Properties

Label 2401.2.a.g.1.18
Level $2401$
Weight $2$
Character 2401.1
Self dual yes
Analytic conductor $19.172$
Analytic rank $1$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2401,2,Mod(1,2401)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2401, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2401.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2401 = 7^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2401.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.1720815253\)
Analytic rank: \(1\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 26x^{16} + 249x^{14} - 1126x^{12} + 2746x^{10} - 3811x^{8} + 2997x^{6} - 1246x^{4} + 224x^{2} - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.18
Root \(-1.18059\) of defining polynomial
Character \(\chi\) \(=\) 2401.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.09443 q^{2} +1.18059 q^{3} +2.38663 q^{4} -2.10761 q^{5} +2.47265 q^{6} +0.809772 q^{8} -1.60622 q^{9} -4.41423 q^{10} -5.55856 q^{11} +2.81762 q^{12} -3.52854 q^{13} -2.48821 q^{15} -3.07725 q^{16} +5.15551 q^{17} -3.36411 q^{18} +6.10565 q^{19} -5.03008 q^{20} -11.6420 q^{22} -1.67491 q^{23} +0.956005 q^{24} -0.557991 q^{25} -7.39029 q^{26} -5.43803 q^{27} -4.45437 q^{29} -5.21138 q^{30} +3.10516 q^{31} -8.06463 q^{32} -6.56236 q^{33} +10.7978 q^{34} -3.83345 q^{36} -0.856461 q^{37} +12.7879 q^{38} -4.16575 q^{39} -1.70668 q^{40} -12.5027 q^{41} +8.41637 q^{43} -13.2662 q^{44} +3.38528 q^{45} -3.50798 q^{46} -3.41721 q^{47} -3.63296 q^{48} -1.16867 q^{50} +6.08652 q^{51} -8.42134 q^{52} -11.3474 q^{53} -11.3896 q^{54} +11.7153 q^{55} +7.20825 q^{57} -9.32935 q^{58} -5.61291 q^{59} -5.93844 q^{60} +4.91468 q^{61} +6.50353 q^{62} -10.7363 q^{64} +7.43679 q^{65} -13.7444 q^{66} +2.99498 q^{67} +12.3043 q^{68} -1.97738 q^{69} -4.06181 q^{71} -1.30067 q^{72} -0.0322509 q^{73} -1.79380 q^{74} -0.658756 q^{75} +14.5719 q^{76} -8.72487 q^{78} +3.33384 q^{79} +6.48564 q^{80} -1.60142 q^{81} -26.1861 q^{82} +3.27947 q^{83} -10.8658 q^{85} +17.6275 q^{86} -5.25876 q^{87} -4.50117 q^{88} +2.41677 q^{89} +7.09022 q^{90} -3.99740 q^{92} +3.66590 q^{93} -7.15709 q^{94} -12.8683 q^{95} -9.52099 q^{96} -5.66202 q^{97} +8.92826 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 8 q^{4} - 6 q^{8} - 2 q^{9} - 28 q^{11} - 34 q^{15} - 12 q^{16} + 2 q^{18} - 20 q^{22} - 42 q^{23} + 34 q^{25} - 6 q^{29} - 46 q^{30} - 12 q^{32} - 10 q^{36} - 70 q^{39} - 48 q^{43} - 94 q^{44} - 40 q^{46}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.09443 1.48098 0.740492 0.672065i \(-0.234592\pi\)
0.740492 + 0.672065i \(0.234592\pi\)
\(3\) 1.18059 0.681612 0.340806 0.940134i \(-0.389300\pi\)
0.340806 + 0.940134i \(0.389300\pi\)
\(4\) 2.38663 1.19332
\(5\) −2.10761 −0.942551 −0.471275 0.881986i \(-0.656206\pi\)
−0.471275 + 0.881986i \(0.656206\pi\)
\(6\) 2.47265 1.00946
\(7\) 0 0
\(8\) 0.809772 0.286298
\(9\) −1.60622 −0.535406
\(10\) −4.41423 −1.39590
\(11\) −5.55856 −1.67597 −0.837985 0.545694i \(-0.816266\pi\)
−0.837985 + 0.545694i \(0.816266\pi\)
\(12\) 2.81762 0.813378
\(13\) −3.52854 −0.978642 −0.489321 0.872104i \(-0.662755\pi\)
−0.489321 + 0.872104i \(0.662755\pi\)
\(14\) 0 0
\(15\) −2.48821 −0.642453
\(16\) −3.07725 −0.769313
\(17\) 5.15551 1.25039 0.625197 0.780467i \(-0.285018\pi\)
0.625197 + 0.780467i \(0.285018\pi\)
\(18\) −3.36411 −0.792928
\(19\) 6.10565 1.40073 0.700367 0.713783i \(-0.253020\pi\)
0.700367 + 0.713783i \(0.253020\pi\)
\(20\) −5.03008 −1.12476
\(21\) 0 0
\(22\) −11.6420 −2.48208
\(23\) −1.67491 −0.349243 −0.174622 0.984636i \(-0.555870\pi\)
−0.174622 + 0.984636i \(0.555870\pi\)
\(24\) 0.956005 0.195144
\(25\) −0.557991 −0.111598
\(26\) −7.39029 −1.44935
\(27\) −5.43803 −1.04655
\(28\) 0 0
\(29\) −4.45437 −0.827155 −0.413578 0.910469i \(-0.635721\pi\)
−0.413578 + 0.910469i \(0.635721\pi\)
\(30\) −5.21138 −0.951464
\(31\) 3.10516 0.557703 0.278851 0.960334i \(-0.410046\pi\)
0.278851 + 0.960334i \(0.410046\pi\)
\(32\) −8.06463 −1.42564
\(33\) −6.56236 −1.14236
\(34\) 10.7978 1.85182
\(35\) 0 0
\(36\) −3.83345 −0.638908
\(37\) −0.856461 −0.140801 −0.0704007 0.997519i \(-0.522428\pi\)
−0.0704007 + 0.997519i \(0.522428\pi\)
\(38\) 12.7879 2.07446
\(39\) −4.16575 −0.667054
\(40\) −1.70668 −0.269850
\(41\) −12.5027 −1.95260 −0.976299 0.216428i \(-0.930559\pi\)
−0.976299 + 0.216428i \(0.930559\pi\)
\(42\) 0 0
\(43\) 8.41637 1.28349 0.641743 0.766920i \(-0.278212\pi\)
0.641743 + 0.766920i \(0.278212\pi\)
\(44\) −13.2662 −1.99996
\(45\) 3.38528 0.504647
\(46\) −3.50798 −0.517224
\(47\) −3.41721 −0.498451 −0.249225 0.968446i \(-0.580176\pi\)
−0.249225 + 0.968446i \(0.580176\pi\)
\(48\) −3.63296 −0.524373
\(49\) 0 0
\(50\) −1.16867 −0.165275
\(51\) 6.08652 0.852283
\(52\) −8.42134 −1.16783
\(53\) −11.3474 −1.55869 −0.779345 0.626595i \(-0.784448\pi\)
−0.779345 + 0.626595i \(0.784448\pi\)
\(54\) −11.3896 −1.54992
\(55\) 11.7153 1.57969
\(56\) 0 0
\(57\) 7.20825 0.954756
\(58\) −9.32935 −1.22500
\(59\) −5.61291 −0.730739 −0.365369 0.930863i \(-0.619057\pi\)
−0.365369 + 0.930863i \(0.619057\pi\)
\(60\) −5.93844 −0.766650
\(61\) 4.91468 0.629260 0.314630 0.949214i \(-0.398120\pi\)
0.314630 + 0.949214i \(0.398120\pi\)
\(62\) 6.50353 0.825949
\(63\) 0 0
\(64\) −10.7363 −1.34204
\(65\) 7.43679 0.922420
\(66\) −13.7444 −1.69182
\(67\) 2.99498 0.365896 0.182948 0.983123i \(-0.441436\pi\)
0.182948 + 0.983123i \(0.441436\pi\)
\(68\) 12.3043 1.49212
\(69\) −1.97738 −0.238048
\(70\) 0 0
\(71\) −4.06181 −0.482048 −0.241024 0.970519i \(-0.577483\pi\)
−0.241024 + 0.970519i \(0.577483\pi\)
\(72\) −1.30067 −0.153285
\(73\) −0.0322509 −0.00377468 −0.00188734 0.999998i \(-0.500601\pi\)
−0.00188734 + 0.999998i \(0.500601\pi\)
\(74\) −1.79380 −0.208525
\(75\) −0.658756 −0.0760666
\(76\) 14.5719 1.67152
\(77\) 0 0
\(78\) −8.72487 −0.987897
\(79\) 3.33384 0.375087 0.187543 0.982256i \(-0.439948\pi\)
0.187543 + 0.982256i \(0.439948\pi\)
\(80\) 6.48564 0.725117
\(81\) −1.60142 −0.177935
\(82\) −26.1861 −2.89177
\(83\) 3.27947 0.359969 0.179984 0.983669i \(-0.442395\pi\)
0.179984 + 0.983669i \(0.442395\pi\)
\(84\) 0 0
\(85\) −10.8658 −1.17856
\(86\) 17.6275 1.90082
\(87\) −5.25876 −0.563798
\(88\) −4.50117 −0.479826
\(89\) 2.41677 0.256177 0.128089 0.991763i \(-0.459116\pi\)
0.128089 + 0.991763i \(0.459116\pi\)
\(90\) 7.09022 0.747375
\(91\) 0 0
\(92\) −3.99740 −0.416758
\(93\) 3.66590 0.380136
\(94\) −7.15709 −0.738198
\(95\) −12.8683 −1.32026
\(96\) −9.52099 −0.971732
\(97\) −5.66202 −0.574891 −0.287446 0.957797i \(-0.592806\pi\)
−0.287446 + 0.957797i \(0.592806\pi\)
\(98\) 0 0
\(99\) 8.92826 0.897324
\(100\) −1.33172 −0.133172
\(101\) −10.4928 −1.04407 −0.522037 0.852923i \(-0.674828\pi\)
−0.522037 + 0.852923i \(0.674828\pi\)
\(102\) 12.7478 1.26222
\(103\) 14.2767 1.40672 0.703361 0.710833i \(-0.251682\pi\)
0.703361 + 0.710833i \(0.251682\pi\)
\(104\) −2.85732 −0.280183
\(105\) 0 0
\(106\) −23.7664 −2.30840
\(107\) 0.389725 0.0376761 0.0188381 0.999823i \(-0.494003\pi\)
0.0188381 + 0.999823i \(0.494003\pi\)
\(108\) −12.9786 −1.24886
\(109\) 13.2936 1.27330 0.636649 0.771154i \(-0.280320\pi\)
0.636649 + 0.771154i \(0.280320\pi\)
\(110\) 24.5368 2.33949
\(111\) −1.01113 −0.0959718
\(112\) 0 0
\(113\) 2.06284 0.194056 0.0970280 0.995282i \(-0.469066\pi\)
0.0970280 + 0.995282i \(0.469066\pi\)
\(114\) 15.0972 1.41398
\(115\) 3.53006 0.329180
\(116\) −10.6309 −0.987057
\(117\) 5.66761 0.523971
\(118\) −11.7558 −1.08221
\(119\) 0 0
\(120\) −2.01488 −0.183933
\(121\) 19.8976 1.80887
\(122\) 10.2934 0.931925
\(123\) −14.7605 −1.33091
\(124\) 7.41086 0.665515
\(125\) 11.7141 1.04774
\(126\) 0 0
\(127\) −16.5136 −1.46535 −0.732674 0.680580i \(-0.761728\pi\)
−0.732674 + 0.680580i \(0.761728\pi\)
\(128\) −6.35713 −0.561896
\(129\) 9.93625 0.874838
\(130\) 15.5758 1.36609
\(131\) 20.7437 1.81239 0.906194 0.422862i \(-0.138975\pi\)
0.906194 + 0.422862i \(0.138975\pi\)
\(132\) −15.6619 −1.36320
\(133\) 0 0
\(134\) 6.27278 0.541886
\(135\) 11.4612 0.986427
\(136\) 4.17479 0.357985
\(137\) 6.92736 0.591844 0.295922 0.955212i \(-0.404373\pi\)
0.295922 + 0.955212i \(0.404373\pi\)
\(138\) −4.14148 −0.352546
\(139\) 8.01600 0.679908 0.339954 0.940442i \(-0.389588\pi\)
0.339954 + 0.940442i \(0.389588\pi\)
\(140\) 0 0
\(141\) −4.03431 −0.339750
\(142\) −8.50717 −0.713906
\(143\) 19.6136 1.64017
\(144\) 4.94274 0.411895
\(145\) 9.38806 0.779636
\(146\) −0.0675471 −0.00559024
\(147\) 0 0
\(148\) −2.04406 −0.168020
\(149\) 17.2234 1.41099 0.705497 0.708713i \(-0.250724\pi\)
0.705497 + 0.708713i \(0.250724\pi\)
\(150\) −1.37972 −0.112653
\(151\) −15.7877 −1.28478 −0.642391 0.766377i \(-0.722057\pi\)
−0.642391 + 0.766377i \(0.722057\pi\)
\(152\) 4.94419 0.401027
\(153\) −8.28087 −0.669468
\(154\) 0 0
\(155\) −6.54445 −0.525663
\(156\) −9.94211 −0.796006
\(157\) −0.996829 −0.0795556 −0.0397778 0.999209i \(-0.512665\pi\)
−0.0397778 + 0.999209i \(0.512665\pi\)
\(158\) 6.98249 0.555497
\(159\) −13.3966 −1.06242
\(160\) 16.9971 1.34374
\(161\) 0 0
\(162\) −3.35405 −0.263519
\(163\) 3.00571 0.235425 0.117713 0.993048i \(-0.462444\pi\)
0.117713 + 0.993048i \(0.462444\pi\)
\(164\) −29.8394 −2.33006
\(165\) 13.8309 1.07673
\(166\) 6.86862 0.533108
\(167\) 19.7807 1.53068 0.765340 0.643627i \(-0.222571\pi\)
0.765340 + 0.643627i \(0.222571\pi\)
\(168\) 0 0
\(169\) −0.549373 −0.0422594
\(170\) −22.7576 −1.74543
\(171\) −9.80701 −0.749961
\(172\) 20.0868 1.53160
\(173\) 4.92633 0.374542 0.187271 0.982308i \(-0.440036\pi\)
0.187271 + 0.982308i \(0.440036\pi\)
\(174\) −11.0141 −0.834977
\(175\) 0 0
\(176\) 17.1051 1.28935
\(177\) −6.62652 −0.498080
\(178\) 5.06175 0.379395
\(179\) −4.19995 −0.313919 −0.156960 0.987605i \(-0.550169\pi\)
−0.156960 + 0.987605i \(0.550169\pi\)
\(180\) 8.07940 0.602203
\(181\) −13.7539 −1.02232 −0.511158 0.859487i \(-0.670783\pi\)
−0.511158 + 0.859487i \(0.670783\pi\)
\(182\) 0 0
\(183\) 5.80220 0.428911
\(184\) −1.35630 −0.0999876
\(185\) 1.80508 0.132712
\(186\) 7.67797 0.562976
\(187\) −28.6572 −2.09562
\(188\) −8.15561 −0.594809
\(189\) 0 0
\(190\) −26.9518 −1.95529
\(191\) −9.70361 −0.702129 −0.351064 0.936351i \(-0.614180\pi\)
−0.351064 + 0.936351i \(0.614180\pi\)
\(192\) −12.6751 −0.914747
\(193\) 12.2965 0.885121 0.442561 0.896739i \(-0.354070\pi\)
0.442561 + 0.896739i \(0.354070\pi\)
\(194\) −11.8587 −0.851405
\(195\) 8.77977 0.628732
\(196\) 0 0
\(197\) −22.4084 −1.59654 −0.798268 0.602303i \(-0.794250\pi\)
−0.798268 + 0.602303i \(0.794250\pi\)
\(198\) 18.6996 1.32892
\(199\) −2.37614 −0.168440 −0.0842200 0.996447i \(-0.526840\pi\)
−0.0842200 + 0.996447i \(0.526840\pi\)
\(200\) −0.451845 −0.0319503
\(201\) 3.53584 0.249399
\(202\) −21.9765 −1.54626
\(203\) 0 0
\(204\) 14.5263 1.01704
\(205\) 26.3508 1.84042
\(206\) 29.9015 2.08333
\(207\) 2.69027 0.186987
\(208\) 10.8582 0.752882
\(209\) −33.9387 −2.34759
\(210\) 0 0
\(211\) −3.08061 −0.212078 −0.106039 0.994362i \(-0.533817\pi\)
−0.106039 + 0.994362i \(0.533817\pi\)
\(212\) −27.0821 −1.86001
\(213\) −4.79531 −0.328570
\(214\) 0.816251 0.0557978
\(215\) −17.7384 −1.20975
\(216\) −4.40357 −0.299625
\(217\) 0 0
\(218\) 27.8425 1.88573
\(219\) −0.0380749 −0.00257286
\(220\) 27.9600 1.88506
\(221\) −18.1914 −1.22369
\(222\) −2.11773 −0.142133
\(223\) −22.1618 −1.48406 −0.742032 0.670364i \(-0.766138\pi\)
−0.742032 + 0.670364i \(0.766138\pi\)
\(224\) 0 0
\(225\) 0.896254 0.0597503
\(226\) 4.32048 0.287394
\(227\) 11.2660 0.747751 0.373875 0.927479i \(-0.378029\pi\)
0.373875 + 0.927479i \(0.378029\pi\)
\(228\) 17.2034 1.13933
\(229\) −11.6378 −0.769048 −0.384524 0.923115i \(-0.625634\pi\)
−0.384524 + 0.923115i \(0.625634\pi\)
\(230\) 7.39345 0.487510
\(231\) 0 0
\(232\) −3.60702 −0.236813
\(233\) −16.0658 −1.05251 −0.526253 0.850328i \(-0.676403\pi\)
−0.526253 + 0.850328i \(0.676403\pi\)
\(234\) 11.8704 0.775992
\(235\) 7.20213 0.469815
\(236\) −13.3959 −0.872002
\(237\) 3.93589 0.255663
\(238\) 0 0
\(239\) −15.2125 −0.984014 −0.492007 0.870591i \(-0.663737\pi\)
−0.492007 + 0.870591i \(0.663737\pi\)
\(240\) 7.65686 0.494248
\(241\) −19.8427 −1.27818 −0.639091 0.769131i \(-0.720689\pi\)
−0.639091 + 0.769131i \(0.720689\pi\)
\(242\) 41.6741 2.67891
\(243\) 14.4235 0.925268
\(244\) 11.7295 0.750906
\(245\) 0 0
\(246\) −30.9149 −1.97106
\(247\) −21.5441 −1.37082
\(248\) 2.51447 0.159669
\(249\) 3.87170 0.245359
\(250\) 24.5343 1.55168
\(251\) 1.73626 0.109592 0.0547958 0.998498i \(-0.482549\pi\)
0.0547958 + 0.998498i \(0.482549\pi\)
\(252\) 0 0
\(253\) 9.31010 0.585321
\(254\) −34.5866 −2.17016
\(255\) −12.8280 −0.803320
\(256\) 8.15802 0.509877
\(257\) −13.7942 −0.860457 −0.430228 0.902720i \(-0.641567\pi\)
−0.430228 + 0.902720i \(0.641567\pi\)
\(258\) 20.8108 1.29562
\(259\) 0 0
\(260\) 17.7489 1.10074
\(261\) 7.15468 0.442864
\(262\) 43.4463 2.68412
\(263\) −6.13125 −0.378069 −0.189035 0.981970i \(-0.560536\pi\)
−0.189035 + 0.981970i \(0.560536\pi\)
\(264\) −5.31401 −0.327055
\(265\) 23.9159 1.46914
\(266\) 0 0
\(267\) 2.85321 0.174613
\(268\) 7.14792 0.436629
\(269\) −22.3069 −1.36008 −0.680038 0.733177i \(-0.738037\pi\)
−0.680038 + 0.733177i \(0.738037\pi\)
\(270\) 24.0048 1.46088
\(271\) 9.92693 0.603018 0.301509 0.953463i \(-0.402510\pi\)
0.301509 + 0.953463i \(0.402510\pi\)
\(272\) −15.8648 −0.961945
\(273\) 0 0
\(274\) 14.5089 0.876512
\(275\) 3.10162 0.187035
\(276\) −4.71927 −0.284067
\(277\) −15.8522 −0.952464 −0.476232 0.879320i \(-0.657998\pi\)
−0.476232 + 0.879320i \(0.657998\pi\)
\(278\) 16.7889 1.00693
\(279\) −4.98756 −0.298597
\(280\) 0 0
\(281\) −3.52496 −0.210281 −0.105141 0.994457i \(-0.533529\pi\)
−0.105141 + 0.994457i \(0.533529\pi\)
\(282\) −8.44956 −0.503164
\(283\) −6.02827 −0.358344 −0.179172 0.983818i \(-0.557342\pi\)
−0.179172 + 0.983818i \(0.557342\pi\)
\(284\) −9.69404 −0.575236
\(285\) −15.1922 −0.899906
\(286\) 41.0794 2.42907
\(287\) 0 0
\(288\) 12.9535 0.763295
\(289\) 9.57928 0.563487
\(290\) 19.6626 1.15463
\(291\) −6.68451 −0.391853
\(292\) −0.0769709 −0.00450438
\(293\) 24.1583 1.41134 0.705672 0.708539i \(-0.250645\pi\)
0.705672 + 0.708539i \(0.250645\pi\)
\(294\) 0 0
\(295\) 11.8298 0.688758
\(296\) −0.693538 −0.0403111
\(297\) 30.2276 1.75399
\(298\) 36.0732 2.08966
\(299\) 5.91000 0.341784
\(300\) −1.57221 −0.0907714
\(301\) 0 0
\(302\) −33.0661 −1.90274
\(303\) −12.3877 −0.711653
\(304\) −18.7886 −1.07760
\(305\) −10.3582 −0.593110
\(306\) −17.3437 −0.991473
\(307\) −26.0363 −1.48597 −0.742985 0.669308i \(-0.766591\pi\)
−0.742985 + 0.669308i \(0.766591\pi\)
\(308\) 0 0
\(309\) 16.8548 0.958838
\(310\) −13.7069 −0.778499
\(311\) 0.282119 0.0159975 0.00799875 0.999968i \(-0.497454\pi\)
0.00799875 + 0.999968i \(0.497454\pi\)
\(312\) −3.37331 −0.190976
\(313\) −21.8398 −1.23446 −0.617229 0.786783i \(-0.711745\pi\)
−0.617229 + 0.786783i \(0.711745\pi\)
\(314\) −2.08779 −0.117821
\(315\) 0 0
\(316\) 7.95665 0.447597
\(317\) −6.20916 −0.348741 −0.174370 0.984680i \(-0.555789\pi\)
−0.174370 + 0.984680i \(0.555789\pi\)
\(318\) −28.0583 −1.57343
\(319\) 24.7599 1.38629
\(320\) 22.6279 1.26494
\(321\) 0.460104 0.0256805
\(322\) 0 0
\(323\) 31.4778 1.75147
\(324\) −3.82199 −0.212333
\(325\) 1.96889 0.109215
\(326\) 6.29525 0.348662
\(327\) 15.6942 0.867894
\(328\) −10.1244 −0.559024
\(329\) 0 0
\(330\) 28.9678 1.59462
\(331\) 5.59408 0.307479 0.153739 0.988111i \(-0.450868\pi\)
0.153739 + 0.988111i \(0.450868\pi\)
\(332\) 7.82689 0.429556
\(333\) 1.37566 0.0753859
\(334\) 41.4293 2.26691
\(335\) −6.31225 −0.344875
\(336\) 0 0
\(337\) −18.4785 −1.00659 −0.503295 0.864115i \(-0.667879\pi\)
−0.503295 + 0.864115i \(0.667879\pi\)
\(338\) −1.15062 −0.0625856
\(339\) 2.43536 0.132271
\(340\) −25.9326 −1.40639
\(341\) −17.2602 −0.934692
\(342\) −20.5401 −1.11068
\(343\) 0 0
\(344\) 6.81535 0.367459
\(345\) 4.16754 0.224373
\(346\) 10.3178 0.554691
\(347\) −5.01410 −0.269171 −0.134585 0.990902i \(-0.542970\pi\)
−0.134585 + 0.990902i \(0.542970\pi\)
\(348\) −12.5507 −0.672790
\(349\) −0.785199 −0.0420307 −0.0210154 0.999779i \(-0.506690\pi\)
−0.0210154 + 0.999779i \(0.506690\pi\)
\(350\) 0 0
\(351\) 19.1883 1.02420
\(352\) 44.8277 2.38933
\(353\) −21.9676 −1.16922 −0.584610 0.811315i \(-0.698752\pi\)
−0.584610 + 0.811315i \(0.698752\pi\)
\(354\) −13.8788 −0.737649
\(355\) 8.56070 0.454355
\(356\) 5.76794 0.305700
\(357\) 0 0
\(358\) −8.79650 −0.464910
\(359\) 9.30124 0.490901 0.245450 0.969409i \(-0.421064\pi\)
0.245450 + 0.969409i \(0.421064\pi\)
\(360\) 2.74130 0.144479
\(361\) 18.2790 0.962053
\(362\) −28.8065 −1.51403
\(363\) 23.4908 1.23295
\(364\) 0 0
\(365\) 0.0679721 0.00355782
\(366\) 12.1523 0.635211
\(367\) 7.20590 0.376145 0.188073 0.982155i \(-0.439776\pi\)
0.188073 + 0.982155i \(0.439776\pi\)
\(368\) 5.15413 0.268678
\(369\) 20.0821 1.04543
\(370\) 3.78062 0.196545
\(371\) 0 0
\(372\) 8.74916 0.453623
\(373\) 20.7892 1.07642 0.538211 0.842810i \(-0.319100\pi\)
0.538211 + 0.842810i \(0.319100\pi\)
\(374\) −60.0205 −3.10359
\(375\) 13.8295 0.714150
\(376\) −2.76716 −0.142705
\(377\) 15.7174 0.809489
\(378\) 0 0
\(379\) −32.4958 −1.66920 −0.834598 0.550859i \(-0.814300\pi\)
−0.834598 + 0.550859i \(0.814300\pi\)
\(380\) −30.7119 −1.57549
\(381\) −19.4958 −0.998798
\(382\) −20.3235 −1.03984
\(383\) −0.609747 −0.0311566 −0.0155783 0.999879i \(-0.504959\pi\)
−0.0155783 + 0.999879i \(0.504959\pi\)
\(384\) −7.50514 −0.382995
\(385\) 0 0
\(386\) 25.7541 1.31085
\(387\) −13.5185 −0.687185
\(388\) −13.5132 −0.686027
\(389\) −12.3414 −0.625734 −0.312867 0.949797i \(-0.601289\pi\)
−0.312867 + 0.949797i \(0.601289\pi\)
\(390\) 18.3886 0.931143
\(391\) −8.63503 −0.436692
\(392\) 0 0
\(393\) 24.4897 1.23534
\(394\) −46.9329 −2.36444
\(395\) −7.02643 −0.353538
\(396\) 21.3085 1.07079
\(397\) 25.7656 1.29314 0.646569 0.762855i \(-0.276203\pi\)
0.646569 + 0.762855i \(0.276203\pi\)
\(398\) −4.97665 −0.249457
\(399\) 0 0
\(400\) 1.71708 0.0858539
\(401\) 5.37781 0.268555 0.134277 0.990944i \(-0.457129\pi\)
0.134277 + 0.990944i \(0.457129\pi\)
\(402\) 7.40556 0.369356
\(403\) −10.9567 −0.545791
\(404\) −25.0425 −1.24591
\(405\) 3.37515 0.167713
\(406\) 0 0
\(407\) 4.76069 0.235979
\(408\) 4.92870 0.244007
\(409\) 33.2252 1.64288 0.821439 0.570296i \(-0.193172\pi\)
0.821439 + 0.570296i \(0.193172\pi\)
\(410\) 55.1899 2.72564
\(411\) 8.17834 0.403408
\(412\) 34.0732 1.67866
\(413\) 0 0
\(414\) 5.63458 0.276925
\(415\) −6.91184 −0.339289
\(416\) 28.4564 1.39519
\(417\) 9.46357 0.463433
\(418\) −71.0821 −3.47674
\(419\) 12.5948 0.615295 0.307647 0.951500i \(-0.400458\pi\)
0.307647 + 0.951500i \(0.400458\pi\)
\(420\) 0 0
\(421\) −36.7360 −1.79040 −0.895202 0.445660i \(-0.852969\pi\)
−0.895202 + 0.445660i \(0.852969\pi\)
\(422\) −6.45211 −0.314084
\(423\) 5.48878 0.266873
\(424\) −9.18884 −0.446249
\(425\) −2.87673 −0.139542
\(426\) −10.0434 −0.486606
\(427\) 0 0
\(428\) 0.930130 0.0449595
\(429\) 23.1556 1.11796
\(430\) −37.1518 −1.79162
\(431\) 26.0571 1.25513 0.627563 0.778565i \(-0.284052\pi\)
0.627563 + 0.778565i \(0.284052\pi\)
\(432\) 16.7342 0.805125
\(433\) −16.1429 −0.775780 −0.387890 0.921706i \(-0.626796\pi\)
−0.387890 + 0.921706i \(0.626796\pi\)
\(434\) 0 0
\(435\) 11.0834 0.531409
\(436\) 31.7270 1.51945
\(437\) −10.2264 −0.489197
\(438\) −0.0797452 −0.00381037
\(439\) −11.7198 −0.559353 −0.279677 0.960094i \(-0.590227\pi\)
−0.279677 + 0.960094i \(0.590227\pi\)
\(440\) 9.48670 0.452260
\(441\) 0 0
\(442\) −38.1007 −1.81226
\(443\) −22.3206 −1.06049 −0.530243 0.847846i \(-0.677899\pi\)
−0.530243 + 0.847846i \(0.677899\pi\)
\(444\) −2.41319 −0.114525
\(445\) −5.09361 −0.241460
\(446\) −46.4163 −2.19788
\(447\) 20.3337 0.961750
\(448\) 0 0
\(449\) 6.54006 0.308644 0.154322 0.988021i \(-0.450681\pi\)
0.154322 + 0.988021i \(0.450681\pi\)
\(450\) 1.87714 0.0884892
\(451\) 69.4971 3.27249
\(452\) 4.92325 0.231570
\(453\) −18.6387 −0.875722
\(454\) 23.5958 1.10741
\(455\) 0 0
\(456\) 5.83704 0.273344
\(457\) −14.2532 −0.666735 −0.333368 0.942797i \(-0.608185\pi\)
−0.333368 + 0.942797i \(0.608185\pi\)
\(458\) −24.3746 −1.13895
\(459\) −28.0358 −1.30860
\(460\) 8.42495 0.392815
\(461\) −38.4005 −1.78849 −0.894245 0.447577i \(-0.852287\pi\)
−0.894245 + 0.447577i \(0.852287\pi\)
\(462\) 0 0
\(463\) −10.9006 −0.506593 −0.253296 0.967389i \(-0.581515\pi\)
−0.253296 + 0.967389i \(0.581515\pi\)
\(464\) 13.7072 0.636341
\(465\) −7.72629 −0.358298
\(466\) −33.6487 −1.55874
\(467\) 5.09348 0.235698 0.117849 0.993032i \(-0.462400\pi\)
0.117849 + 0.993032i \(0.462400\pi\)
\(468\) 13.5265 0.625262
\(469\) 0 0
\(470\) 15.0843 0.695789
\(471\) −1.17684 −0.0542260
\(472\) −4.54518 −0.209209
\(473\) −46.7829 −2.15108
\(474\) 8.24343 0.378633
\(475\) −3.40690 −0.156319
\(476\) 0 0
\(477\) 18.2264 0.834532
\(478\) −31.8615 −1.45731
\(479\) −4.50141 −0.205675 −0.102837 0.994698i \(-0.532792\pi\)
−0.102837 + 0.994698i \(0.532792\pi\)
\(480\) 20.0665 0.915907
\(481\) 3.02206 0.137794
\(482\) −41.5591 −1.89297
\(483\) 0 0
\(484\) 47.4882 2.15856
\(485\) 11.9333 0.541864
\(486\) 30.2090 1.37031
\(487\) −5.32549 −0.241321 −0.120660 0.992694i \(-0.538501\pi\)
−0.120660 + 0.992694i \(0.538501\pi\)
\(488\) 3.97977 0.180156
\(489\) 3.54850 0.160469
\(490\) 0 0
\(491\) 33.3244 1.50391 0.751954 0.659215i \(-0.229111\pi\)
0.751954 + 0.659215i \(0.229111\pi\)
\(492\) −35.2280 −1.58820
\(493\) −22.9645 −1.03427
\(494\) −45.1225 −2.03016
\(495\) −18.8173 −0.845773
\(496\) −9.55535 −0.429048
\(497\) 0 0
\(498\) 8.10900 0.363373
\(499\) 2.67398 0.119704 0.0598520 0.998207i \(-0.480937\pi\)
0.0598520 + 0.998207i \(0.480937\pi\)
\(500\) 27.9572 1.25028
\(501\) 23.3529 1.04333
\(502\) 3.63646 0.162303
\(503\) −10.9759 −0.489391 −0.244696 0.969600i \(-0.578688\pi\)
−0.244696 + 0.969600i \(0.578688\pi\)
\(504\) 0 0
\(505\) 22.1147 0.984093
\(506\) 19.4993 0.866852
\(507\) −0.648581 −0.0288045
\(508\) −39.4119 −1.74862
\(509\) −6.30294 −0.279373 −0.139686 0.990196i \(-0.544609\pi\)
−0.139686 + 0.990196i \(0.544609\pi\)
\(510\) −26.8673 −1.18971
\(511\) 0 0
\(512\) 29.8007 1.31702
\(513\) −33.2028 −1.46594
\(514\) −28.8909 −1.27432
\(515\) −30.0896 −1.32591
\(516\) 23.7142 1.04396
\(517\) 18.9948 0.835388
\(518\) 0 0
\(519\) 5.81595 0.255292
\(520\) 6.02210 0.264087
\(521\) −32.4862 −1.42324 −0.711622 0.702562i \(-0.752039\pi\)
−0.711622 + 0.702562i \(0.752039\pi\)
\(522\) 14.9850 0.655874
\(523\) −31.2901 −1.36822 −0.684110 0.729379i \(-0.739809\pi\)
−0.684110 + 0.729379i \(0.739809\pi\)
\(524\) 49.5076 2.16275
\(525\) 0 0
\(526\) −12.8415 −0.559915
\(527\) 16.0087 0.697348
\(528\) 20.1940 0.878833
\(529\) −20.1947 −0.878029
\(530\) 50.0902 2.17578
\(531\) 9.01555 0.391242
\(532\) 0 0
\(533\) 44.1164 1.91089
\(534\) 5.97584 0.258600
\(535\) −0.821388 −0.0355117
\(536\) 2.42525 0.104755
\(537\) −4.95841 −0.213971
\(538\) −46.7202 −2.01425
\(539\) 0 0
\(540\) 27.3538 1.17712
\(541\) 36.3847 1.56430 0.782150 0.623090i \(-0.214123\pi\)
0.782150 + 0.623090i \(0.214123\pi\)
\(542\) 20.7912 0.893061
\(543\) −16.2376 −0.696822
\(544\) −41.5773 −1.78261
\(545\) −28.0177 −1.20015
\(546\) 0 0
\(547\) 16.9976 0.726767 0.363383 0.931640i \(-0.381622\pi\)
0.363383 + 0.931640i \(0.381622\pi\)
\(548\) 16.5331 0.706257
\(549\) −7.89404 −0.336909
\(550\) 6.49613 0.276996
\(551\) −27.1968 −1.15862
\(552\) −1.60123 −0.0681527
\(553\) 0 0
\(554\) −33.2012 −1.41058
\(555\) 2.13106 0.0904583
\(556\) 19.1312 0.811345
\(557\) −13.7439 −0.582347 −0.291173 0.956670i \(-0.594046\pi\)
−0.291173 + 0.956670i \(0.594046\pi\)
\(558\) −10.4461 −0.442218
\(559\) −29.6976 −1.25607
\(560\) 0 0
\(561\) −33.8323 −1.42840
\(562\) −7.38277 −0.311423
\(563\) −2.23872 −0.0943508 −0.0471754 0.998887i \(-0.515022\pi\)
−0.0471754 + 0.998887i \(0.515022\pi\)
\(564\) −9.62840 −0.405429
\(565\) −4.34766 −0.182908
\(566\) −12.6258 −0.530701
\(567\) 0 0
\(568\) −3.28914 −0.138009
\(569\) −5.57202 −0.233591 −0.116796 0.993156i \(-0.537262\pi\)
−0.116796 + 0.993156i \(0.537262\pi\)
\(570\) −31.8189 −1.33275
\(571\) 30.5173 1.27711 0.638555 0.769576i \(-0.279532\pi\)
0.638555 + 0.769576i \(0.279532\pi\)
\(572\) 46.8105 1.95725
\(573\) −11.4559 −0.478579
\(574\) 0 0
\(575\) 0.934585 0.0389749
\(576\) 17.2448 0.718534
\(577\) −8.00757 −0.333359 −0.166680 0.986011i \(-0.553305\pi\)
−0.166680 + 0.986011i \(0.553305\pi\)
\(578\) 20.0631 0.834516
\(579\) 14.5171 0.603309
\(580\) 22.4058 0.930351
\(581\) 0 0
\(582\) −14.0002 −0.580328
\(583\) 63.0754 2.61232
\(584\) −0.0261158 −0.00108068
\(585\) −11.9451 −0.493869
\(586\) 50.5979 2.09018
\(587\) 17.5467 0.724229 0.362114 0.932134i \(-0.382055\pi\)
0.362114 + 0.932134i \(0.382055\pi\)
\(588\) 0 0
\(589\) 18.9590 0.781192
\(590\) 24.7767 1.02004
\(591\) −26.4551 −1.08822
\(592\) 2.63555 0.108320
\(593\) −9.49850 −0.390057 −0.195028 0.980798i \(-0.562480\pi\)
−0.195028 + 0.980798i \(0.562480\pi\)
\(594\) 63.3097 2.59763
\(595\) 0 0
\(596\) 41.1059 1.68376
\(597\) −2.80524 −0.114811
\(598\) 12.3781 0.506177
\(599\) −17.8187 −0.728052 −0.364026 0.931389i \(-0.618598\pi\)
−0.364026 + 0.931389i \(0.618598\pi\)
\(600\) −0.533442 −0.0217777
\(601\) 33.3698 1.36118 0.680592 0.732663i \(-0.261723\pi\)
0.680592 + 0.732663i \(0.261723\pi\)
\(602\) 0 0
\(603\) −4.81059 −0.195903
\(604\) −37.6793 −1.53315
\(605\) −41.9363 −1.70495
\(606\) −25.9451 −1.05395
\(607\) −1.13437 −0.0460428 −0.0230214 0.999735i \(-0.507329\pi\)
−0.0230214 + 0.999735i \(0.507329\pi\)
\(608\) −49.2399 −1.99694
\(609\) 0 0
\(610\) −21.6945 −0.878386
\(611\) 12.0578 0.487805
\(612\) −19.7634 −0.798887
\(613\) −29.6517 −1.19762 −0.598811 0.800891i \(-0.704360\pi\)
−0.598811 + 0.800891i \(0.704360\pi\)
\(614\) −54.5312 −2.20070
\(615\) 31.1094 1.25445
\(616\) 0 0
\(617\) −10.6733 −0.429691 −0.214846 0.976648i \(-0.568925\pi\)
−0.214846 + 0.976648i \(0.568925\pi\)
\(618\) 35.3013 1.42002
\(619\) 22.0552 0.886472 0.443236 0.896405i \(-0.353830\pi\)
0.443236 + 0.896405i \(0.353830\pi\)
\(620\) −15.6192 −0.627282
\(621\) 9.10823 0.365501
\(622\) 0.590878 0.0236921
\(623\) 0 0
\(624\) 12.8191 0.513173
\(625\) −21.8987 −0.875948
\(626\) −45.7419 −1.82821
\(627\) −40.0675 −1.60014
\(628\) −2.37906 −0.0949349
\(629\) −4.41549 −0.176057
\(630\) 0 0
\(631\) −16.2924 −0.648591 −0.324295 0.945956i \(-0.605127\pi\)
−0.324295 + 0.945956i \(0.605127\pi\)
\(632\) 2.69965 0.107386
\(633\) −3.63692 −0.144555
\(634\) −13.0046 −0.516480
\(635\) 34.8042 1.38116
\(636\) −31.9728 −1.26780
\(637\) 0 0
\(638\) 51.8578 2.05307
\(639\) 6.52415 0.258091
\(640\) 13.3983 0.529616
\(641\) −11.1451 −0.440204 −0.220102 0.975477i \(-0.570639\pi\)
−0.220102 + 0.975477i \(0.570639\pi\)
\(642\) 0.963655 0.0380324
\(643\) 35.1654 1.38679 0.693395 0.720558i \(-0.256114\pi\)
0.693395 + 0.720558i \(0.256114\pi\)
\(644\) 0 0
\(645\) −20.9417 −0.824579
\(646\) 65.9279 2.59390
\(647\) 17.7401 0.697436 0.348718 0.937228i \(-0.386617\pi\)
0.348718 + 0.937228i \(0.386617\pi\)
\(648\) −1.29678 −0.0509424
\(649\) 31.1997 1.22470
\(650\) 4.12371 0.161745
\(651\) 0 0
\(652\) 7.17353 0.280937
\(653\) −18.5516 −0.725980 −0.362990 0.931793i \(-0.618244\pi\)
−0.362990 + 0.931793i \(0.618244\pi\)
\(654\) 32.8705 1.28534
\(655\) −43.7196 −1.70827
\(656\) 38.4740 1.50216
\(657\) 0.0518019 0.00202098
\(658\) 0 0
\(659\) 5.25401 0.204667 0.102334 0.994750i \(-0.467369\pi\)
0.102334 + 0.994750i \(0.467369\pi\)
\(660\) 33.0092 1.28488
\(661\) 33.7439 1.31249 0.656243 0.754549i \(-0.272144\pi\)
0.656243 + 0.754549i \(0.272144\pi\)
\(662\) 11.7164 0.455371
\(663\) −21.4766 −0.834081
\(664\) 2.65563 0.103058
\(665\) 0 0
\(666\) 2.88123 0.111645
\(667\) 7.46067 0.288878
\(668\) 47.2093 1.82658
\(669\) −26.1639 −1.01156
\(670\) −13.2206 −0.510755
\(671\) −27.3185 −1.05462
\(672\) 0 0
\(673\) 22.6013 0.871216 0.435608 0.900136i \(-0.356533\pi\)
0.435608 + 0.900136i \(0.356533\pi\)
\(674\) −38.7020 −1.49074
\(675\) 3.03437 0.116793
\(676\) −1.31115 −0.0504288
\(677\) 14.8936 0.572409 0.286205 0.958169i \(-0.407606\pi\)
0.286205 + 0.958169i \(0.407606\pi\)
\(678\) 5.10070 0.195891
\(679\) 0 0
\(680\) −8.79881 −0.337419
\(681\) 13.3005 0.509676
\(682\) −36.1503 −1.38427
\(683\) −21.4490 −0.820725 −0.410363 0.911922i \(-0.634598\pi\)
−0.410363 + 0.911922i \(0.634598\pi\)
\(684\) −23.4057 −0.894940
\(685\) −14.6002 −0.557843
\(686\) 0 0
\(687\) −13.7394 −0.524192
\(688\) −25.8993 −0.987402
\(689\) 40.0399 1.52540
\(690\) 8.72861 0.332292
\(691\) −7.51992 −0.286071 −0.143036 0.989718i \(-0.545686\pi\)
−0.143036 + 0.989718i \(0.545686\pi\)
\(692\) 11.7573 0.446947
\(693\) 0 0
\(694\) −10.5017 −0.398638
\(695\) −16.8946 −0.640848
\(696\) −4.25840 −0.161414
\(697\) −64.4579 −2.44152
\(698\) −1.64454 −0.0622469
\(699\) −18.9670 −0.717400
\(700\) 0 0
\(701\) −19.0033 −0.717743 −0.358872 0.933387i \(-0.616838\pi\)
−0.358872 + 0.933387i \(0.616838\pi\)
\(702\) 40.1886 1.51682
\(703\) −5.22926 −0.197225
\(704\) 59.6783 2.24921
\(705\) 8.50273 0.320231
\(706\) −46.0097 −1.73160
\(707\) 0 0
\(708\) −15.8151 −0.594367
\(709\) 45.9406 1.72534 0.862668 0.505771i \(-0.168792\pi\)
0.862668 + 0.505771i \(0.168792\pi\)
\(710\) 17.9298 0.672892
\(711\) −5.35487 −0.200823
\(712\) 1.95703 0.0733429
\(713\) −5.20086 −0.194774
\(714\) 0 0
\(715\) −41.3378 −1.54595
\(716\) −10.0237 −0.374605
\(717\) −17.9597 −0.670715
\(718\) 19.4808 0.727016
\(719\) −25.1688 −0.938637 −0.469319 0.883029i \(-0.655500\pi\)
−0.469319 + 0.883029i \(0.655500\pi\)
\(720\) −10.4173 −0.388232
\(721\) 0 0
\(722\) 38.2841 1.42479
\(723\) −23.4260 −0.871223
\(724\) −32.8254 −1.21995
\(725\) 2.48549 0.0923089
\(726\) 49.1999 1.82598
\(727\) −32.3491 −1.19976 −0.599882 0.800089i \(-0.704786\pi\)
−0.599882 + 0.800089i \(0.704786\pi\)
\(728\) 0 0
\(729\) 21.8324 0.808608
\(730\) 0.142363 0.00526908
\(731\) 43.3907 1.60486
\(732\) 13.8477 0.511826
\(733\) 17.4880 0.645935 0.322967 0.946410i \(-0.395320\pi\)
0.322967 + 0.946410i \(0.395320\pi\)
\(734\) 15.0923 0.557065
\(735\) 0 0
\(736\) 13.5075 0.497895
\(737\) −16.6478 −0.613230
\(738\) 42.0605 1.54827
\(739\) 43.4102 1.59687 0.798436 0.602080i \(-0.205661\pi\)
0.798436 + 0.602080i \(0.205661\pi\)
\(740\) 4.30807 0.158368
\(741\) −25.4346 −0.934364
\(742\) 0 0
\(743\) 34.6597 1.27154 0.635770 0.771879i \(-0.280683\pi\)
0.635770 + 0.771879i \(0.280683\pi\)
\(744\) 2.96855 0.108832
\(745\) −36.3001 −1.32993
\(746\) 43.5414 1.59416
\(747\) −5.26754 −0.192729
\(748\) −68.3942 −2.50074
\(749\) 0 0
\(750\) 28.9648 1.05765
\(751\) −22.4021 −0.817463 −0.408731 0.912655i \(-0.634029\pi\)
−0.408731 + 0.912655i \(0.634029\pi\)
\(752\) 10.5156 0.383465
\(753\) 2.04980 0.0746988
\(754\) 32.9190 1.19884
\(755\) 33.2742 1.21097
\(756\) 0 0
\(757\) −7.70043 −0.279877 −0.139938 0.990160i \(-0.544690\pi\)
−0.139938 + 0.990160i \(0.544690\pi\)
\(758\) −68.0601 −2.47205
\(759\) 10.9914 0.398962
\(760\) −10.4204 −0.377988
\(761\) 32.5770 1.18092 0.590458 0.807068i \(-0.298947\pi\)
0.590458 + 0.807068i \(0.298947\pi\)
\(762\) −40.8325 −1.47920
\(763\) 0 0
\(764\) −23.1589 −0.837861
\(765\) 17.4528 0.631008
\(766\) −1.27707 −0.0461425
\(767\) 19.8054 0.715132
\(768\) 9.63125 0.347538
\(769\) 30.7801 1.10996 0.554980 0.831864i \(-0.312726\pi\)
0.554980 + 0.831864i \(0.312726\pi\)
\(770\) 0 0
\(771\) −16.2852 −0.586497
\(772\) 29.3472 1.05623
\(773\) 51.0528 1.83624 0.918122 0.396299i \(-0.129706\pi\)
0.918122 + 0.396299i \(0.129706\pi\)
\(774\) −28.3136 −1.01771
\(775\) −1.73265 −0.0622385
\(776\) −4.58495 −0.164590
\(777\) 0 0
\(778\) −25.8482 −0.926703
\(779\) −76.3373 −2.73507
\(780\) 20.9541 0.750276
\(781\) 22.5778 0.807898
\(782\) −18.0854 −0.646734
\(783\) 24.2230 0.865659
\(784\) 0 0
\(785\) 2.10092 0.0749852
\(786\) 51.2920 1.82953
\(787\) 37.7076 1.34413 0.672065 0.740492i \(-0.265408\pi\)
0.672065 + 0.740492i \(0.265408\pi\)
\(788\) −53.4807 −1.90517
\(789\) −7.23847 −0.257696
\(790\) −14.7164 −0.523585
\(791\) 0 0
\(792\) 7.22985 0.256902
\(793\) −17.3417 −0.615821
\(794\) 53.9642 1.91512
\(795\) 28.2348 1.00139
\(796\) −5.67097 −0.201002
\(797\) 33.6182 1.19082 0.595408 0.803423i \(-0.296990\pi\)
0.595408 + 0.803423i \(0.296990\pi\)
\(798\) 0 0
\(799\) −17.6174 −0.623260
\(800\) 4.49999 0.159099
\(801\) −3.88186 −0.137159
\(802\) 11.2634 0.397726
\(803\) 0.179268 0.00632624
\(804\) 8.43874 0.297611
\(805\) 0 0
\(806\) −22.9480 −0.808308
\(807\) −26.3352 −0.927044
\(808\) −8.49679 −0.298916
\(809\) 14.5627 0.511997 0.255999 0.966677i \(-0.417596\pi\)
0.255999 + 0.966677i \(0.417596\pi\)
\(810\) 7.06902 0.248380
\(811\) 31.0325 1.08970 0.544849 0.838534i \(-0.316587\pi\)
0.544849 + 0.838534i \(0.316587\pi\)
\(812\) 0 0
\(813\) 11.7196 0.411024
\(814\) 9.97093 0.349481
\(815\) −6.33486 −0.221900
\(816\) −18.7298 −0.655673
\(817\) 51.3875 1.79782
\(818\) 69.5877 2.43308
\(819\) 0 0
\(820\) 62.8897 2.19620
\(821\) 2.10999 0.0736393 0.0368197 0.999322i \(-0.488277\pi\)
0.0368197 + 0.999322i \(0.488277\pi\)
\(822\) 17.1290 0.597441
\(823\) −5.62312 −0.196010 −0.0980048 0.995186i \(-0.531246\pi\)
−0.0980048 + 0.995186i \(0.531246\pi\)
\(824\) 11.5609 0.402741
\(825\) 3.66173 0.127485
\(826\) 0 0
\(827\) −4.45427 −0.154890 −0.0774451 0.996997i \(-0.524676\pi\)
−0.0774451 + 0.996997i \(0.524676\pi\)
\(828\) 6.42069 0.223134
\(829\) −36.9782 −1.28431 −0.642153 0.766577i \(-0.721959\pi\)
−0.642153 + 0.766577i \(0.721959\pi\)
\(830\) −14.4764 −0.502482
\(831\) −18.7148 −0.649210
\(832\) 37.8835 1.31337
\(833\) 0 0
\(834\) 19.8208 0.686337
\(835\) −41.6900 −1.44274
\(836\) −80.9991 −2.80141
\(837\) −16.8859 −0.583664
\(838\) 26.3788 0.911242
\(839\) 30.8364 1.06459 0.532296 0.846559i \(-0.321329\pi\)
0.532296 + 0.846559i \(0.321329\pi\)
\(840\) 0 0
\(841\) −9.15862 −0.315815
\(842\) −76.9410 −2.65156
\(843\) −4.16151 −0.143330
\(844\) −7.35227 −0.253076
\(845\) 1.15786 0.0398317
\(846\) 11.4958 0.395235
\(847\) 0 0
\(848\) 34.9189 1.19912
\(849\) −7.11689 −0.244251
\(850\) −6.02510 −0.206659
\(851\) 1.43450 0.0491739
\(852\) −11.4446 −0.392087
\(853\) −21.3913 −0.732423 −0.366211 0.930532i \(-0.619345\pi\)
−0.366211 + 0.930532i \(0.619345\pi\)
\(854\) 0 0
\(855\) 20.6693 0.706876
\(856\) 0.315589 0.0107866
\(857\) −16.8080 −0.574151 −0.287075 0.957908i \(-0.592683\pi\)
−0.287075 + 0.957908i \(0.592683\pi\)
\(858\) 48.4977 1.65568
\(859\) 3.75848 0.128238 0.0641188 0.997942i \(-0.479576\pi\)
0.0641188 + 0.997942i \(0.479576\pi\)
\(860\) −42.3351 −1.44361
\(861\) 0 0
\(862\) 54.5748 1.85882
\(863\) −40.6969 −1.38534 −0.692669 0.721256i \(-0.743565\pi\)
−0.692669 + 0.721256i \(0.743565\pi\)
\(864\) 43.8557 1.49200
\(865\) −10.3828 −0.353025
\(866\) −33.8102 −1.14892
\(867\) 11.3092 0.384079
\(868\) 0 0
\(869\) −18.5314 −0.628634
\(870\) 23.2134 0.787008
\(871\) −10.5679 −0.358081
\(872\) 10.7648 0.364542
\(873\) 9.09444 0.307800
\(874\) −21.4185 −0.724493
\(875\) 0 0
\(876\) −0.0908708 −0.00307024
\(877\) −30.0005 −1.01304 −0.506522 0.862227i \(-0.669069\pi\)
−0.506522 + 0.862227i \(0.669069\pi\)
\(878\) −24.5462 −0.828394
\(879\) 28.5210 0.961988
\(880\) −36.0508 −1.21527
\(881\) 19.8479 0.668691 0.334346 0.942451i \(-0.391485\pi\)
0.334346 + 0.942451i \(0.391485\pi\)
\(882\) 0 0
\(883\) −26.1083 −0.878616 −0.439308 0.898337i \(-0.644776\pi\)
−0.439308 + 0.898337i \(0.644776\pi\)
\(884\) −43.4163 −1.46025
\(885\) 13.9661 0.469466
\(886\) −46.7490 −1.57056
\(887\) −8.39540 −0.281890 −0.140945 0.990017i \(-0.545014\pi\)
−0.140945 + 0.990017i \(0.545014\pi\)
\(888\) −0.818782 −0.0274765
\(889\) 0 0
\(890\) −10.6682 −0.357599
\(891\) 8.90156 0.298214
\(892\) −52.8921 −1.77096
\(893\) −20.8643 −0.698197
\(894\) 42.5875 1.42434
\(895\) 8.85185 0.295885
\(896\) 0 0
\(897\) 6.97727 0.232964
\(898\) 13.6977 0.457098
\(899\) −13.8315 −0.461306
\(900\) 2.13903 0.0713009
\(901\) −58.5018 −1.94898
\(902\) 145.557 4.84651
\(903\) 0 0
\(904\) 1.67043 0.0555578
\(905\) 28.9877 0.963584
\(906\) −39.0374 −1.29693
\(907\) 49.5208 1.64431 0.822156 0.569263i \(-0.192771\pi\)
0.822156 + 0.569263i \(0.192771\pi\)
\(908\) 26.8878 0.892303
\(909\) 16.8537 0.559004
\(910\) 0 0
\(911\) −42.4966 −1.40797 −0.703987 0.710213i \(-0.748599\pi\)
−0.703987 + 0.710213i \(0.748599\pi\)
\(912\) −22.1816 −0.734506
\(913\) −18.2291 −0.603297
\(914\) −29.8523 −0.987425
\(915\) −12.2288 −0.404270
\(916\) −27.7752 −0.917717
\(917\) 0 0
\(918\) −58.7191 −1.93802
\(919\) −45.0944 −1.48753 −0.743764 0.668442i \(-0.766961\pi\)
−0.743764 + 0.668442i \(0.766961\pi\)
\(920\) 2.85854 0.0942433
\(921\) −30.7381 −1.01285
\(922\) −80.4272 −2.64873
\(923\) 14.3323 0.471753
\(924\) 0 0
\(925\) 0.477897 0.0157132
\(926\) −22.8305 −0.750256
\(927\) −22.9314 −0.753167
\(928\) 35.9228 1.17922
\(929\) 23.4623 0.769773 0.384886 0.922964i \(-0.374241\pi\)
0.384886 + 0.922964i \(0.374241\pi\)
\(930\) −16.1822 −0.530634
\(931\) 0 0
\(932\) −38.3431 −1.25597
\(933\) 0.333066 0.0109041
\(934\) 10.6679 0.349065
\(935\) 60.3982 1.97523
\(936\) 4.58947 0.150012
\(937\) −4.85255 −0.158526 −0.0792630 0.996854i \(-0.525257\pi\)
−0.0792630 + 0.996854i \(0.525257\pi\)
\(938\) 0 0
\(939\) −25.7838 −0.841421
\(940\) 17.1888 0.560638
\(941\) 23.5647 0.768186 0.384093 0.923294i \(-0.374514\pi\)
0.384093 + 0.923294i \(0.374514\pi\)
\(942\) −2.46481 −0.0803079
\(943\) 20.9410 0.681932
\(944\) 17.2723 0.562167
\(945\) 0 0
\(946\) −97.9835 −3.18572
\(947\) −59.1290 −1.92143 −0.960717 0.277529i \(-0.910485\pi\)
−0.960717 + 0.277529i \(0.910485\pi\)
\(948\) 9.39351 0.305087
\(949\) 0.113799 0.00369406
\(950\) −7.13550 −0.231506
\(951\) −7.33044 −0.237706
\(952\) 0 0
\(953\) 8.08491 0.261896 0.130948 0.991389i \(-0.458198\pi\)
0.130948 + 0.991389i \(0.458198\pi\)
\(954\) 38.1740 1.23593
\(955\) 20.4514 0.661792
\(956\) −36.3066 −1.17424
\(957\) 29.2311 0.944909
\(958\) −9.42788 −0.304601
\(959\) 0 0
\(960\) 26.7142 0.862196
\(961\) −21.3580 −0.688968
\(962\) 6.32949 0.204071
\(963\) −0.625983 −0.0201720
\(964\) −47.3572 −1.52527
\(965\) −25.9162 −0.834272
\(966\) 0 0
\(967\) −57.1542 −1.83795 −0.918977 0.394311i \(-0.870983\pi\)
−0.918977 + 0.394311i \(0.870983\pi\)
\(968\) 16.1125 0.517876
\(969\) 37.1622 1.19382
\(970\) 24.9935 0.802493
\(971\) −10.6006 −0.340189 −0.170095 0.985428i \(-0.554407\pi\)
−0.170095 + 0.985428i \(0.554407\pi\)
\(972\) 34.4236 1.10414
\(973\) 0 0
\(974\) −11.1539 −0.357392
\(975\) 2.32445 0.0744419
\(976\) −15.1237 −0.484098
\(977\) 60.6099 1.93908 0.969542 0.244927i \(-0.0787638\pi\)
0.969542 + 0.244927i \(0.0787638\pi\)
\(978\) 7.43208 0.237652
\(979\) −13.4338 −0.429345
\(980\) 0 0
\(981\) −21.3524 −0.681731
\(982\) 69.7956 2.22727
\(983\) −43.7727 −1.39613 −0.698066 0.716033i \(-0.745956\pi\)
−0.698066 + 0.716033i \(0.745956\pi\)
\(984\) −11.9527 −0.381037
\(985\) 47.2282 1.50482
\(986\) −48.0976 −1.53174
\(987\) 0 0
\(988\) −51.4178 −1.63582
\(989\) −14.0967 −0.448249
\(990\) −39.4114 −1.25258
\(991\) 53.0254 1.68441 0.842204 0.539159i \(-0.181258\pi\)
0.842204 + 0.539159i \(0.181258\pi\)
\(992\) −25.0419 −0.795082
\(993\) 6.60430 0.209581
\(994\) 0 0
\(995\) 5.00797 0.158763
\(996\) 9.24032 0.292791
\(997\) 37.9920 1.20322 0.601609 0.798791i \(-0.294527\pi\)
0.601609 + 0.798791i \(0.294527\pi\)
\(998\) 5.60047 0.177280
\(999\) 4.65747 0.147356
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2401.2.a.g.1.18 yes 18
7.6 odd 2 inner 2401.2.a.g.1.17 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2401.2.a.g.1.17 18 7.6 odd 2 inner
2401.2.a.g.1.18 yes 18 1.1 even 1 trivial