Properties

Label 242.6.a.m.1.2
Level $242$
Weight $6$
Character 242.1
Self dual yes
Analytic conductor $38.813$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [242,6,Mod(1,242)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("242.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(242, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 242 = 2 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 242.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,16,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.8128843947\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.2103025.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 149x^{2} + 150x + 5220 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 11 \)
Twist minimal: no (minimal twist has level 22)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-6.92465\) of defining polynomial
Character \(\chi\) \(=\) 242.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} -13.9952 q^{3} +16.0000 q^{4} +34.0320 q^{5} -55.9808 q^{6} -44.8946 q^{7} +64.0000 q^{8} -47.1346 q^{9} +136.128 q^{10} -223.923 q^{12} +168.584 q^{13} -179.578 q^{14} -476.285 q^{15} +256.000 q^{16} +1007.58 q^{17} -188.538 q^{18} -1927.72 q^{19} +544.513 q^{20} +628.309 q^{21} -464.264 q^{23} -895.692 q^{24} -1966.82 q^{25} +674.336 q^{26} +4060.49 q^{27} -718.314 q^{28} -6839.56 q^{29} -1905.14 q^{30} +1981.43 q^{31} +1024.00 q^{32} +4030.32 q^{34} -1527.86 q^{35} -754.153 q^{36} -5355.14 q^{37} -7710.88 q^{38} -2359.37 q^{39} +2178.05 q^{40} -14799.9 q^{41} +2513.24 q^{42} +14097.7 q^{43} -1604.09 q^{45} -1857.06 q^{46} +16186.9 q^{47} -3582.77 q^{48} -14791.5 q^{49} -7867.28 q^{50} -14101.3 q^{51} +2697.35 q^{52} -27732.0 q^{53} +16242.0 q^{54} -2873.26 q^{56} +26978.8 q^{57} -27358.2 q^{58} -34942.5 q^{59} -7620.56 q^{60} -20765.8 q^{61} +7925.71 q^{62} +2116.09 q^{63} +4096.00 q^{64} +5737.26 q^{65} -62400.3 q^{67} +16121.3 q^{68} +6497.47 q^{69} -6111.42 q^{70} -81099.2 q^{71} -3016.61 q^{72} -55133.4 q^{73} -21420.6 q^{74} +27526.0 q^{75} -30843.5 q^{76} -9437.47 q^{78} +19236.6 q^{79} +8712.20 q^{80} -45373.6 q^{81} -59199.5 q^{82} +38934.8 q^{83} +10052.9 q^{84} +34290.0 q^{85} +56390.7 q^{86} +95720.9 q^{87} -25758.7 q^{89} -6416.34 q^{90} -7568.52 q^{91} -7428.23 q^{92} -27730.5 q^{93} +64747.5 q^{94} -65604.3 q^{95} -14331.1 q^{96} +79424.6 q^{97} -59165.9 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 16 q^{2} - 10 q^{3} + 64 q^{4} - 150 q^{5} - 40 q^{6} - 34 q^{7} + 256 q^{8} + 302 q^{9} - 600 q^{10} - 160 q^{12} + 138 q^{13} - 136 q^{14} + 206 q^{15} + 1024 q^{16} - 370 q^{17} + 1208 q^{18} - 2358 q^{19}+ \cdots - 90152 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) −13.9952 −0.897792 −0.448896 0.893584i \(-0.648183\pi\)
−0.448896 + 0.893584i \(0.648183\pi\)
\(4\) 16.0000 0.500000
\(5\) 34.0320 0.608784 0.304392 0.952547i \(-0.401547\pi\)
0.304392 + 0.952547i \(0.401547\pi\)
\(6\) −55.9808 −0.634835
\(7\) −44.8946 −0.346297 −0.173149 0.984896i \(-0.555394\pi\)
−0.173149 + 0.984896i \(0.555394\pi\)
\(8\) 64.0000 0.353553
\(9\) −47.1346 −0.193969
\(10\) 136.128 0.430475
\(11\) 0 0
\(12\) −223.923 −0.448896
\(13\) 168.584 0.276668 0.138334 0.990386i \(-0.455825\pi\)
0.138334 + 0.990386i \(0.455825\pi\)
\(14\) −179.578 −0.244869
\(15\) −476.285 −0.546561
\(16\) 256.000 0.250000
\(17\) 1007.58 0.845585 0.422793 0.906226i \(-0.361050\pi\)
0.422793 + 0.906226i \(0.361050\pi\)
\(18\) −188.538 −0.137157
\(19\) −1927.72 −1.22507 −0.612534 0.790444i \(-0.709850\pi\)
−0.612534 + 0.790444i \(0.709850\pi\)
\(20\) 544.513 0.304392
\(21\) 628.309 0.310903
\(22\) 0 0
\(23\) −464.264 −0.182998 −0.0914988 0.995805i \(-0.529166\pi\)
−0.0914988 + 0.995805i \(0.529166\pi\)
\(24\) −895.692 −0.317417
\(25\) −1966.82 −0.629382
\(26\) 674.336 0.195634
\(27\) 4060.49 1.07194
\(28\) −718.314 −0.173149
\(29\) −6839.56 −1.51019 −0.755097 0.655613i \(-0.772410\pi\)
−0.755097 + 0.655613i \(0.772410\pi\)
\(30\) −1905.14 −0.386477
\(31\) 1981.43 0.370317 0.185159 0.982709i \(-0.440720\pi\)
0.185159 + 0.982709i \(0.440720\pi\)
\(32\) 1024.00 0.176777
\(33\) 0 0
\(34\) 4030.32 0.597919
\(35\) −1527.86 −0.210820
\(36\) −754.153 −0.0969847
\(37\) −5355.14 −0.643082 −0.321541 0.946896i \(-0.604201\pi\)
−0.321541 + 0.946896i \(0.604201\pi\)
\(38\) −7710.88 −0.866254
\(39\) −2359.37 −0.248390
\(40\) 2178.05 0.215238
\(41\) −14799.9 −1.37499 −0.687493 0.726191i \(-0.741289\pi\)
−0.687493 + 0.726191i \(0.741289\pi\)
\(42\) 2513.24 0.219842
\(43\) 14097.7 1.16272 0.581362 0.813645i \(-0.302520\pi\)
0.581362 + 0.813645i \(0.302520\pi\)
\(44\) 0 0
\(45\) −1604.09 −0.118085
\(46\) −1857.06 −0.129399
\(47\) 16186.9 1.06885 0.534427 0.845215i \(-0.320528\pi\)
0.534427 + 0.845215i \(0.320528\pi\)
\(48\) −3582.77 −0.224448
\(49\) −14791.5 −0.880078
\(50\) −7867.28 −0.445041
\(51\) −14101.3 −0.759160
\(52\) 2697.35 0.138334
\(53\) −27732.0 −1.35610 −0.678049 0.735017i \(-0.737174\pi\)
−0.678049 + 0.735017i \(0.737174\pi\)
\(54\) 16242.0 0.757973
\(55\) 0 0
\(56\) −2873.26 −0.122435
\(57\) 26978.8 1.09986
\(58\) −27358.2 −1.06787
\(59\) −34942.5 −1.30685 −0.653423 0.756993i \(-0.726668\pi\)
−0.653423 + 0.756993i \(0.726668\pi\)
\(60\) −7620.56 −0.273281
\(61\) −20765.8 −0.714534 −0.357267 0.934002i \(-0.616291\pi\)
−0.357267 + 0.934002i \(0.616291\pi\)
\(62\) 7925.71 0.261854
\(63\) 2116.09 0.0671711
\(64\) 4096.00 0.125000
\(65\) 5737.26 0.168431
\(66\) 0 0
\(67\) −62400.3 −1.69824 −0.849121 0.528198i \(-0.822868\pi\)
−0.849121 + 0.528198i \(0.822868\pi\)
\(68\) 16121.3 0.422793
\(69\) 6497.47 0.164294
\(70\) −6111.42 −0.149072
\(71\) −81099.2 −1.90929 −0.954643 0.297754i \(-0.903763\pi\)
−0.954643 + 0.297754i \(0.903763\pi\)
\(72\) −3016.61 −0.0685786
\(73\) −55133.4 −1.21090 −0.605450 0.795884i \(-0.707007\pi\)
−0.605450 + 0.795884i \(0.707007\pi\)
\(74\) −21420.6 −0.454728
\(75\) 27526.0 0.565055
\(76\) −30843.5 −0.612534
\(77\) 0 0
\(78\) −9437.47 −0.175638
\(79\) 19236.6 0.346785 0.173392 0.984853i \(-0.444527\pi\)
0.173392 + 0.984853i \(0.444527\pi\)
\(80\) 8712.20 0.152196
\(81\) −45373.6 −0.768406
\(82\) −59199.5 −0.972263
\(83\) 38934.8 0.620359 0.310179 0.950678i \(-0.399611\pi\)
0.310179 + 0.950678i \(0.399611\pi\)
\(84\) 10052.9 0.155452
\(85\) 34290.0 0.514779
\(86\) 56390.7 0.822170
\(87\) 95720.9 1.35584
\(88\) 0 0
\(89\) −25758.7 −0.344705 −0.172353 0.985035i \(-0.555137\pi\)
−0.172353 + 0.985035i \(0.555137\pi\)
\(90\) −6416.34 −0.0834990
\(91\) −7568.52 −0.0958093
\(92\) −7428.23 −0.0914988
\(93\) −27730.5 −0.332468
\(94\) 64747.5 0.755793
\(95\) −65604.3 −0.745801
\(96\) −14331.1 −0.158709
\(97\) 79424.6 0.857089 0.428544 0.903521i \(-0.359027\pi\)
0.428544 + 0.903521i \(0.359027\pi\)
\(98\) −59165.9 −0.622309
\(99\) 0 0
\(100\) −31469.1 −0.314691
\(101\) 89306.5 0.871124 0.435562 0.900159i \(-0.356550\pi\)
0.435562 + 0.900159i \(0.356550\pi\)
\(102\) −56405.1 −0.536807
\(103\) 36916.7 0.342870 0.171435 0.985195i \(-0.445160\pi\)
0.171435 + 0.985195i \(0.445160\pi\)
\(104\) 10789.4 0.0978168
\(105\) 21382.6 0.189273
\(106\) −110928. −0.958906
\(107\) 124055. 1.04751 0.523753 0.851870i \(-0.324532\pi\)
0.523753 + 0.851870i \(0.324532\pi\)
\(108\) 64967.8 0.535968
\(109\) 194413. 1.56733 0.783663 0.621186i \(-0.213349\pi\)
0.783663 + 0.621186i \(0.213349\pi\)
\(110\) 0 0
\(111\) 74946.2 0.577354
\(112\) −11493.0 −0.0865743
\(113\) 44714.6 0.329422 0.164711 0.986342i \(-0.447331\pi\)
0.164711 + 0.986342i \(0.447331\pi\)
\(114\) 107915. 0.777716
\(115\) −15799.9 −0.111406
\(116\) −109433. −0.755097
\(117\) −7946.14 −0.0536651
\(118\) −139770. −0.924080
\(119\) −45235.0 −0.292824
\(120\) −30482.2 −0.193239
\(121\) 0 0
\(122\) −83063.0 −0.505252
\(123\) 207127. 1.23445
\(124\) 31702.8 0.185159
\(125\) −173285. −0.991941
\(126\) 8464.36 0.0474972
\(127\) 146037. 0.803439 0.401719 0.915763i \(-0.368413\pi\)
0.401719 + 0.915763i \(0.368413\pi\)
\(128\) 16384.0 0.0883883
\(129\) −197300. −1.04388
\(130\) 22949.0 0.119098
\(131\) 29127.1 0.148292 0.0741462 0.997247i \(-0.476377\pi\)
0.0741462 + 0.997247i \(0.476377\pi\)
\(132\) 0 0
\(133\) 86544.3 0.424238
\(134\) −249601. −1.20084
\(135\) 138187. 0.652577
\(136\) 64485.2 0.298960
\(137\) 178353. 0.811854 0.405927 0.913906i \(-0.366949\pi\)
0.405927 + 0.913906i \(0.366949\pi\)
\(138\) 25989.9 0.116173
\(139\) 288572. 1.26683 0.633414 0.773813i \(-0.281653\pi\)
0.633414 + 0.773813i \(0.281653\pi\)
\(140\) −24445.7 −0.105410
\(141\) −226538. −0.959608
\(142\) −324397. −1.35007
\(143\) 0 0
\(144\) −12066.5 −0.0484924
\(145\) −232764. −0.919382
\(146\) −220534. −0.856235
\(147\) 207010. 0.790127
\(148\) −85682.2 −0.321541
\(149\) −495023. −1.82667 −0.913335 0.407210i \(-0.866502\pi\)
−0.913335 + 0.407210i \(0.866502\pi\)
\(150\) 110104. 0.399554
\(151\) 296102. 1.05681 0.528407 0.848991i \(-0.322789\pi\)
0.528407 + 0.848991i \(0.322789\pi\)
\(152\) −123374. −0.433127
\(153\) −47491.9 −0.164018
\(154\) 0 0
\(155\) 67432.0 0.225443
\(156\) −37749.9 −0.124195
\(157\) −115529. −0.374062 −0.187031 0.982354i \(-0.559886\pi\)
−0.187031 + 0.982354i \(0.559886\pi\)
\(158\) 76946.3 0.245214
\(159\) 388114. 1.21749
\(160\) 34848.8 0.107619
\(161\) 20843.0 0.0633716
\(162\) −181495. −0.543345
\(163\) −572235. −1.68696 −0.843482 0.537158i \(-0.819498\pi\)
−0.843482 + 0.537158i \(0.819498\pi\)
\(164\) −236798. −0.687493
\(165\) 0 0
\(166\) 155739. 0.438660
\(167\) −234964. −0.651943 −0.325972 0.945380i \(-0.605691\pi\)
−0.325972 + 0.945380i \(0.605691\pi\)
\(168\) 40211.8 0.109921
\(169\) −342872. −0.923455
\(170\) 137160. 0.364003
\(171\) 90862.3 0.237626
\(172\) 225563. 0.581362
\(173\) 439517. 1.11650 0.558252 0.829672i \(-0.311472\pi\)
0.558252 + 0.829672i \(0.311472\pi\)
\(174\) 382884. 0.958724
\(175\) 88299.7 0.217954
\(176\) 0 0
\(177\) 489028. 1.17328
\(178\) −103035. −0.243744
\(179\) 343503. 0.801305 0.400652 0.916230i \(-0.368783\pi\)
0.400652 + 0.916230i \(0.368783\pi\)
\(180\) −25665.4 −0.0590427
\(181\) 530114. 1.20274 0.601371 0.798970i \(-0.294621\pi\)
0.601371 + 0.798970i \(0.294621\pi\)
\(182\) −30274.1 −0.0677474
\(183\) 290621. 0.641503
\(184\) −29712.9 −0.0646994
\(185\) −182246. −0.391498
\(186\) −110922. −0.235090
\(187\) 0 0
\(188\) 258990. 0.534427
\(189\) −182294. −0.371209
\(190\) −262417. −0.527361
\(191\) 12559.4 0.0249106 0.0124553 0.999922i \(-0.496035\pi\)
0.0124553 + 0.999922i \(0.496035\pi\)
\(192\) −57324.3 −0.112224
\(193\) 358520. 0.692819 0.346409 0.938083i \(-0.387401\pi\)
0.346409 + 0.938083i \(0.387401\pi\)
\(194\) 317699. 0.606053
\(195\) −80294.1 −0.151216
\(196\) −236664. −0.440039
\(197\) −660910. −1.21332 −0.606662 0.794960i \(-0.707492\pi\)
−0.606662 + 0.794960i \(0.707492\pi\)
\(198\) 0 0
\(199\) −344066. −0.615898 −0.307949 0.951403i \(-0.599643\pi\)
−0.307949 + 0.951403i \(0.599643\pi\)
\(200\) −125876. −0.222520
\(201\) 873304. 1.52467
\(202\) 357226. 0.615978
\(203\) 307059. 0.522976
\(204\) −225621. −0.379580
\(205\) −503670. −0.837070
\(206\) 147667. 0.242446
\(207\) 21882.9 0.0354960
\(208\) 43157.5 0.0691669
\(209\) 0 0
\(210\) 85530.5 0.133836
\(211\) −63996.2 −0.0989574 −0.0494787 0.998775i \(-0.515756\pi\)
−0.0494787 + 0.998775i \(0.515756\pi\)
\(212\) −443711. −0.678049
\(213\) 1.13500e6 1.71414
\(214\) 496222. 0.740698
\(215\) 479773. 0.707847
\(216\) 259871. 0.378987
\(217\) −88955.4 −0.128240
\(218\) 777653. 1.10827
\(219\) 771603. 1.08714
\(220\) 0 0
\(221\) 169862. 0.233946
\(222\) 299785. 0.408251
\(223\) −471534. −0.634967 −0.317484 0.948264i \(-0.602838\pi\)
−0.317484 + 0.948264i \(0.602838\pi\)
\(224\) −45972.1 −0.0612173
\(225\) 92705.2 0.122081
\(226\) 178858. 0.232937
\(227\) 62515.3 0.0805233 0.0402616 0.999189i \(-0.487181\pi\)
0.0402616 + 0.999189i \(0.487181\pi\)
\(228\) 431661. 0.549928
\(229\) 304688. 0.383942 0.191971 0.981401i \(-0.438512\pi\)
0.191971 + 0.981401i \(0.438512\pi\)
\(230\) −63199.4 −0.0787759
\(231\) 0 0
\(232\) −437732. −0.533934
\(233\) 1.02310e6 1.23461 0.617305 0.786724i \(-0.288224\pi\)
0.617305 + 0.786724i \(0.288224\pi\)
\(234\) −31784.6 −0.0379469
\(235\) 550872. 0.650700
\(236\) −559081. −0.653423
\(237\) −269219. −0.311340
\(238\) −180940. −0.207058
\(239\) −113098. −0.128074 −0.0640370 0.997948i \(-0.520398\pi\)
−0.0640370 + 0.997948i \(0.520398\pi\)
\(240\) −121929. −0.136640
\(241\) −745081. −0.826344 −0.413172 0.910653i \(-0.635579\pi\)
−0.413172 + 0.910653i \(0.635579\pi\)
\(242\) 0 0
\(243\) −351686. −0.382067
\(244\) −332252. −0.357267
\(245\) −503384. −0.535777
\(246\) 828509. 0.872890
\(247\) −324983. −0.338936
\(248\) 126811. 0.130927
\(249\) −544900. −0.556953
\(250\) −693140. −0.701408
\(251\) 1.12854e6 1.13066 0.565331 0.824864i \(-0.308748\pi\)
0.565331 + 0.824864i \(0.308748\pi\)
\(252\) 33857.4 0.0335856
\(253\) 0 0
\(254\) 584147. 0.568117
\(255\) −479896. −0.462164
\(256\) 65536.0 0.0625000
\(257\) −1.65637e6 −1.56431 −0.782157 0.623081i \(-0.785881\pi\)
−0.782157 + 0.623081i \(0.785881\pi\)
\(258\) −789199. −0.738138
\(259\) 240417. 0.222698
\(260\) 91796.2 0.0842153
\(261\) 322380. 0.292932
\(262\) 116508. 0.104859
\(263\) −57188.8 −0.0509825 −0.0254913 0.999675i \(-0.508115\pi\)
−0.0254913 + 0.999675i \(0.508115\pi\)
\(264\) 0 0
\(265\) −943775. −0.825570
\(266\) 346177. 0.299981
\(267\) 360497. 0.309474
\(268\) −998405. −0.849121
\(269\) −515767. −0.434583 −0.217292 0.976107i \(-0.569722\pi\)
−0.217292 + 0.976107i \(0.569722\pi\)
\(270\) 552747. 0.461442
\(271\) 1.55254e6 1.28416 0.642080 0.766638i \(-0.278072\pi\)
0.642080 + 0.766638i \(0.278072\pi\)
\(272\) 257941. 0.211396
\(273\) 105923. 0.0860168
\(274\) 713410. 0.574067
\(275\) 0 0
\(276\) 103959. 0.0821469
\(277\) 1.01798e6 0.797148 0.398574 0.917136i \(-0.369505\pi\)
0.398574 + 0.917136i \(0.369505\pi\)
\(278\) 1.15429e6 0.895782
\(279\) −93393.8 −0.0718302
\(280\) −97782.8 −0.0745362
\(281\) 88821.5 0.0671046 0.0335523 0.999437i \(-0.489318\pi\)
0.0335523 + 0.999437i \(0.489318\pi\)
\(282\) −906153. −0.678545
\(283\) 772817. 0.573602 0.286801 0.957990i \(-0.407408\pi\)
0.286801 + 0.957990i \(0.407408\pi\)
\(284\) −1.29759e6 −0.954643
\(285\) 918144. 0.669574
\(286\) 0 0
\(287\) 664435. 0.476154
\(288\) −48265.8 −0.0342893
\(289\) −404638. −0.284985
\(290\) −931056. −0.650101
\(291\) −1.11156e6 −0.769488
\(292\) −882135. −0.605450
\(293\) −2.22347e6 −1.51308 −0.756539 0.653948i \(-0.773111\pi\)
−0.756539 + 0.653948i \(0.773111\pi\)
\(294\) 828038. 0.558704
\(295\) −1.18917e6 −0.795587
\(296\) −342729. −0.227364
\(297\) 0 0
\(298\) −1.98009e6 −1.29165
\(299\) −78267.6 −0.0506295
\(300\) 440416. 0.282527
\(301\) −632910. −0.402648
\(302\) 1.18441e6 0.747281
\(303\) −1.24986e6 −0.782088
\(304\) −493496. −0.306267
\(305\) −706701. −0.434997
\(306\) −189968. −0.115978
\(307\) 572812. 0.346870 0.173435 0.984845i \(-0.444513\pi\)
0.173435 + 0.984845i \(0.444513\pi\)
\(308\) 0 0
\(309\) −516656. −0.307826
\(310\) 269728. 0.159412
\(311\) −1.38578e6 −0.812443 −0.406221 0.913775i \(-0.633154\pi\)
−0.406221 + 0.913775i \(0.633154\pi\)
\(312\) −150999. −0.0878191
\(313\) −2.67552e6 −1.54365 −0.771824 0.635837i \(-0.780655\pi\)
−0.771824 + 0.635837i \(0.780655\pi\)
\(314\) −462117. −0.264502
\(315\) 72014.8 0.0408927
\(316\) 307785. 0.173392
\(317\) 1.16112e6 0.648976 0.324488 0.945890i \(-0.394808\pi\)
0.324488 + 0.945890i \(0.394808\pi\)
\(318\) 1.55246e6 0.860898
\(319\) 0 0
\(320\) 139395. 0.0760980
\(321\) −1.73618e6 −0.940442
\(322\) 83371.9 0.0448105
\(323\) −1.94233e6 −1.03590
\(324\) −725978. −0.384203
\(325\) −331575. −0.174130
\(326\) −2.28894e6 −1.19286
\(327\) −2.72085e6 −1.40713
\(328\) −947192. −0.486131
\(329\) −726703. −0.370141
\(330\) 0 0
\(331\) 523469. 0.262616 0.131308 0.991342i \(-0.458082\pi\)
0.131308 + 0.991342i \(0.458082\pi\)
\(332\) 622957. 0.310179
\(333\) 252412. 0.124738
\(334\) −939855. −0.460993
\(335\) −2.12361e6 −1.03386
\(336\) 160847. 0.0777258
\(337\) 2.18377e6 1.04745 0.523723 0.851888i \(-0.324543\pi\)
0.523723 + 0.851888i \(0.324543\pi\)
\(338\) −1.37149e6 −0.652981
\(339\) −625789. −0.295753
\(340\) 548640. 0.257389
\(341\) 0 0
\(342\) 363449. 0.168027
\(343\) 1.41860e6 0.651066
\(344\) 902252. 0.411085
\(345\) 221122. 0.100019
\(346\) 1.75807e6 0.789487
\(347\) −1.46113e6 −0.651426 −0.325713 0.945469i \(-0.605604\pi\)
−0.325713 + 0.945469i \(0.605604\pi\)
\(348\) 1.53153e6 0.677920
\(349\) −3.85292e6 −1.69327 −0.846635 0.532175i \(-0.821375\pi\)
−0.846635 + 0.532175i \(0.821375\pi\)
\(350\) 353199. 0.154116
\(351\) 684534. 0.296570
\(352\) 0 0
\(353\) −1.35757e6 −0.579864 −0.289932 0.957047i \(-0.593633\pi\)
−0.289932 + 0.957047i \(0.593633\pi\)
\(354\) 1.95611e6 0.829632
\(355\) −2.75997e6 −1.16234
\(356\) −412138. −0.172353
\(357\) 633072. 0.262895
\(358\) 1.37401e6 0.566608
\(359\) −1.68067e6 −0.688248 −0.344124 0.938924i \(-0.611824\pi\)
−0.344124 + 0.938924i \(0.611824\pi\)
\(360\) −102662. −0.0417495
\(361\) 1.24001e6 0.500791
\(362\) 2.12045e6 0.850467
\(363\) 0 0
\(364\) −121096. −0.0479046
\(365\) −1.87630e6 −0.737176
\(366\) 1.16248e6 0.453611
\(367\) 3.47103e6 1.34522 0.672609 0.739998i \(-0.265174\pi\)
0.672609 + 0.739998i \(0.265174\pi\)
\(368\) −118852. −0.0457494
\(369\) 697586. 0.266705
\(370\) −728985. −0.276831
\(371\) 1.24502e6 0.469613
\(372\) −443687. −0.166234
\(373\) −214110. −0.0796827 −0.0398413 0.999206i \(-0.512685\pi\)
−0.0398413 + 0.999206i \(0.512685\pi\)
\(374\) 0 0
\(375\) 2.42516e6 0.890557
\(376\) 1.03596e6 0.377897
\(377\) −1.15304e6 −0.417822
\(378\) −729177. −0.262484
\(379\) −470610. −0.168292 −0.0841459 0.996453i \(-0.526816\pi\)
−0.0841459 + 0.996453i \(0.526816\pi\)
\(380\) −1.04967e6 −0.372901
\(381\) −2.04381e6 −0.721321
\(382\) 50237.5 0.0176145
\(383\) 5.44569e6 1.89695 0.948475 0.316851i \(-0.102625\pi\)
0.948475 + 0.316851i \(0.102625\pi\)
\(384\) −229297. −0.0793544
\(385\) 0 0
\(386\) 1.43408e6 0.489897
\(387\) −664488. −0.225533
\(388\) 1.27079e6 0.428544
\(389\) 2.90015e6 0.971732 0.485866 0.874033i \(-0.338504\pi\)
0.485866 + 0.874033i \(0.338504\pi\)
\(390\) −321176. −0.106926
\(391\) −467784. −0.154740
\(392\) −946654. −0.311155
\(393\) −407639. −0.133136
\(394\) −2.64364e6 −0.857950
\(395\) 654660. 0.211117
\(396\) 0 0
\(397\) −5.79367e6 −1.84492 −0.922459 0.386094i \(-0.873824\pi\)
−0.922459 + 0.386094i \(0.873824\pi\)
\(398\) −1.37626e6 −0.435505
\(399\) −1.21120e6 −0.380877
\(400\) −503506. −0.157346
\(401\) 4.81743e6 1.49608 0.748039 0.663654i \(-0.230995\pi\)
0.748039 + 0.663654i \(0.230995\pi\)
\(402\) 3.49322e6 1.07810
\(403\) 334037. 0.102455
\(404\) 1.42890e6 0.435562
\(405\) −1.54416e6 −0.467793
\(406\) 1.22824e6 0.369800
\(407\) 0 0
\(408\) −902482. −0.268404
\(409\) 1.58399e6 0.468214 0.234107 0.972211i \(-0.424783\pi\)
0.234107 + 0.972211i \(0.424783\pi\)
\(410\) −2.01468e6 −0.591898
\(411\) −2.49608e6 −0.728876
\(412\) 590667. 0.171435
\(413\) 1.56873e6 0.452557
\(414\) 87531.6 0.0250994
\(415\) 1.32503e6 0.377664
\(416\) 172630. 0.0489084
\(417\) −4.03862e6 −1.13735
\(418\) 0 0
\(419\) 5.54621e6 1.54334 0.771669 0.636024i \(-0.219422\pi\)
0.771669 + 0.636024i \(0.219422\pi\)
\(420\) 342122. 0.0946363
\(421\) 5.71372e6 1.57113 0.785567 0.618776i \(-0.212371\pi\)
0.785567 + 0.618776i \(0.212371\pi\)
\(422\) −255985. −0.0699734
\(423\) −762961. −0.207325
\(424\) −1.77485e6 −0.479453
\(425\) −1.98173e6 −0.532197
\(426\) 4.54000e6 1.21208
\(427\) 932271. 0.247441
\(428\) 1.98489e6 0.523753
\(429\) 0 0
\(430\) 1.91909e6 0.500524
\(431\) −1.98415e6 −0.514494 −0.257247 0.966346i \(-0.582815\pi\)
−0.257247 + 0.966346i \(0.582815\pi\)
\(432\) 1.03949e6 0.267984
\(433\) 942839. 0.241667 0.120834 0.992673i \(-0.461443\pi\)
0.120834 + 0.992673i \(0.461443\pi\)
\(434\) −355822. −0.0906793
\(435\) 3.25758e6 0.825414
\(436\) 3.11061e6 0.783663
\(437\) 894972. 0.224185
\(438\) 3.08641e6 0.768721
\(439\) −5.19234e6 −1.28589 −0.642943 0.765914i \(-0.722287\pi\)
−0.642943 + 0.765914i \(0.722287\pi\)
\(440\) 0 0
\(441\) 697190. 0.170708
\(442\) 679448. 0.165425
\(443\) −207343. −0.0501974 −0.0250987 0.999685i \(-0.507990\pi\)
−0.0250987 + 0.999685i \(0.507990\pi\)
\(444\) 1.19914e6 0.288677
\(445\) −876620. −0.209851
\(446\) −1.88614e6 −0.448989
\(447\) 6.92795e6 1.63997
\(448\) −183888. −0.0432872
\(449\) −3.30440e6 −0.773529 −0.386764 0.922179i \(-0.626407\pi\)
−0.386764 + 0.922179i \(0.626407\pi\)
\(450\) 370821. 0.0863243
\(451\) 0 0
\(452\) 715433. 0.164711
\(453\) −4.14400e6 −0.948800
\(454\) 250061. 0.0569386
\(455\) −257572. −0.0583271
\(456\) 1.72664e6 0.388858
\(457\) 2.41419e6 0.540731 0.270365 0.962758i \(-0.412855\pi\)
0.270365 + 0.962758i \(0.412855\pi\)
\(458\) 1.21875e6 0.271488
\(459\) 4.09127e6 0.906414
\(460\) −252798. −0.0557030
\(461\) −7.38717e6 −1.61892 −0.809461 0.587174i \(-0.800241\pi\)
−0.809461 + 0.587174i \(0.800241\pi\)
\(462\) 0 0
\(463\) −5.36462e6 −1.16302 −0.581509 0.813540i \(-0.697537\pi\)
−0.581509 + 0.813540i \(0.697537\pi\)
\(464\) −1.75093e6 −0.377549
\(465\) −943724. −0.202401
\(466\) 4.09242e6 0.873001
\(467\) 334356. 0.0709441 0.0354721 0.999371i \(-0.488707\pi\)
0.0354721 + 0.999371i \(0.488707\pi\)
\(468\) −127138. −0.0268325
\(469\) 2.80144e6 0.588097
\(470\) 2.20349e6 0.460115
\(471\) 1.61686e6 0.335830
\(472\) −2.23632e6 −0.462040
\(473\) 0 0
\(474\) −1.07688e6 −0.220151
\(475\) 3.79148e6 0.771036
\(476\) −723759. −0.146412
\(477\) 1.30713e6 0.263041
\(478\) −452393. −0.0905619
\(479\) −4.31661e6 −0.859615 −0.429807 0.902921i \(-0.641419\pi\)
−0.429807 + 0.902921i \(0.641419\pi\)
\(480\) −487716. −0.0966193
\(481\) −902791. −0.177920
\(482\) −2.98032e6 −0.584313
\(483\) −291701. −0.0568945
\(484\) 0 0
\(485\) 2.70298e6 0.521782
\(486\) −1.40674e6 −0.270162
\(487\) −6.73620e6 −1.28704 −0.643521 0.765429i \(-0.722527\pi\)
−0.643521 + 0.765429i \(0.722527\pi\)
\(488\) −1.32901e6 −0.252626
\(489\) 8.00855e6 1.51454
\(490\) −2.01354e6 −0.378852
\(491\) 7.61747e6 1.42596 0.712980 0.701184i \(-0.247345\pi\)
0.712980 + 0.701184i \(0.247345\pi\)
\(492\) 3.31403e6 0.617226
\(493\) −6.89140e6 −1.27700
\(494\) −1.29993e6 −0.239664
\(495\) 0 0
\(496\) 507245. 0.0925793
\(497\) 3.64092e6 0.661181
\(498\) −2.17960e6 −0.393825
\(499\) 6.78667e6 1.22013 0.610064 0.792352i \(-0.291144\pi\)
0.610064 + 0.792352i \(0.291144\pi\)
\(500\) −2.77256e6 −0.495971
\(501\) 3.28836e6 0.585309
\(502\) 4.51416e6 0.799499
\(503\) 3.57940e6 0.630798 0.315399 0.948959i \(-0.397862\pi\)
0.315399 + 0.948959i \(0.397862\pi\)
\(504\) 135430. 0.0237486
\(505\) 3.03928e6 0.530326
\(506\) 0 0
\(507\) 4.79857e6 0.829071
\(508\) 2.33659e6 0.401719
\(509\) 8.82739e6 1.51021 0.755106 0.655603i \(-0.227585\pi\)
0.755106 + 0.655603i \(0.227585\pi\)
\(510\) −1.91958e6 −0.326799
\(511\) 2.47520e6 0.419331
\(512\) 262144. 0.0441942
\(513\) −7.82749e6 −1.31319
\(514\) −6.62547e6 −1.10614
\(515\) 1.25635e6 0.208734
\(516\) −3.15680e6 −0.521942
\(517\) 0 0
\(518\) 961668. 0.157471
\(519\) −6.15112e6 −1.00239
\(520\) 367185. 0.0595492
\(521\) 2.98921e6 0.482460 0.241230 0.970468i \(-0.422449\pi\)
0.241230 + 0.970468i \(0.422449\pi\)
\(522\) 1.28952e6 0.207134
\(523\) −1.10478e7 −1.76612 −0.883061 0.469259i \(-0.844521\pi\)
−0.883061 + 0.469259i \(0.844521\pi\)
\(524\) 466033. 0.0741462
\(525\) −1.23577e6 −0.195677
\(526\) −228755. −0.0360501
\(527\) 1.99645e6 0.313135
\(528\) 0 0
\(529\) −6.22080e6 −0.966512
\(530\) −3.77510e6 −0.583766
\(531\) 1.64700e6 0.253488
\(532\) 1.38471e6 0.212119
\(533\) −2.49502e6 −0.380414
\(534\) 1.44199e6 0.218831
\(535\) 4.22186e6 0.637704
\(536\) −3.99362e6 −0.600419
\(537\) −4.80739e6 −0.719405
\(538\) −2.06307e6 −0.307297
\(539\) 0 0
\(540\) 2.21099e6 0.326289
\(541\) −6.22056e6 −0.913769 −0.456885 0.889526i \(-0.651035\pi\)
−0.456885 + 0.889526i \(0.651035\pi\)
\(542\) 6.21015e6 0.908038
\(543\) −7.41904e6 −1.07981
\(544\) 1.03176e6 0.149480
\(545\) 6.61628e6 0.954163
\(546\) 423692. 0.0608231
\(547\) −2.34371e6 −0.334916 −0.167458 0.985879i \(-0.553556\pi\)
−0.167458 + 0.985879i \(0.553556\pi\)
\(548\) 2.85364e6 0.405927
\(549\) 978785. 0.138598
\(550\) 0 0
\(551\) 1.31848e7 1.85009
\(552\) 415838. 0.0580866
\(553\) −863618. −0.120091
\(554\) 4.07191e6 0.563669
\(555\) 2.55057e6 0.351484
\(556\) 4.61715e6 0.633414
\(557\) −2.36041e6 −0.322366 −0.161183 0.986925i \(-0.551531\pi\)
−0.161183 + 0.986925i \(0.551531\pi\)
\(558\) −373575. −0.0507917
\(559\) 2.37665e6 0.321688
\(560\) −391131. −0.0527050
\(561\) 0 0
\(562\) 355286. 0.0474501
\(563\) 3.72963e6 0.495901 0.247950 0.968773i \(-0.420243\pi\)
0.247950 + 0.968773i \(0.420243\pi\)
\(564\) −3.62461e6 −0.479804
\(565\) 1.52173e6 0.200547
\(566\) 3.09127e6 0.405598
\(567\) 2.03703e6 0.266097
\(568\) −5.19035e6 −0.675034
\(569\) −332049. −0.0429954 −0.0214977 0.999769i \(-0.506843\pi\)
−0.0214977 + 0.999769i \(0.506843\pi\)
\(570\) 3.67258e6 0.473461
\(571\) 9.55352e6 1.22623 0.613117 0.789992i \(-0.289915\pi\)
0.613117 + 0.789992i \(0.289915\pi\)
\(572\) 0 0
\(573\) −175771. −0.0223645
\(574\) 2.65774e6 0.336692
\(575\) 913124. 0.115176
\(576\) −193063. −0.0242462
\(577\) 1.31593e7 1.64548 0.822741 0.568416i \(-0.192444\pi\)
0.822741 + 0.568416i \(0.192444\pi\)
\(578\) −1.61855e6 −0.201515
\(579\) −5.01755e6 −0.622007
\(580\) −3.72422e6 −0.459691
\(581\) −1.74796e6 −0.214829
\(582\) −4.44625e6 −0.544110
\(583\) 0 0
\(584\) −3.52854e6 −0.428118
\(585\) −270423. −0.0326704
\(586\) −8.89386e6 −1.06991
\(587\) −6.29053e6 −0.753515 −0.376757 0.926312i \(-0.622961\pi\)
−0.376757 + 0.926312i \(0.622961\pi\)
\(588\) 3.31215e6 0.395064
\(589\) −3.81964e6 −0.453664
\(590\) −4.75666e6 −0.562565
\(591\) 9.24956e6 1.08931
\(592\) −1.37092e6 −0.160771
\(593\) 6.91154e6 0.807120 0.403560 0.914953i \(-0.367773\pi\)
0.403560 + 0.914953i \(0.367773\pi\)
\(594\) 0 0
\(595\) −1.53944e6 −0.178266
\(596\) −7.92037e6 −0.913335
\(597\) 4.81526e6 0.552948
\(598\) −313070. −0.0358005
\(599\) −1.07235e7 −1.22115 −0.610577 0.791957i \(-0.709062\pi\)
−0.610577 + 0.791957i \(0.709062\pi\)
\(600\) 1.76167e6 0.199777
\(601\) −3.75263e6 −0.423789 −0.211894 0.977293i \(-0.567963\pi\)
−0.211894 + 0.977293i \(0.567963\pi\)
\(602\) −2.53164e6 −0.284715
\(603\) 2.94121e6 0.329407
\(604\) 4.73763e6 0.528407
\(605\) 0 0
\(606\) −4.99945e6 −0.553020
\(607\) 1.17904e7 1.29885 0.649424 0.760427i \(-0.275010\pi\)
0.649424 + 0.760427i \(0.275010\pi\)
\(608\) −1.97399e6 −0.216563
\(609\) −4.29735e6 −0.469524
\(610\) −2.82680e6 −0.307589
\(611\) 2.72885e6 0.295717
\(612\) −759870. −0.0820089
\(613\) −1.45578e7 −1.56475 −0.782374 0.622808i \(-0.785992\pi\)
−0.782374 + 0.622808i \(0.785992\pi\)
\(614\) 2.29125e6 0.245274
\(615\) 7.04896e6 0.751514
\(616\) 0 0
\(617\) 726606. 0.0768398 0.0384199 0.999262i \(-0.487768\pi\)
0.0384199 + 0.999262i \(0.487768\pi\)
\(618\) −2.06662e6 −0.217666
\(619\) −8.20988e6 −0.861212 −0.430606 0.902540i \(-0.641700\pi\)
−0.430606 + 0.902540i \(0.641700\pi\)
\(620\) 1.07891e6 0.112722
\(621\) −1.88514e6 −0.196162
\(622\) −5.54311e6 −0.574484
\(623\) 1.15643e6 0.119371
\(624\) −603998. −0.0620975
\(625\) 249070. 0.0255047
\(626\) −1.07021e7 −1.09152
\(627\) 0 0
\(628\) −1.84847e6 −0.187031
\(629\) −5.39574e6 −0.543781
\(630\) 288059. 0.0289155
\(631\) 5.07809e6 0.507724 0.253862 0.967241i \(-0.418299\pi\)
0.253862 + 0.967241i \(0.418299\pi\)
\(632\) 1.23114e6 0.122607
\(633\) 895639. 0.0888431
\(634\) 4.64447e6 0.458895
\(635\) 4.96993e6 0.489120
\(636\) 6.20983e6 0.608747
\(637\) −2.49361e6 −0.243489
\(638\) 0 0
\(639\) 3.82258e6 0.370343
\(640\) 557581. 0.0538094
\(641\) 5.29171e6 0.508687 0.254344 0.967114i \(-0.418141\pi\)
0.254344 + 0.967114i \(0.418141\pi\)
\(642\) −6.94472e6 −0.664993
\(643\) −1.83185e7 −1.74728 −0.873640 0.486574i \(-0.838247\pi\)
−0.873640 + 0.486574i \(0.838247\pi\)
\(644\) 333487. 0.0316858
\(645\) −6.71451e6 −0.635500
\(646\) −7.76934e6 −0.732492
\(647\) −1.01632e6 −0.0954483 −0.0477241 0.998861i \(-0.515197\pi\)
−0.0477241 + 0.998861i \(0.515197\pi\)
\(648\) −2.90391e6 −0.271673
\(649\) 0 0
\(650\) −1.32630e6 −0.123128
\(651\) 1.24495e6 0.115133
\(652\) −9.15577e6 −0.843482
\(653\) −1.35585e7 −1.24431 −0.622156 0.782893i \(-0.713743\pi\)
−0.622156 + 0.782893i \(0.713743\pi\)
\(654\) −1.08834e7 −0.994993
\(655\) 991254. 0.0902780
\(656\) −3.78877e6 −0.343747
\(657\) 2.59869e6 0.234877
\(658\) −2.90681e6 −0.261729
\(659\) 1.39936e7 1.25521 0.627603 0.778534i \(-0.284036\pi\)
0.627603 + 0.778534i \(0.284036\pi\)
\(660\) 0 0
\(661\) −2.04876e7 −1.82384 −0.911921 0.410365i \(-0.865401\pi\)
−0.911921 + 0.410365i \(0.865401\pi\)
\(662\) 2.09387e6 0.185697
\(663\) −2.37725e6 −0.210035
\(664\) 2.49183e6 0.219330
\(665\) 2.94528e6 0.258269
\(666\) 1.00965e6 0.0882033
\(667\) 3.17536e6 0.276362
\(668\) −3.75942e6 −0.325972
\(669\) 6.59921e6 0.570068
\(670\) −8.49444e6 −0.731051
\(671\) 0 0
\(672\) 643388. 0.0549604
\(673\) 1.85921e7 1.58230 0.791152 0.611620i \(-0.209482\pi\)
0.791152 + 0.611620i \(0.209482\pi\)
\(674\) 8.73507e6 0.740657
\(675\) −7.98625e6 −0.674658
\(676\) −5.48596e6 −0.461728
\(677\) −714475. −0.0599123 −0.0299561 0.999551i \(-0.509537\pi\)
−0.0299561 + 0.999551i \(0.509537\pi\)
\(678\) −2.50316e6 −0.209129
\(679\) −3.56574e6 −0.296808
\(680\) 2.19456e6 0.182002
\(681\) −874913. −0.0722932
\(682\) 0 0
\(683\) −4.26980e6 −0.350232 −0.175116 0.984548i \(-0.556030\pi\)
−0.175116 + 0.984548i \(0.556030\pi\)
\(684\) 1.45380e6 0.118813
\(685\) 6.06970e6 0.494243
\(686\) 5.67441e6 0.460373
\(687\) −4.26416e6 −0.344700
\(688\) 3.60901e6 0.290681
\(689\) −4.67517e6 −0.375188
\(690\) 884488. 0.0707244
\(691\) −2.22906e7 −1.77593 −0.887965 0.459910i \(-0.847882\pi\)
−0.887965 + 0.459910i \(0.847882\pi\)
\(692\) 7.03227e6 0.558252
\(693\) 0 0
\(694\) −5.84452e6 −0.460627
\(695\) 9.82070e6 0.771224
\(696\) 6.12614e6 0.479362
\(697\) −1.49121e7 −1.16267
\(698\) −1.54117e7 −1.19732
\(699\) −1.43185e7 −1.10842
\(700\) 1.41279e6 0.108977
\(701\) 1.98732e7 1.52747 0.763737 0.645528i \(-0.223363\pi\)
0.763737 + 0.645528i \(0.223363\pi\)
\(702\) 2.73814e6 0.209707
\(703\) 1.03232e7 0.787819
\(704\) 0 0
\(705\) −7.70956e6 −0.584194
\(706\) −5.43029e6 −0.410026
\(707\) −4.00938e6 −0.301668
\(708\) 7.82444e6 0.586638
\(709\) −1.96135e7 −1.46534 −0.732671 0.680583i \(-0.761726\pi\)
−0.732671 + 0.680583i \(0.761726\pi\)
\(710\) −1.10399e7 −0.821900
\(711\) −906707. −0.0672656
\(712\) −1.64855e6 −0.121872
\(713\) −919906. −0.0677672
\(714\) 2.53229e6 0.185895
\(715\) 0 0
\(716\) 5.49605e6 0.400652
\(717\) 1.58283e6 0.114984
\(718\) −6.72266e6 −0.486665
\(719\) 1.07684e7 0.776839 0.388419 0.921483i \(-0.373021\pi\)
0.388419 + 0.921483i \(0.373021\pi\)
\(720\) −410646. −0.0295214
\(721\) −1.65736e6 −0.118735
\(722\) 4.96003e6 0.354113
\(723\) 1.04276e7 0.741885
\(724\) 8.48182e6 0.601371
\(725\) 1.34522e7 0.950490
\(726\) 0 0
\(727\) 3.08418e6 0.216423 0.108212 0.994128i \(-0.465488\pi\)
0.108212 + 0.994128i \(0.465488\pi\)
\(728\) −484385. −0.0338737
\(729\) 1.59477e7 1.11142
\(730\) −7.50521e6 −0.521262
\(731\) 1.42046e7 0.983182
\(732\) 4.64993e6 0.320752
\(733\) −2.41098e7 −1.65742 −0.828712 0.559675i \(-0.810926\pi\)
−0.828712 + 0.559675i \(0.810926\pi\)
\(734\) 1.38841e7 0.951213
\(735\) 7.04496e6 0.481016
\(736\) −475406. −0.0323497
\(737\) 0 0
\(738\) 2.79034e6 0.188589
\(739\) 3.60334e6 0.242713 0.121357 0.992609i \(-0.461276\pi\)
0.121357 + 0.992609i \(0.461276\pi\)
\(740\) −2.91594e6 −0.195749
\(741\) 4.54820e6 0.304294
\(742\) 4.98006e6 0.332066
\(743\) 1.97401e7 1.31183 0.655916 0.754834i \(-0.272283\pi\)
0.655916 + 0.754834i \(0.272283\pi\)
\(744\) −1.77475e6 −0.117545
\(745\) −1.68467e7 −1.11205
\(746\) −856438. −0.0563442
\(747\) −1.83518e6 −0.120331
\(748\) 0 0
\(749\) −5.56942e6 −0.362748
\(750\) 9.70063e6 0.629719
\(751\) −699753. −0.0452736 −0.0226368 0.999744i \(-0.507206\pi\)
−0.0226368 + 0.999744i \(0.507206\pi\)
\(752\) 4.14384e6 0.267213
\(753\) −1.57941e7 −1.01510
\(754\) −4.61216e6 −0.295445
\(755\) 1.00770e7 0.643372
\(756\) −2.91671e6 −0.185604
\(757\) −2.99299e6 −0.189830 −0.0949151 0.995485i \(-0.530258\pi\)
−0.0949151 + 0.995485i \(0.530258\pi\)
\(758\) −1.88244e6 −0.119000
\(759\) 0 0
\(760\) −4.19867e6 −0.263681
\(761\) 1.30835e7 0.818962 0.409481 0.912319i \(-0.365710\pi\)
0.409481 + 0.912319i \(0.365710\pi\)
\(762\) −8.17525e6 −0.510051
\(763\) −8.72811e6 −0.542761
\(764\) 200950. 0.0124553
\(765\) −1.61625e6 −0.0998513
\(766\) 2.17828e7 1.34135
\(767\) −5.89076e6 −0.361562
\(768\) −917189. −0.0561120
\(769\) −1.92752e7 −1.17539 −0.587697 0.809081i \(-0.699965\pi\)
−0.587697 + 0.809081i \(0.699965\pi\)
\(770\) 0 0
\(771\) 2.31812e7 1.40443
\(772\) 5.73631e6 0.346409
\(773\) 4.59668e6 0.276692 0.138346 0.990384i \(-0.455821\pi\)
0.138346 + 0.990384i \(0.455821\pi\)
\(774\) −2.65795e6 −0.159476
\(775\) −3.89711e6 −0.233071
\(776\) 5.08318e6 0.303027
\(777\) −3.36468e6 −0.199936
\(778\) 1.16006e7 0.687118
\(779\) 2.85300e7 1.68445
\(780\) −1.28471e6 −0.0756079
\(781\) 0 0
\(782\) −1.87113e6 −0.109418
\(783\) −2.77719e7 −1.61883
\(784\) −3.78662e6 −0.220020
\(785\) −3.93170e6 −0.227723
\(786\) −1.63056e6 −0.0941412
\(787\) 1.00311e7 0.577313 0.288657 0.957433i \(-0.406791\pi\)
0.288657 + 0.957433i \(0.406791\pi\)
\(788\) −1.05746e7 −0.606662
\(789\) 800368. 0.0457717
\(790\) 2.61864e6 0.149282
\(791\) −2.00744e6 −0.114078
\(792\) 0 0
\(793\) −3.50078e6 −0.197688
\(794\) −2.31747e7 −1.30455
\(795\) 1.32083e7 0.741190
\(796\) −5.50505e6 −0.307949
\(797\) 2.24814e7 1.25365 0.626827 0.779159i \(-0.284353\pi\)
0.626827 + 0.779159i \(0.284353\pi\)
\(798\) −4.84482e6 −0.269321
\(799\) 1.63096e7 0.903807
\(800\) −2.01402e6 −0.111260
\(801\) 1.21412e6 0.0668623
\(802\) 1.92697e7 1.05789
\(803\) 0 0
\(804\) 1.39729e7 0.762334
\(805\) 709329. 0.0385796
\(806\) 1.33615e6 0.0724465
\(807\) 7.21826e6 0.390165
\(808\) 5.71562e6 0.307989
\(809\) 1.59748e7 0.858153 0.429077 0.903268i \(-0.358839\pi\)
0.429077 + 0.903268i \(0.358839\pi\)
\(810\) −6.17663e6 −0.330780
\(811\) −2.04745e6 −0.109310 −0.0546551 0.998505i \(-0.517406\pi\)
−0.0546551 + 0.998505i \(0.517406\pi\)
\(812\) 4.91295e6 0.261488
\(813\) −2.17281e7 −1.15291
\(814\) 0 0
\(815\) −1.94743e7 −1.02700
\(816\) −3.60993e6 −0.189790
\(817\) −2.71764e7 −1.42442
\(818\) 6.33596e6 0.331077
\(819\) 356739. 0.0185841
\(820\) −8.05872e6 −0.418535
\(821\) −2.23680e7 −1.15816 −0.579082 0.815269i \(-0.696589\pi\)
−0.579082 + 0.815269i \(0.696589\pi\)
\(822\) −9.98431e6 −0.515393
\(823\) −1.19039e7 −0.612616 −0.306308 0.951933i \(-0.599094\pi\)
−0.306308 + 0.951933i \(0.599094\pi\)
\(824\) 2.36267e6 0.121223
\(825\) 0 0
\(826\) 6.27493e6 0.320006
\(827\) −1.28553e7 −0.653611 −0.326805 0.945092i \(-0.605972\pi\)
−0.326805 + 0.945092i \(0.605972\pi\)
\(828\) 350126. 0.0177480
\(829\) 3.55346e7 1.79583 0.897914 0.440171i \(-0.145082\pi\)
0.897914 + 0.440171i \(0.145082\pi\)
\(830\) 5.30013e6 0.267049
\(831\) −1.42468e7 −0.715673
\(832\) 690521. 0.0345834
\(833\) −1.49036e7 −0.744181
\(834\) −1.61545e7 −0.804226
\(835\) −7.99630e6 −0.396892
\(836\) 0 0
\(837\) 8.04557e6 0.396957
\(838\) 2.21848e7 1.09130
\(839\) −2.40146e6 −0.117780 −0.0588899 0.998264i \(-0.518756\pi\)
−0.0588899 + 0.998264i \(0.518756\pi\)
\(840\) 1.36849e6 0.0669180
\(841\) 2.62684e7 1.28069
\(842\) 2.28549e7 1.11096
\(843\) −1.24307e6 −0.0602460
\(844\) −1.02394e6 −0.0494787
\(845\) −1.16686e7 −0.562184
\(846\) −3.05184e6 −0.146601
\(847\) 0 0
\(848\) −7.09938e6 −0.339024
\(849\) −1.08157e7 −0.514975
\(850\) −7.92692e6 −0.376320
\(851\) 2.48620e6 0.117683
\(852\) 1.81600e7 0.857071
\(853\) −2.60183e7 −1.22435 −0.612176 0.790722i \(-0.709706\pi\)
−0.612176 + 0.790722i \(0.709706\pi\)
\(854\) 3.72908e6 0.174967
\(855\) 3.09223e6 0.144663
\(856\) 7.93955e6 0.370349
\(857\) −1.67662e7 −0.779800 −0.389900 0.920857i \(-0.627490\pi\)
−0.389900 + 0.920857i \(0.627490\pi\)
\(858\) 0 0
\(859\) −1.56395e7 −0.723168 −0.361584 0.932340i \(-0.617764\pi\)
−0.361584 + 0.932340i \(0.617764\pi\)
\(860\) 7.67637e6 0.353924
\(861\) −9.29890e6 −0.427488
\(862\) −7.93659e6 −0.363802
\(863\) 2.85791e7 1.30624 0.653119 0.757256i \(-0.273460\pi\)
0.653119 + 0.757256i \(0.273460\pi\)
\(864\) 4.15794e6 0.189493
\(865\) 1.49577e7 0.679709
\(866\) 3.77135e6 0.170884
\(867\) 5.66299e6 0.255857
\(868\) −1.42329e6 −0.0641200
\(869\) 0 0
\(870\) 1.30303e7 0.583656
\(871\) −1.05197e7 −0.469848
\(872\) 1.24424e7 0.554134
\(873\) −3.74365e6 −0.166249
\(874\) 3.57989e6 0.158522
\(875\) 7.77957e6 0.343507
\(876\) 1.23457e7 0.543568
\(877\) 6.33547e6 0.278150 0.139075 0.990282i \(-0.455587\pi\)
0.139075 + 0.990282i \(0.455587\pi\)
\(878\) −2.07694e7 −0.909258
\(879\) 3.11178e7 1.35843
\(880\) 0 0
\(881\) 3.12019e7 1.35438 0.677191 0.735807i \(-0.263197\pi\)
0.677191 + 0.735807i \(0.263197\pi\)
\(882\) 2.78876e6 0.120709
\(883\) −1.27448e7 −0.550087 −0.275044 0.961432i \(-0.588692\pi\)
−0.275044 + 0.961432i \(0.588692\pi\)
\(884\) 2.71779e6 0.116973
\(885\) 1.66426e7 0.714271
\(886\) −829374. −0.0354949
\(887\) 3.53427e7 1.50831 0.754155 0.656697i \(-0.228047\pi\)
0.754155 + 0.656697i \(0.228047\pi\)
\(888\) 4.79656e6 0.204125
\(889\) −6.55626e6 −0.278229
\(890\) −3.50648e6 −0.148387
\(891\) 0 0
\(892\) −7.54455e6 −0.317484
\(893\) −3.12037e7 −1.30942
\(894\) 2.77118e7 1.15963
\(895\) 1.16901e7 0.487821
\(896\) −735553. −0.0306087
\(897\) 1.09537e6 0.0454548
\(898\) −1.32176e7 −0.546968
\(899\) −1.35521e7 −0.559251
\(900\) 1.48328e6 0.0610405
\(901\) −2.79422e7 −1.14670
\(902\) 0 0
\(903\) 8.85770e6 0.361494
\(904\) 2.86173e6 0.116468
\(905\) 1.80408e7 0.732210
\(906\) −1.65760e7 −0.670903
\(907\) 3.10415e6 0.125292 0.0626462 0.998036i \(-0.480046\pi\)
0.0626462 + 0.998036i \(0.480046\pi\)
\(908\) 1.00024e6 0.0402616
\(909\) −4.20943e6 −0.168971
\(910\) −1.03029e6 −0.0412435
\(911\) −1.80496e7 −0.720563 −0.360281 0.932844i \(-0.617319\pi\)
−0.360281 + 0.932844i \(0.617319\pi\)
\(912\) 6.90658e6 0.274964
\(913\) 0 0
\(914\) 9.65676e6 0.382354
\(915\) 9.89042e6 0.390537
\(916\) 4.87500e6 0.191971
\(917\) −1.30765e6 −0.0513533
\(918\) 1.63651e7 0.640931
\(919\) −1.25209e7 −0.489044 −0.244522 0.969644i \(-0.578631\pi\)
−0.244522 + 0.969644i \(0.578631\pi\)
\(920\) −1.01119e6 −0.0393880
\(921\) −8.01662e6 −0.311417
\(922\) −2.95487e7 −1.14475
\(923\) −1.36720e7 −0.528237
\(924\) 0 0
\(925\) 1.05326e7 0.404745
\(926\) −2.14585e7 −0.822377
\(927\) −1.74005e6 −0.0665063
\(928\) −7.00370e6 −0.266967
\(929\) −1.30954e7 −0.497826 −0.248913 0.968526i \(-0.580073\pi\)
−0.248913 + 0.968526i \(0.580073\pi\)
\(930\) −3.77490e6 −0.143119
\(931\) 2.85138e7 1.07816
\(932\) 1.63697e7 0.617305
\(933\) 1.93942e7 0.729404
\(934\) 1.33742e6 0.0501651
\(935\) 0 0
\(936\) −508553. −0.0189735
\(937\) 1.22906e6 0.0457324 0.0228662 0.999739i \(-0.492721\pi\)
0.0228662 + 0.999739i \(0.492721\pi\)
\(938\) 1.12057e7 0.415847
\(939\) 3.74445e7 1.38587
\(940\) 8.81395e6 0.325350
\(941\) 2.81996e6 0.103817 0.0519085 0.998652i \(-0.483470\pi\)
0.0519085 + 0.998652i \(0.483470\pi\)
\(942\) 6.46742e6 0.237467
\(943\) 6.87105e6 0.251619
\(944\) −8.94529e6 −0.326712
\(945\) −6.20384e6 −0.225986
\(946\) 0 0
\(947\) 4.77505e7 1.73023 0.865114 0.501576i \(-0.167246\pi\)
0.865114 + 0.501576i \(0.167246\pi\)
\(948\) −4.30751e6 −0.155670
\(949\) −9.29462e6 −0.335017
\(950\) 1.51659e7 0.545205
\(951\) −1.62501e7 −0.582645
\(952\) −2.89504e6 −0.103529
\(953\) 4.11415e7 1.46740 0.733699 0.679474i \(-0.237792\pi\)
0.733699 + 0.679474i \(0.237792\pi\)
\(954\) 5.22854e6 0.185998
\(955\) 427421. 0.0151652
\(956\) −1.80957e6 −0.0640370
\(957\) 0 0
\(958\) −1.72664e7 −0.607839
\(959\) −8.00707e6 −0.281143
\(960\) −1.95086e6 −0.0683201
\(961\) −2.47031e7 −0.862865
\(962\) −3.61117e6 −0.125808
\(963\) −5.84730e6 −0.203184
\(964\) −1.19213e7 −0.413172
\(965\) 1.22012e7 0.421777
\(966\) −1.16681e6 −0.0402305
\(967\) −2.71858e7 −0.934924 −0.467462 0.884013i \(-0.654832\pi\)
−0.467462 + 0.884013i \(0.654832\pi\)
\(968\) 0 0
\(969\) 2.71833e7 0.930022
\(970\) 1.08119e7 0.368955
\(971\) −3.01073e7 −1.02476 −0.512382 0.858758i \(-0.671237\pi\)
−0.512382 + 0.858758i \(0.671237\pi\)
\(972\) −5.62698e6 −0.191034
\(973\) −1.29553e7 −0.438699
\(974\) −2.69448e7 −0.910076
\(975\) 4.64045e6 0.156332
\(976\) −5.31603e6 −0.178634
\(977\) 2.08285e7 0.698105 0.349053 0.937103i \(-0.386503\pi\)
0.349053 + 0.937103i \(0.386503\pi\)
\(978\) 3.20342e7 1.07094
\(979\) 0 0
\(980\) −8.05414e6 −0.267889
\(981\) −9.16358e6 −0.304013
\(982\) 3.04699e7 1.00831
\(983\) −4.97327e6 −0.164156 −0.0820782 0.996626i \(-0.526156\pi\)
−0.0820782 + 0.996626i \(0.526156\pi\)
\(984\) 1.32561e7 0.436445
\(985\) −2.24921e7 −0.738652
\(986\) −2.75656e7 −0.902974
\(987\) 1.01704e7 0.332310
\(988\) −5.19973e6 −0.169468
\(989\) −6.54505e6 −0.212776
\(990\) 0 0
\(991\) −3.93510e7 −1.27283 −0.636417 0.771345i \(-0.719584\pi\)
−0.636417 + 0.771345i \(0.719584\pi\)
\(992\) 2.02898e6 0.0654635
\(993\) −7.32605e6 −0.235774
\(994\) 1.45637e7 0.467525
\(995\) −1.17093e7 −0.374948
\(996\) −8.71841e6 −0.278477
\(997\) −1.00523e6 −0.0320280 −0.0160140 0.999872i \(-0.505098\pi\)
−0.0160140 + 0.999872i \(0.505098\pi\)
\(998\) 2.71467e7 0.862761
\(999\) −2.17445e7 −0.689343
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 242.6.a.m.1.2 4
11.2 odd 10 22.6.c.a.15.1 yes 8
11.6 odd 10 22.6.c.a.3.1 8
11.10 odd 2 242.6.a.k.1.2 4
33.2 even 10 198.6.f.b.37.2 8
33.17 even 10 198.6.f.b.91.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
22.6.c.a.3.1 8 11.6 odd 10
22.6.c.a.15.1 yes 8 11.2 odd 10
198.6.f.b.37.2 8 33.2 even 10
198.6.f.b.91.2 8 33.17 even 10
242.6.a.k.1.2 4 11.10 odd 2
242.6.a.m.1.2 4 1.1 even 1 trivial