L(s) = 1 | + (1.61 − 1.17i)2-s + (1.23 + 3.80i)3-s + (1.23 − 3.80i)4-s + (−11.3 − 8.22i)5-s + (6.47 + 4.70i)6-s + (−2.47 + 7.60i)7-s + (−2.47 − 7.60i)8-s + (8.89 − 6.46i)9-s − 28·10-s + 16·12-s + (40.4 − 29.3i)13-s + (4.94 + 15.2i)14-s + (17.3 − 53.2i)15-s + (−12.9 − 9.40i)16-s + (−105. − 76.4i)17-s + (6.79 − 20.9i)18-s + ⋯ |
L(s) = 1 | + (0.572 − 0.415i)2-s + (0.237 + 0.732i)3-s + (0.154 − 0.475i)4-s + (−1.01 − 0.736i)5-s + (0.440 + 0.319i)6-s + (−0.133 + 0.410i)7-s + (−0.109 − 0.336i)8-s + (0.329 − 0.239i)9-s − 0.885·10-s + 0.384·12-s + (0.863 − 0.627i)13-s + (0.0943 + 0.290i)14-s + (0.297 − 0.916i)15-s + (−0.202 − 0.146i)16-s + (−1.50 − 1.09i)17-s + (0.0890 − 0.273i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 242 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.394 + 0.918i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 242 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.394 + 0.918i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.921545 - 1.39875i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.921545 - 1.39875i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.61 + 1.17i)T \) |
| 11 | \( 1 \) |
good | 3 | \( 1 + (-1.23 - 3.80i)T + (-21.8 + 15.8i)T^{2} \) |
| 5 | \( 1 + (11.3 + 8.22i)T + (38.6 + 118. i)T^{2} \) |
| 7 | \( 1 + (2.47 - 7.60i)T + (-277. - 201. i)T^{2} \) |
| 13 | \( 1 + (-40.4 + 29.3i)T + (678. - 2.08e3i)T^{2} \) |
| 17 | \( 1 + (105. + 76.4i)T + (1.51e3 + 4.67e3i)T^{2} \) |
| 19 | \( 1 + (33.3 + 102. i)T + (-5.54e3 + 4.03e3i)T^{2} \) |
| 23 | \( 1 + 96T + 1.21e4T^{2} \) |
| 29 | \( 1 + (-43.8 + 135. i)T + (-1.97e4 - 1.43e4i)T^{2} \) |
| 31 | \( 1 + (32.3 - 23.5i)T + (9.20e3 - 2.83e4i)T^{2} \) |
| 37 | \( 1 + (-118. + 363. i)T + (-4.09e4 - 2.97e4i)T^{2} \) |
| 41 | \( 1 + (36.4 + 112. i)T + (-5.57e4 + 4.05e4i)T^{2} \) |
| 43 | \( 1 - 220T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-160. - 494. i)T + (-8.39e4 + 6.10e4i)T^{2} \) |
| 53 | \( 1 + (192. - 139. i)T + (4.60e4 - 1.41e5i)T^{2} \) |
| 59 | \( 1 + (263. - 810. i)T + (-1.66e5 - 1.20e5i)T^{2} \) |
| 61 | \( 1 + (153. + 111. i)T + (7.01e4 + 2.15e5i)T^{2} \) |
| 67 | \( 1 + 12T + 3.00e5T^{2} \) |
| 71 | \( 1 + (-90.6 - 65.8i)T + (1.10e5 + 3.40e5i)T^{2} \) |
| 73 | \( 1 + (1.85 - 5.70i)T + (-3.14e5 - 2.28e5i)T^{2} \) |
| 79 | \( 1 + (245. - 178. i)T + (1.52e5 - 4.68e5i)T^{2} \) |
| 83 | \( 1 + (663. + 481. i)T + (1.76e5 + 5.43e5i)T^{2} \) |
| 89 | \( 1 - 202T + 7.04e5T^{2} \) |
| 97 | \( 1 + (-1.13e3 + 826. i)T + (2.82e5 - 8.68e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.38095875505011170697649828092, −10.65891504807883034578654774281, −9.280848775837626453908951012622, −8.791020785204160829909904130618, −7.40101117247873020266847646418, −6.00025974663896326888419195834, −4.55448926993931750348501639126, −4.12180270625787446021630105617, −2.70117718374539547296103628630, −0.53894441070383035170905213786,
1.88328283767639754539684409935, 3.59670847871327053571186721961, 4.34879524568357516876035850078, 6.29492929438826540504998434006, 6.85347838884928205803773413064, 7.87917157047199845506843814883, 8.523315667820189677095621954157, 10.34367003141498323158327474463, 11.16575377667229528082341685972, 12.12631681143106136400758352250