Properties

Label 242.4.c.h
Level $242$
Weight $4$
Character orbit 242.c
Analytic conductor $14.278$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [242,4,Mod(3,242)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(242, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("242.3"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 242 = 2 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 242.c (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,-4,-4,-14,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.2784622214\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 22)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 2 \zeta_{10}^{3} + 2 \zeta_{10}^{2} + \cdots + 2) q^{2} + 4 \zeta_{10}^{2} q^{3} - 4 \zeta_{10}^{3} q^{4} - 14 \zeta_{10} q^{5} + 8 \zeta_{10} q^{6} + 8 \zeta_{10}^{3} q^{7} - 8 \zeta_{10}^{2} q^{8} + \cdots + 558 q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 4 q^{3} - 4 q^{4} - 14 q^{5} + 8 q^{6} + 8 q^{7} + 8 q^{8} + 11 q^{9} - 112 q^{10} + 64 q^{12} + 50 q^{13} - 16 q^{14} - 56 q^{15} - 16 q^{16} - 130 q^{17} - 22 q^{18} + 108 q^{19} - 56 q^{20}+ \cdots + 2232 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/242\mathbb{Z}\right)^\times\).

\(n\) \(123\)
\(\chi(n)\) \(-\zeta_{10}^{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3.1
0.809017 + 0.587785i
−0.309017 0.951057i
−0.309017 + 0.951057i
0.809017 0.587785i
1.61803 1.17557i 1.23607 + 3.80423i 1.23607 3.80423i −11.3262 8.22899i 6.47214 + 4.70228i −2.47214 + 7.60845i −2.47214 7.60845i 8.89919 6.46564i −28.0000
9.1 −0.618034 + 1.90211i −3.23607 + 2.35114i −3.23607 2.35114i 4.32624 + 13.3148i −2.47214 7.60845i 6.47214 + 4.70228i 6.47214 4.70228i −3.39919 + 10.4616i −28.0000
27.1 −0.618034 1.90211i −3.23607 2.35114i −3.23607 + 2.35114i 4.32624 13.3148i −2.47214 + 7.60845i 6.47214 4.70228i 6.47214 + 4.70228i −3.39919 10.4616i −28.0000
81.1 1.61803 + 1.17557i 1.23607 3.80423i 1.23607 + 3.80423i −11.3262 + 8.22899i 6.47214 4.70228i −2.47214 7.60845i −2.47214 + 7.60845i 8.89919 + 6.46564i −28.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 3 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 242.4.c.h 4
11.b odd 2 1 242.4.c.b 4
11.c even 5 1 22.4.a.b 1
11.c even 5 3 inner 242.4.c.h 4
11.d odd 10 1 242.4.a.f 1
11.d odd 10 3 242.4.c.b 4
33.f even 10 1 2178.4.a.a 1
33.h odd 10 1 198.4.a.d 1
44.g even 10 1 1936.4.a.g 1
44.h odd 10 1 176.4.a.b 1
55.j even 10 1 550.4.a.k 1
55.k odd 20 2 550.4.b.b 2
77.j odd 10 1 1078.4.a.a 1
88.l odd 10 1 704.4.a.i 1
88.o even 10 1 704.4.a.d 1
132.o even 10 1 1584.4.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
22.4.a.b 1 11.c even 5 1
176.4.a.b 1 44.h odd 10 1
198.4.a.d 1 33.h odd 10 1
242.4.a.f 1 11.d odd 10 1
242.4.c.b 4 11.b odd 2 1
242.4.c.b 4 11.d odd 10 3
242.4.c.h 4 1.a even 1 1 trivial
242.4.c.h 4 11.c even 5 3 inner
550.4.a.k 1 55.j even 10 1
550.4.b.b 2 55.k odd 20 2
704.4.a.d 1 88.o even 10 1
704.4.a.i 1 88.l odd 10 1
1078.4.a.a 1 77.j odd 10 1
1584.4.a.b 1 132.o even 10 1
1936.4.a.g 1 44.g even 10 1
2178.4.a.a 1 33.f even 10 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(242, [\chi])\):

\( T_{3}^{4} + 4T_{3}^{3} + 16T_{3}^{2} + 64T_{3} + 256 \) Copy content Toggle raw display
\( T_{5}^{4} + 14T_{5}^{3} + 196T_{5}^{2} + 2744T_{5} + 38416 \) Copy content Toggle raw display
\( T_{7}^{4} - 8T_{7}^{3} + 64T_{7}^{2} - 512T_{7} + 4096 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 2 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$3$ \( T^{4} + 4 T^{3} + \cdots + 256 \) Copy content Toggle raw display
$5$ \( T^{4} + 14 T^{3} + \cdots + 38416 \) Copy content Toggle raw display
$7$ \( T^{4} - 8 T^{3} + \cdots + 4096 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} - 50 T^{3} + \cdots + 6250000 \) Copy content Toggle raw display
$17$ \( T^{4} + 130 T^{3} + \cdots + 285610000 \) Copy content Toggle raw display
$19$ \( T^{4} - 108 T^{3} + \cdots + 136048896 \) Copy content Toggle raw display
$23$ \( (T + 96)^{4} \) Copy content Toggle raw display
$29$ \( T^{4} + 142 T^{3} + \cdots + 406586896 \) Copy content Toggle raw display
$31$ \( T^{4} + 40 T^{3} + \cdots + 2560000 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 21293813776 \) Copy content Toggle raw display
$41$ \( T^{4} - 118 T^{3} + \cdots + 193877776 \) Copy content Toggle raw display
$43$ \( (T - 220)^{4} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 73116160000 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 3208542736 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 526936617216 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 1303210000 \) Copy content Toggle raw display
$67$ \( (T + 12)^{4} \) Copy content Toggle raw display
$71$ \( T^{4} - 112 T^{3} + \cdots + 157351936 \) Copy content Toggle raw display
$73$ \( T^{4} - 6 T^{3} + \cdots + 1296 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 8540717056 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 452121760000 \) Copy content Toggle raw display
$89$ \( (T - 202)^{4} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 3907880570896 \) Copy content Toggle raw display
show more
show less