Properties

Label 2401.2.a.e
Level $2401$
Weight $2$
Character orbit 2401.a
Self dual yes
Analytic conductor $19.172$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2401,2,Mod(1,2401)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2401, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2401.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2401 = 7^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2401.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,-6,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.1720815253\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 3x^{8} - 7x^{7} + 20x^{6} + 19x^{5} - 39x^{4} - 22x^{3} + 17x^{2} + 2x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{8}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{2} + ( - \beta_{5} + \beta_1 - 1) q^{3} + (\beta_{8} - \beta_{6} + \beta_{4} + \cdots + 2) q^{4} + ( - \beta_{7} + \beta_{6} - \beta_{4}) q^{5} + (\beta_{8} - \beta_{6} + \beta_{5} + \cdots + 3) q^{6}+ \cdots + ( - 2 \beta_{8} - 2 \beta_{7} + \cdots - 8) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 6 q^{2} - 2 q^{3} + 8 q^{4} + 4 q^{5} + 15 q^{6} - 15 q^{8} + 7 q^{9} - 9 q^{10} - 10 q^{11} - 14 q^{12} - 5 q^{15} + 10 q^{16} - 9 q^{17} - 13 q^{18} - 10 q^{19} + 7 q^{20} + 6 q^{22} - 13 q^{23}+ \cdots - 59 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{9} - 3x^{8} - 7x^{7} + 20x^{6} + 19x^{5} - 39x^{4} - 22x^{3} + 17x^{2} + 2x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{8} - 6\nu^{7} + 4\nu^{6} + 29\nu^{5} - 33\nu^{4} - 38\nu^{3} + 36\nu^{2} - 5 ) / 7 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 2\nu^{8} - 5\nu^{7} - 13\nu^{6} + 23\nu^{5} + 39\nu^{4} - 27\nu^{3} - 47\nu^{2} + 7\nu + 4 ) / 7 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{8} + 6\nu^{7} - 4\nu^{6} - 29\nu^{5} + 33\nu^{4} + 45\nu^{3} - 43\nu^{2} - 28\nu + 5 ) / 7 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 2\nu^{8} - 5\nu^{7} - 20\nu^{6} + 44\nu^{5} + 67\nu^{4} - 111\nu^{3} - 82\nu^{2} + 70\nu + 4 ) / 7 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 4\nu^{8} - 10\nu^{7} - 33\nu^{6} + 67\nu^{5} + 99\nu^{4} - 117\nu^{3} - 115\nu^{2} + 21\nu + 15 ) / 7 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -4\nu^{8} + 10\nu^{7} + 33\nu^{6} - 60\nu^{5} - 120\nu^{4} + 96\nu^{3} + 178\nu^{2} - 22 ) / 7 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 5\nu^{8} - 16\nu^{7} - 29\nu^{6} + 96\nu^{5} + 66\nu^{4} - 162\nu^{3} - 65\nu^{2} + 42\nu - 11 ) / 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{8} - \beta_{6} + \beta_{4} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{8} - \beta_{6} + 2\beta_{4} + \beta_{2} + 5\beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 5\beta_{8} - 6\beta_{6} + \beta_{5} + 8\beta_{4} + \beta_{3} + 3\beta_{2} + 9\beta _1 + 16 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 9\beta_{8} + \beta_{7} - 11\beta_{6} + 3\beta_{5} + 21\beta_{4} + 3\beta_{3} + 12\beta_{2} + 30\beta _1 + 31 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 30\beta_{8} + 3\beta_{7} - 40\beta_{6} + 12\beta_{5} + 66\beta_{4} + 14\beta_{3} + 36\beta_{2} + 70\beta _1 + 106 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 70\beta_{8} + 14\beta_{7} - 95\beta_{6} + 36\beta_{5} + 186\beta_{4} + 43\beta_{3} + 114\beta_{2} + 206\beta _1 + 261 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 206 \beta_{8} + 43 \beta_{7} - 291 \beta_{6} + 114 \beta_{5} + 547 \beta_{4} + 148 \beta_{3} + \cdots + 782 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.68304
−1.56249
−1.05695
−0.280696
0.230542
0.487684
1.82640
2.19536
2.84319
−2.68304 −1.53393 5.19873 3.13701 4.11559 0 −8.58233 −0.647074 −8.41673
1.2 −2.56249 −2.72442 4.56636 −0.891804 6.98131 0 −6.57626 4.42249 2.28524
1.3 −2.05695 1.13615 2.23103 −0.313688 −2.33701 0 −0.475218 −1.70915 0.645241
1.4 −1.28070 1.47994 −0.359817 0.730097 −1.89535 0 3.02221 −0.809792 −0.935033
1.5 −0.769458 −2.86008 −1.40793 3.92353 2.20071 0 2.62226 5.18004 −3.01899
1.6 −0.512316 −2.00787 −1.73753 −2.80551 1.02866 0 1.91480 1.03153 1.43731
1.7 0.826405 2.52586 −1.31706 0.884122 2.08738 0 −2.74123 3.37997 0.730642
1.8 1.19536 1.29481 −0.571112 0.778425 1.54777 0 −3.07341 −1.32346 0.930499
1.9 1.84319 0.689531 1.39734 −1.44217 1.27093 0 −1.11082 −2.52455 −2.65819
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.9
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2401.2.a.e 9
7.b odd 2 1 2401.2.a.f yes 9
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2401.2.a.e 9 1.a even 1 1 trivial
2401.2.a.f yes 9 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2401))\):

\( T_{2}^{9} + 6T_{2}^{8} + 5T_{2}^{7} - 29T_{2}^{6} - 50T_{2}^{5} + 27T_{2}^{4} + 83T_{2}^{3} + 12T_{2}^{2} - 35T_{2} - 13 \) Copy content Toggle raw display
\( T_{3}^{9} + 2T_{3}^{8} - 15T_{3}^{7} - 22T_{3}^{6} + 84T_{3}^{5} + 63T_{3}^{4} - 217T_{3}^{3} - 14T_{3}^{2} + 210T_{3} - 91 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{9} + 6 T^{8} + \cdots - 13 \) Copy content Toggle raw display
$3$ \( T^{9} + 2 T^{8} + \cdots - 91 \) Copy content Toggle raw display
$5$ \( T^{9} - 4 T^{8} + \cdots - 7 \) Copy content Toggle raw display
$7$ \( T^{9} \) Copy content Toggle raw display
$11$ \( T^{9} + 10 T^{8} + \cdots - 601 \) Copy content Toggle raw display
$13$ \( T^{9} - 70 T^{7} + \cdots + 49 \) Copy content Toggle raw display
$17$ \( T^{9} + 9 T^{8} + \cdots - 3227 \) Copy content Toggle raw display
$19$ \( T^{9} + 10 T^{8} + \cdots + 1421 \) Copy content Toggle raw display
$23$ \( T^{9} + 13 T^{8} + \cdots - 49937 \) Copy content Toggle raw display
$29$ \( T^{9} + 31 T^{8} + \cdots + 41117 \) Copy content Toggle raw display
$31$ \( T^{9} + 16 T^{8} + \cdots - 9562889 \) Copy content Toggle raw display
$37$ \( T^{9} + 6 T^{8} + \cdots + 9511853 \) Copy content Toggle raw display
$41$ \( T^{9} - 21 T^{8} + \cdots - 887047 \) Copy content Toggle raw display
$43$ \( T^{9} - 4 T^{8} + \cdots - 1000819 \) Copy content Toggle raw display
$47$ \( T^{9} - 11 T^{8} + \cdots - 1443841 \) Copy content Toggle raw display
$53$ \( T^{9} + 3 T^{8} + \cdots - 371293 \) Copy content Toggle raw display
$59$ \( T^{9} + 23 T^{8} + \cdots + 579971 \) Copy content Toggle raw display
$61$ \( T^{9} - 39 T^{8} + \cdots - 3335927 \) Copy content Toggle raw display
$67$ \( T^{9} + 3 T^{8} + \cdots - 221339 \) Copy content Toggle raw display
$71$ \( T^{9} + 24 T^{8} + \cdots - 632227 \) Copy content Toggle raw display
$73$ \( T^{9} - 26 T^{8} + \cdots + 10337537 \) Copy content Toggle raw display
$79$ \( T^{9} + 34 T^{8} + \cdots + 6243049 \) Copy content Toggle raw display
$83$ \( T^{9} - 35 T^{8} + \cdots - 5671211 \) Copy content Toggle raw display
$89$ \( T^{9} + 31 T^{8} + \cdots + 65599037 \) Copy content Toggle raw display
$97$ \( T^{9} + 49 T^{8} + \cdots + 356005531 \) Copy content Toggle raw display
show more
show less