\) −132.924 365.206i −0.165534 0.454802i
\(804\) 0 0
\(805\) −387.915 + 325.499i −0.481882 + 0.404347i
\(806\) 398.648 1095.28i 0.494600 1.35890i
\(807\) 0 0
\(808\) −121.725 + 690.335i −0.150649 + 0.854374i
\(809\) 521.511i 0.644636i 0.946631 + 0.322318i \(0.104462\pi\)
−0.946631 + 0.322318i \(0.895538\pi\)
\(810\) 0 0
\(811\) −684.645 −0.844199 −0.422099 0.906550i \(-0.638707\pi\)
−0.422099 + 0.906550i \(0.638707\pi\)
\(812\) −86.3409 15.2242i −0.106331 0.0187491i
\(813\) 0 0
\(814\) 860.317 + 313.130i 1.05690 + 0.384680i
\(815\) −698.473 832.407i −0.857022 1.02136i
\(816\) 0 0
\(817\) −40.2461 + 14.6484i −0.0492608 + 0.0179295i
\(818\) 748.021 + 431.870i 0.914451 + 0.527958i
\(819\) 0 0
\(820\) 12.9666 + 22.4588i 0.0158129 + 0.0273887i
\(821\) 871.211 1038.27i 1.06116 1.26464i 0.0981483 0.995172i \(-0.468708\pi\)
0.963010 0.269467i \(-0.0868475\pi\)
\(822\) 0 0
\(823\) −113.011 640.916i −0.137316 0.778756i −0.973219 0.229879i \(-0.926167\pi\)
0.835903 0.548877i \(-0.184944\pi\)
\(824\) 188.100 33.1671i 0.228277 0.0402514i
\(825\) 0 0
\(826\) −55.3568 46.4498i −0.0670179 0.0562347i
\(827\) −1042.15 + 601.688i −1.26016 + 0.727555i −0.973106 0.230359i \(-0.926010\pi\)
−0.287056 + 0.957914i \(0.592677\pi\)
\(828\) 0 0
\(829\) 753.210 1304.60i 0.908577 1.57370i 0.0925344 0.995709i \(-0.470503\pi\)
0.816043 0.577992i \(-0.196163\pi\)
\(830\) −324.331 891.093i −0.390761 1.07361i
\(831\) 0 0
\(832\) 835.802 701.321i 1.00457 0.842934i
\(833\) −107.516 + 295.398i −0.129071 + 0.354619i
\(834\) 0 0
\(835\) −6.35372 + 36.0338i −0.00760925 + 0.0431542i
\(836\) 30.0376i 0.0359301i
\(837\) 0 0
\(838\) −1119.86 −1.33635
\(839\) 58.5531 + 10.3245i 0.0697891 + 0.0123057i 0.208434 0.978036i \(-0.433163\pi\)
−0.138645 + 0.990342i \(0.544275\pi\)
\(840\) 0 0
\(841\) 854.523 + 311.021i 1.01608 + 0.369823i
\(842\) 419.029 + 499.379i 0.497659 + 0.593087i
\(843\) 0 0
\(844\) 5.10687 1.85875i 0.00605079 0.00220231i
\(845\) −350.819 202.546i −0.415171 0.239699i
\(846\) 0 0
\(847\) −295.992 512.672i −0.349459 0.605280i
\(848\) −489.097 + 582.884i −0.576766 + 0.687363i
\(849\) 0 0
\(850\) −22.2806 126.359i −0.0262124 0.148658i
\(851\) −830.300 + 146.404i −0.975675 + 0.172038i
\(852\) 0 0
\(853\) −269.299 225.969i −0.315708 0.264910i 0.471138 0.882059i \(-0.343843\pi\)
−0.786846 + 0.617149i \(0.788288\pi\)
\(854\) −543.152 + 313.589i −0.636009 + 0.367200i
\(855\) 0 0
\(856\) −393.491 + 681.546i −0.459685 + 0.796198i
\(857\) −423.493 1163.54i −0.494158 1.35769i −0.896843 0.442348i \(-0.854145\pi\)
0.402686 0.915338i \(-0.368077\pi\)
\(858\) 0 0
\(859\) −203.687 + 170.914i −0.237121 + 0.198968i −0.753603 0.657330i \(-0.771686\pi\)
0.516482 + 0.856298i \(0.327241\pi\)
\(860\) 0.864058 2.37398i 0.00100472 0.00276044i
\(861\) 0 0
\(862\) 38.3396 217.435i 0.0444775 0.252245i
\(863\) 297.514i 0.344744i 0.985032 + 0.172372i \(0.0551431\pi\)
−0.985032 + 0.172372i \(0.944857\pi\)
\(864\) 0 0
\(865\) −843.145 −0.974734
\(866\) 390.190 + 68.8010i 0.450566 + 0.0794469i
\(867\) 0 0
\(868\) −72.9862 26.5648i −0.0840855 0.0306046i
\(869\) 7.39469 + 8.81265i 0.00850943 + 0.0101411i
\(870\) 0 0
\(871\) 263.634 95.9549i 0.302680 0.110166i
\(872\) −727.078 419.779i −0.833805 0.481398i
\(873\) 0 0
\(874\) −220.849 382.522i −0.252688 0.437669i
\(875\) −773.464 + 921.778i −0.883959 + 1.05346i
\(876\) 0 0
\(877\) −62.6808 355.481i −0.0714719 0.405337i −0.999464 0.0327374i \(-0.989578\pi\)
0.927992 0.372600i \(-0.121534\pi\)
\(878\) 771.618 136.057i 0.878837 0.154963i
\(879\) 0 0
\(880\) −366.394 307.441i −0.416357 0.349365i
\(881\) 782.766 451.930i 0.888497 0.512974i 0.0150464 0.999887i \(-0.495210\pi\)
0.873451 + 0.486913i \(0.161877\pi\)
\(882\) 0 0
\(883\) 462.202 800.558i 0.523445 0.906634i −0.476182 0.879347i \(-0.657980\pi\)
0.999628 0.0272872i \(-0.00868687\pi\)
\(884\) −13.6841 37.5968i −0.0154798 0.0425303i
\(885\) 0 0
\(886\) −983.336 + 825.117i −1.10986 + 0.931283i
\(887\) 95.5543 262.533i 0.107728 0.295979i −0.874102 0.485742i \(-0.838550\pi\)
0.981830 + 0.189763i \(0.0607718\pi\)
\(888\) 0 0
\(889\) −125.746 + 713.144i −0.141447 + 0.802186i
\(890\) 401.412i 0.451025i
\(891\) 0 0
\(892\) −44.3400 −0.0497086
\(893\) −794.071 140.016i −0.889218 0.156793i
\(894\) 0 0
\(895\) −859.267 312.748i −0.960075 0.349439i
\(896\) 660.158 + 786.746i 0.736784 + 0.878065i
\(897\) 0 0
\(898\) −850.191 + 309.444i −0.946760 + 0.344593i
\(899\) 1342.92 + 775.333i 1.49379 + 0.862440i
\(900\) 0 0
\(901\) 265.556 + 459.957i 0.294735 + 0.510496i
\(902\) 234.109 279.000i 0.259544 0.309312i
\(903\) 0 0
\(904\) −23.2752 132.000i −0.0257469 0.146018i
\(905\) −373.646 + 65.8838i −0.412868 + 0.0727998i
\(906\) 0 0
\(907\) −452.756 379.908i −0.499180 0.418862i 0.358123 0.933675i \(-0.383417\pi\)
−0.857303 + 0.514813i \(0.827861\pi\)
\(908\) 25.6206 14.7921i 0.0282166 0.0162908i
\(909\) 0 0
\(910\) 604.176 1046.46i 0.663930 1.14996i
\(911\) −129.365 355.429i −0.142004 0.390152i 0.848219 0.529645i \(-0.177675\pi\)
−0.990223 + 0.139493i \(0.955453\pi\)
\(912\) 0 0
\(913\) 638.903 536.103i 0.699784 0.587189i
\(914\) −566.753 + 1557.14i −0.620079 + 1.70365i
\(915\) 0 0
\(916\) −5.36292 + 30.4146i −0.00585472 + 0.0332037i
\(917\) 1292.98i 1.41002i
\(918\) 0 0
\(919\) 86.9159 0.0945766 0.0472883 0.998881i \(-0.484942\pi\)
0.0472883 + 0.998881i \(0.484942\pi\)
\(920\) 461.032 + 81.2924i 0.501122 + 0.0883613i
\(921\) 0 0
\(922\) 149.338 + 54.3547i 0.161972 + 0.0589531i
\(923\) −619.615 738.428i −0.671305 0.800031i
\(924\) 0 0
\(925\) −379.682 + 138.193i −0.410467 + 0.149398i
\(926\) −1099.91 635.033i −1.18781 0.685781i
\(927\) 0 0
\(928\) 78.7963 + 136.479i 0.0849098 + 0.147068i
\(929\) −434.648 + 517.993i −0.467866 + 0.557581i −0.947445 0.319917i \(-0.896345\pi\)
0.479579 + 0.877499i \(0.340789\pi\)
\(930\) 0 0
\(931\) 90.0560 + 510.733i 0.0967304 + 0.548585i
\(932\) −94.3635 + 16.6388i −0.101248 + 0.0178528i
\(933\) 0 0
\(934\) 194.600 + 163.289i 0.208351 + 0.174827i
\(935\) −289.124 + 166.926i −0.309223 + 0.178530i
\(936\) 0 0
\(937\) 168.348 291.587i 0.179667 0.311192i −0.762100 0.647460i \(-0.775831\pi\)
0.941766 + 0.336268i \(0.109165\pi\)
\(938\) 102.102 + 280.524i 0.108851 + 0.299066i
\(939\) 0 0
\(940\) 36.4347 30.5724i 0.0387603 0.0325238i
\(941\) 80.6690 221.636i 0.0857269 0.235533i −0.889420 0.457090i \(-0.848892\pi\)
0.975147 + 0.221557i \(0.0711140\pi\)
\(942\) 0 0
\(943\) −58.2413 + 330.303i −0.0617617 + 0.350268i
\(944\) 62.8549i 0.0665836i
\(945\) 0 0
\(946\) −35.4802 −0.0375055
\(947\) 629.848 + 111.059i 0.665098 + 0.117275i 0.495998 0.868324i \(-0.334802\pi\)
0.169101 + 0.985599i \(0.445914\pi\)
\(948\) 0 0
\(949\) −802.526 292.095i −0.845654 0.307793i
\(950\) −136.064 162.155i −0.143226 0.170690i
\(951\) 0 0
\(952\) 718.819 261.629i 0.755062 0.274820i
\(953\) 742.976 + 428.957i 0.779618 + 0.450112i 0.836295 0.548280i \(-0.184717\pi\)
−0.0566772 + 0.998393i \(0.518051\pi\)
\(954\) 0 0
\(955\) 694.310 + 1202.58i 0.727027 + 1.25925i
\(956\) 29.1430 34.7312i 0.0304843 0.0363297i
\(957\) 0 0
\(958\) 53.1191 + 301.253i 0.0554479 + 0.314461i
\(959\) 1645.81 290.200i 1.71617 0.302607i
\(960\) 0 0
\(961\) 316.186 + 265.312i 0.329018 + 0.276079i
\(962\) 1742.31 1005.92i 1.81113 1.04566i
\(963\) 0 0
\(964\) 40.8728 70.7938i 0.0423992 0.0734376i
\(965\) −91.2204 250.626i −0.0945289 0.259716i
\(966\) 0 0
\(967\) 438.590 368.021i 0.453557 0.380580i −0.387197 0.921997i \(-0.626557\pi\)
0.840754 + 0.541417i \(0.182112\pi\)
\(968\) −187.179 + 514.271i −0.193367 + 0.531272i
\(969\) 0 0
\(970\) −53.5434 + 303.660i −0.0551994 + 0.313051i
\(971\) 140.513i 0.144710i 0.997379 + 0.0723548i \(0.0230514\pi\)
−0.997379 + 0.0723548i \(0.976949\pi\)
\(972\) 0 0
\(973\) 781.035 0.802708
\(974\) 1334.05 + 235.229i 1.36966 + 0.241508i
\(975\) 0 0
\(976\) 512.624 + 186.580i 0.525229 + 0.191168i
\(977\) 993.508 + 1184.02i 1.01690 + 1.21189i 0.977122 + 0.212681i \(0.0682196\pi\)
0.0397749 + 0.999209i \(0.487336\pi\)
\(978\) 0 0
\(979\) −331.757 + 120.750i −0.338874 + 0.123340i
\(980\) −26.4927 15.2956i −0.0270334 0.0156077i
\(981\) 0 0
\(982\) 40.9588 + 70.9427i 0.0417095 + 0.0722430i
\(983\) −675.101 + 804.554i −0.686776 + 0.818468i −0.990962 0.134145i \(-0.957171\pi\)
0.304185 + 0.952613i \(0.401616\pi\)
\(984\) 0 0
\(985\) 168.294 + 954.441i 0.170856 + 0.968975i
\(986\) −837.044 + 147.593i −0.848929 + 0.149689i
\(987\) 0 0
\(988\) −50.5639 42.4281i −0.0511780 0.0429435i
\(989\) 28.2961 16.3368i 0.0286109 0.0165185i
\(990\) 0 0
\(991\) −255.730 + 442.938i −0.258053 + 0.446961i −0.965720 0.259585i \(-0.916414\pi\)
0.707667 + 0.706546i \(0.249748\pi\)
\(992\) 47.7504 + 131.193i 0.0481355 + 0.132251i
\(993\) 0 0
\(994\) 785.736 659.311i 0.790479 0.663291i
\(995\) −7.69872 + 21.1521i −0.00773741 + 0.0212584i
\(996\) 0 0
\(997\) 56.7335 321.752i 0.0569042 0.322720i −0.943046 0.332661i \(-0.892053\pi\)
0.999951 + 0.00994151i \(0.00316453\pi\)
\(998\) 931.987i 0.933855i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 243.3.f.b.26.2 30
3.2 odd 2 243.3.f.c.26.4 30
9.2 odd 6 243.3.f.d.188.2 30
9.4 even 3 81.3.f.a.35.4 30
9.5 odd 6 27.3.f.a.11.2 yes 30
9.7 even 3 243.3.f.a.188.4 30
27.4 even 9 27.3.f.a.5.2 30
27.5 odd 18 243.3.f.a.53.4 30
27.11 odd 18 729.3.b.a.728.22 30
27.13 even 9 243.3.f.c.215.4 30
27.14 odd 18 inner 243.3.f.b.215.2 30
27.16 even 9 729.3.b.a.728.9 30
27.22 even 9 243.3.f.d.53.2 30
27.23 odd 18 81.3.f.a.44.4 30
36.23 even 6 432.3.bc.a.65.1 30
108.31 odd 18 432.3.bc.a.113.1 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.3.f.a.5.2 30 27.4 even 9
27.3.f.a.11.2 yes 30 9.5 odd 6
81.3.f.a.35.4 30 9.4 even 3
81.3.f.a.44.4 30 27.23 odd 18
243.3.f.a.53.4 30 27.5 odd 18
243.3.f.a.188.4 30 9.7 even 3
243.3.f.b.26.2 30 1.1 even 1 trivial
243.3.f.b.215.2 30 27.14 odd 18 inner
243.3.f.c.26.4 30 3.2 odd 2
243.3.f.c.215.4 30 27.13 even 9
243.3.f.d.53.2 30 27.22 even 9
243.3.f.d.188.2 30 9.2 odd 6
432.3.bc.a.65.1 30 36.23 even 6
432.3.bc.a.113.1 30 108.31 odd 18
729.3.b.a.728.9 30 27.16 even 9
729.3.b.a.728.22 30 27.11 odd 18