Properties

Label 240.9.c.e.209.8
Level $240$
Weight $9$
Character 240.209
Analytic conductor $97.771$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [240,9,Mod(209,240)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("240.209"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(240, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 240.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,21928] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(97.7708664147\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 11030 x^{14} + 49274731 x^{12} + 114127354194 x^{10} + 145952808215673 x^{8} + \cdots + 37\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{44}\cdot 3^{20}\cdot 5^{10} \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 209.8
Root \(-1.41421 + 12.8953i\) of defining polynomial
Character \(\chi\) \(=\) 240.209
Dual form 240.9.c.e.209.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-38.6282 + 71.1959i) q^{3} +(447.247 - 436.572i) q^{5} -730.421i q^{7} +(-3576.72 - 5500.34i) q^{9} -2177.02i q^{11} -20679.8i q^{13} +(13805.8 + 48706.2i) q^{15} -87242.2 q^{17} -218350. q^{19} +(52003.0 + 28214.9i) q^{21} -74313.2 q^{23} +(9434.46 - 390511. i) q^{25} +(529764. - 42179.6i) q^{27} +564034. i q^{29} -194831. q^{31} +(154995. + 84094.2i) q^{33} +(-318882. - 326679. i) q^{35} +2.88646e6i q^{37} +(1.47232e6 + 798825. i) q^{39} +3.26199e6i q^{41} -5.76157e6i q^{43} +(-4.00097e6 - 898514. i) q^{45} +5.22994e6 q^{47} +5.23129e6 q^{49} +(3.37001e6 - 6.21129e6i) q^{51} -23530.8 q^{53} +(-950424. - 973663. i) q^{55} +(8.43445e6 - 1.55456e7i) q^{57} +1.90089e7i q^{59} +2.23567e7 q^{61} +(-4.01757e6 + 2.61251e6i) q^{63} +(-9.02824e6 - 9.24899e6i) q^{65} +1.36408e7i q^{67} +(2.87059e6 - 5.29080e6i) q^{69} -1.49189e7i q^{71} +9.97784e6i q^{73} +(2.74384e7 + 1.57564e7i) q^{75} -1.59014e6 q^{77} +1.79651e7 q^{79} +(-1.74608e7 + 3.93464e7i) q^{81} -1.52131e7 q^{83} +(-3.90188e7 + 3.80875e7i) q^{85} +(-4.01570e7 - 2.17876e7i) q^{87} -7.04410e7i q^{89} -1.51050e7 q^{91} +(7.52597e6 - 1.38712e7i) q^{93} +(-9.76561e7 + 9.53253e7i) q^{95} +3.77001e7i q^{97} +(-1.19743e7 + 7.78658e6i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 21928 q^{9} + 62920 q^{15} - 96048 q^{19} + 667112 q^{21} + 1292160 q^{25} + 5127152 q^{31} + 5420160 q^{39} - 8741480 q^{45} - 21439680 q^{49} - 3556688 q^{51} - 27329120 q^{55} + 67157264 q^{61}+ \cdots - 754526432 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/240\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(181\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −38.6282 + 71.1959i −0.476892 + 0.878962i
\(4\) 0 0
\(5\) 447.247 436.572i 0.715595 0.698515i
\(6\) 0 0
\(7\) 730.421i 0.304215i −0.988364 0.152108i \(-0.951394\pi\)
0.988364 0.152108i \(-0.0486061\pi\)
\(8\) 0 0
\(9\) −3576.72 5500.34i −0.545149 0.838339i
\(10\) 0 0
\(11\) 2177.02i 0.148693i −0.997232 0.0743465i \(-0.976313\pi\)
0.997232 0.0743465i \(-0.0236871\pi\)
\(12\) 0 0
\(13\) 20679.8i 0.724058i −0.932167 0.362029i \(-0.882084\pi\)
0.932167 0.362029i \(-0.117916\pi\)
\(14\) 0 0
\(15\) 13805.8 + 48706.2i 0.272707 + 0.962097i
\(16\) 0 0
\(17\) −87242.2 −1.04455 −0.522277 0.852776i \(-0.674917\pi\)
−0.522277 + 0.852776i \(0.674917\pi\)
\(18\) 0 0
\(19\) −218350. −1.67547 −0.837737 0.546074i \(-0.816122\pi\)
−0.837737 + 0.546074i \(0.816122\pi\)
\(20\) 0 0
\(21\) 52003.0 + 28214.9i 0.267394 + 0.145078i
\(22\) 0 0
\(23\) −74313.2 −0.265555 −0.132778 0.991146i \(-0.542390\pi\)
−0.132778 + 0.991146i \(0.542390\pi\)
\(24\) 0 0
\(25\) 9434.46 390511.i 0.0241522 0.999708i
\(26\) 0 0
\(27\) 529764. 42179.6i 0.996845 0.0793683i
\(28\) 0 0
\(29\) 564034.i 0.797469i 0.917067 + 0.398734i \(0.130550\pi\)
−0.917067 + 0.398734i \(0.869450\pi\)
\(30\) 0 0
\(31\) −194831. −0.210965 −0.105483 0.994421i \(-0.533639\pi\)
−0.105483 + 0.994421i \(0.533639\pi\)
\(32\) 0 0
\(33\) 154995. + 84094.2i 0.130696 + 0.0709105i
\(34\) 0 0
\(35\) −318882. 326679.i −0.212499 0.217695i
\(36\) 0 0
\(37\) 2.88646e6i 1.54013i 0.637964 + 0.770066i \(0.279777\pi\)
−0.637964 + 0.770066i \(0.720223\pi\)
\(38\) 0 0
\(39\) 1.47232e6 + 798825.i 0.636420 + 0.345297i
\(40\) 0 0
\(41\) 3.26199e6i 1.15438i 0.816611 + 0.577188i \(0.195850\pi\)
−0.816611 + 0.577188i \(0.804150\pi\)
\(42\) 0 0
\(43\) 5.76157e6i 1.68526i −0.538492 0.842630i \(-0.681006\pi\)
0.538492 0.842630i \(-0.318994\pi\)
\(44\) 0 0
\(45\) −4.00097e6 898514.i −0.975699 0.219116i
\(46\) 0 0
\(47\) 5.22994e6 1.07178 0.535889 0.844288i \(-0.319976\pi\)
0.535889 + 0.844288i \(0.319976\pi\)
\(48\) 0 0
\(49\) 5.23129e6 0.907453
\(50\) 0 0
\(51\) 3.37001e6 6.21129e6i 0.498139 0.918124i
\(52\) 0 0
\(53\) −23530.8 −0.00298218 −0.00149109 0.999999i \(-0.500475\pi\)
−0.00149109 + 0.999999i \(0.500475\pi\)
\(54\) 0 0
\(55\) −950424. 973663.i −0.103864 0.106404i
\(56\) 0 0
\(57\) 8.43445e6 1.55456e7i 0.799020 1.47268i
\(58\) 0 0
\(59\) 1.90089e7i 1.56874i 0.620296 + 0.784368i \(0.287012\pi\)
−0.620296 + 0.784368i \(0.712988\pi\)
\(60\) 0 0
\(61\) 2.23567e7 1.61469 0.807343 0.590083i \(-0.200905\pi\)
0.807343 + 0.590083i \(0.200905\pi\)
\(62\) 0 0
\(63\) −4.01757e6 + 2.61251e6i −0.255036 + 0.165843i
\(64\) 0 0
\(65\) −9.02824e6 9.24899e6i −0.505766 0.518132i
\(66\) 0 0
\(67\) 1.36408e7i 0.676924i 0.940980 + 0.338462i \(0.109907\pi\)
−0.940980 + 0.338462i \(0.890093\pi\)
\(68\) 0 0
\(69\) 2.87059e6 5.29080e6i 0.126641 0.233413i
\(70\) 0 0
\(71\) 1.49189e7i 0.587090i −0.955945 0.293545i \(-0.905165\pi\)
0.955945 0.293545i \(-0.0948351\pi\)
\(72\) 0 0
\(73\) 9.97784e6i 0.351354i 0.984448 + 0.175677i \(0.0562115\pi\)
−0.984448 + 0.175677i \(0.943789\pi\)
\(74\) 0 0
\(75\) 2.74384e7 + 1.57564e7i 0.867188 + 0.497981i
\(76\) 0 0
\(77\) −1.59014e6 −0.0452347
\(78\) 0 0
\(79\) 1.79651e7 0.461234 0.230617 0.973045i \(-0.425926\pi\)
0.230617 + 0.973045i \(0.425926\pi\)
\(80\) 0 0
\(81\) −1.74608e7 + 3.93464e7i −0.405625 + 0.914039i
\(82\) 0 0
\(83\) −1.52131e7 −0.320558 −0.160279 0.987072i \(-0.551239\pi\)
−0.160279 + 0.987072i \(0.551239\pi\)
\(84\) 0 0
\(85\) −3.90188e7 + 3.80875e7i −0.747478 + 0.729637i
\(86\) 0 0
\(87\) −4.01570e7 2.17876e7i −0.700945 0.380306i
\(88\) 0 0
\(89\) 7.04410e7i 1.12270i −0.827577 0.561352i \(-0.810281\pi\)
0.827577 0.561352i \(-0.189719\pi\)
\(90\) 0 0
\(91\) −1.51050e7 −0.220270
\(92\) 0 0
\(93\) 7.52597e6 1.38712e7i 0.100608 0.185430i
\(94\) 0 0
\(95\) −9.76561e7 + 9.53253e7i −1.19896 + 1.17034i
\(96\) 0 0
\(97\) 3.77001e7i 0.425849i 0.977069 + 0.212925i \(0.0682989\pi\)
−0.977069 + 0.212925i \(0.931701\pi\)
\(98\) 0 0
\(99\) −1.19743e7 + 7.78658e6i −0.124655 + 0.0810599i
\(100\) 0 0
\(101\) 2.01688e8i 1.93818i 0.246703 + 0.969091i \(0.420653\pi\)
−0.246703 + 0.969091i \(0.579347\pi\)
\(102\) 0 0
\(103\) 1.46669e8i 1.30313i 0.758593 + 0.651565i \(0.225887\pi\)
−0.758593 + 0.651565i \(0.774113\pi\)
\(104\) 0 0
\(105\) 3.55760e7 1.00841e7i 0.292685 0.0829618i
\(106\) 0 0
\(107\) 1.16566e8 0.889275 0.444637 0.895711i \(-0.353333\pi\)
0.444637 + 0.895711i \(0.353333\pi\)
\(108\) 0 0
\(109\) −1.52027e8 −1.07700 −0.538498 0.842627i \(-0.681008\pi\)
−0.538498 + 0.842627i \(0.681008\pi\)
\(110\) 0 0
\(111\) −2.05504e8 1.11499e8i −1.35372 0.734476i
\(112\) 0 0
\(113\) −2.57848e8 −1.58143 −0.790714 0.612185i \(-0.790291\pi\)
−0.790714 + 0.612185i \(0.790291\pi\)
\(114\) 0 0
\(115\) −3.32364e7 + 3.24431e7i −0.190030 + 0.185494i
\(116\) 0 0
\(117\) −1.13746e8 + 7.39660e7i −0.607007 + 0.394720i
\(118\) 0 0
\(119\) 6.37236e7i 0.317770i
\(120\) 0 0
\(121\) 2.09619e8 0.977890
\(122\) 0 0
\(123\) −2.32240e8 1.26005e8i −1.01465 0.550512i
\(124\) 0 0
\(125\) −1.66267e8 1.78774e8i −0.681029 0.732257i
\(126\) 0 0
\(127\) 3.38411e8i 1.30086i 0.759568 + 0.650428i \(0.225410\pi\)
−0.759568 + 0.650428i \(0.774590\pi\)
\(128\) 0 0
\(129\) 4.10200e8 + 2.22559e8i 1.48128 + 0.803687i
\(130\) 0 0
\(131\) 2.54469e8i 0.864070i 0.901857 + 0.432035i \(0.142204\pi\)
−0.901857 + 0.432035i \(0.857796\pi\)
\(132\) 0 0
\(133\) 1.59487e8i 0.509705i
\(134\) 0 0
\(135\) 2.18521e8 2.50145e8i 0.657898 0.753107i
\(136\) 0 0
\(137\) −1.70222e8 −0.483206 −0.241603 0.970375i \(-0.577673\pi\)
−0.241603 + 0.970375i \(0.577673\pi\)
\(138\) 0 0
\(139\) 6.16232e8 1.65076 0.825382 0.564574i \(-0.190960\pi\)
0.825382 + 0.564574i \(0.190960\pi\)
\(140\) 0 0
\(141\) −2.02023e8 + 3.72350e8i −0.511122 + 0.942053i
\(142\) 0 0
\(143\) −4.50203e7 −0.107662
\(144\) 0 0
\(145\) 2.46242e8 + 2.52263e8i 0.557044 + 0.570664i
\(146\) 0 0
\(147\) −2.02075e8 + 3.72446e8i −0.432757 + 0.797617i
\(148\) 0 0
\(149\) 4.28239e8i 0.868842i 0.900710 + 0.434421i \(0.143047\pi\)
−0.900710 + 0.434421i \(0.856953\pi\)
\(150\) 0 0
\(151\) 1.22999e8 0.236589 0.118294 0.992979i \(-0.462257\pi\)
0.118294 + 0.992979i \(0.462257\pi\)
\(152\) 0 0
\(153\) 3.12041e8 + 4.79862e8i 0.569438 + 0.875691i
\(154\) 0 0
\(155\) −8.71375e7 + 8.50577e7i −0.150966 + 0.147363i
\(156\) 0 0
\(157\) 5.76997e8i 0.949675i −0.880074 0.474837i \(-0.842507\pi\)
0.880074 0.474837i \(-0.157493\pi\)
\(158\) 0 0
\(159\) 908954. 1.67530e6i 0.00142218 0.00262122i
\(160\) 0 0
\(161\) 5.42800e7i 0.0807860i
\(162\) 0 0
\(163\) 1.02316e9i 1.44941i −0.689059 0.724705i \(-0.741976\pi\)
0.689059 0.724705i \(-0.258024\pi\)
\(164\) 0 0
\(165\) 1.06034e8 3.00555e7i 0.143057 0.0405497i
\(166\) 0 0
\(167\) −6.13627e8 −0.788930 −0.394465 0.918911i \(-0.629070\pi\)
−0.394465 + 0.918911i \(0.629070\pi\)
\(168\) 0 0
\(169\) 3.88075e8 0.475740
\(170\) 0 0
\(171\) 7.80975e8 + 1.20100e9i 0.913383 + 1.40462i
\(172\) 0 0
\(173\) −2.25079e8 −0.251276 −0.125638 0.992076i \(-0.540098\pi\)
−0.125638 + 0.992076i \(0.540098\pi\)
\(174\) 0 0
\(175\) −2.85238e8 6.89113e6i −0.304127 0.00734748i
\(176\) 0 0
\(177\) −1.35336e9 7.34281e8i −1.37886 0.748117i
\(178\) 0 0
\(179\) 7.28271e8i 0.709383i 0.934983 + 0.354691i \(0.115414\pi\)
−0.934983 + 0.354691i \(0.884586\pi\)
\(180\) 0 0
\(181\) 9.56534e7 0.0891223 0.0445611 0.999007i \(-0.485811\pi\)
0.0445611 + 0.999007i \(0.485811\pi\)
\(182\) 0 0
\(183\) −8.63599e8 + 1.59170e9i −0.770030 + 1.41925i
\(184\) 0 0
\(185\) 1.26015e9 + 1.29096e9i 1.07581 + 1.10211i
\(186\) 0 0
\(187\) 1.89928e8i 0.155318i
\(188\) 0 0
\(189\) −3.08089e7 3.86951e8i −0.0241451 0.303256i
\(190\) 0 0
\(191\) 2.55333e9i 1.91855i 0.282467 + 0.959277i \(0.408847\pi\)
−0.282467 + 0.959277i \(0.591153\pi\)
\(192\) 0 0
\(193\) 3.11662e8i 0.224623i −0.993673 0.112312i \(-0.964174\pi\)
0.993673 0.112312i \(-0.0358255\pi\)
\(194\) 0 0
\(195\) 1.00724e9 2.85502e8i 0.696614 0.197456i
\(196\) 0 0
\(197\) −1.07737e9 −0.715322 −0.357661 0.933852i \(-0.616426\pi\)
−0.357661 + 0.933852i \(0.616426\pi\)
\(198\) 0 0
\(199\) −9.36166e8 −0.596954 −0.298477 0.954417i \(-0.596479\pi\)
−0.298477 + 0.954417i \(0.596479\pi\)
\(200\) 0 0
\(201\) −9.71167e8 5.26919e8i −0.594990 0.322819i
\(202\) 0 0
\(203\) 4.11983e8 0.242602
\(204\) 0 0
\(205\) 1.42409e9 + 1.45891e9i 0.806349 + 0.826065i
\(206\) 0 0
\(207\) 2.65798e8 + 4.08748e8i 0.144767 + 0.222625i
\(208\) 0 0
\(209\) 4.75350e8i 0.249131i
\(210\) 0 0
\(211\) −1.43472e6 −0.000723833 −0.000361916 1.00000i \(-0.500115\pi\)
−0.000361916 1.00000i \(0.500115\pi\)
\(212\) 0 0
\(213\) 1.06217e9 + 5.76292e8i 0.516030 + 0.279978i
\(214\) 0 0
\(215\) −2.51534e9 2.57684e9i −1.17718 1.20596i
\(216\) 0 0
\(217\) 1.42309e8i 0.0641789i
\(218\) 0 0
\(219\) −7.10382e8 3.85426e8i −0.308827 0.167558i
\(220\) 0 0
\(221\) 1.80415e9i 0.756318i
\(222\) 0 0
\(223\) 1.56417e8i 0.0632508i 0.999500 + 0.0316254i \(0.0100683\pi\)
−0.999500 + 0.0316254i \(0.989932\pi\)
\(224\) 0 0
\(225\) −2.18169e9 + 1.34486e9i −0.851261 + 0.524742i
\(226\) 0 0
\(227\) 3.69707e8 0.139237 0.0696185 0.997574i \(-0.477822\pi\)
0.0696185 + 0.997574i \(0.477822\pi\)
\(228\) 0 0
\(229\) 5.62664e8 0.204601 0.102300 0.994754i \(-0.467380\pi\)
0.102300 + 0.994754i \(0.467380\pi\)
\(230\) 0 0
\(231\) 6.14242e7 1.13211e8i 0.0215721 0.0397596i
\(232\) 0 0
\(233\) −3.58929e9 −1.21782 −0.608912 0.793238i \(-0.708394\pi\)
−0.608912 + 0.793238i \(0.708394\pi\)
\(234\) 0 0
\(235\) 2.33907e9 2.28325e9i 0.766959 0.748654i
\(236\) 0 0
\(237\) −6.93960e8 + 1.27904e9i −0.219959 + 0.405407i
\(238\) 0 0
\(239\) 3.91899e9i 1.20111i −0.799584 0.600554i \(-0.794947\pi\)
0.799584 0.600554i \(-0.205053\pi\)
\(240\) 0 0
\(241\) −4.89507e9 −1.45108 −0.725539 0.688181i \(-0.758410\pi\)
−0.725539 + 0.688181i \(0.758410\pi\)
\(242\) 0 0
\(243\) −2.12682e9 2.76302e9i −0.609967 0.792427i
\(244\) 0 0
\(245\) 2.33968e9 2.28383e9i 0.649369 0.633870i
\(246\) 0 0
\(247\) 4.51543e9i 1.21314i
\(248\) 0 0
\(249\) 5.87657e8 1.08311e9i 0.152871 0.281758i
\(250\) 0 0
\(251\) 1.48997e9i 0.375389i 0.982227 + 0.187695i \(0.0601015\pi\)
−0.982227 + 0.187695i \(0.939898\pi\)
\(252\) 0 0
\(253\) 1.61781e8i 0.0394862i
\(254\) 0 0
\(255\) −1.20445e9 4.24923e9i −0.284858 1.00496i
\(256\) 0 0
\(257\) 4.87455e9 1.11738 0.558692 0.829375i \(-0.311303\pi\)
0.558692 + 0.829375i \(0.311303\pi\)
\(258\) 0 0
\(259\) 2.10833e9 0.468532
\(260\) 0 0
\(261\) 3.10238e9 2.01739e9i 0.668549 0.434739i
\(262\) 0 0
\(263\) 4.82355e9 1.00819 0.504097 0.863647i \(-0.331826\pi\)
0.504097 + 0.863647i \(0.331826\pi\)
\(264\) 0 0
\(265\) −1.05241e7 + 1.02729e7i −0.00213403 + 0.00208310i
\(266\) 0 0
\(267\) 5.01511e9 + 2.72101e9i 0.986815 + 0.535408i
\(268\) 0 0
\(269\) 2.31084e9i 0.441328i −0.975350 0.220664i \(-0.929178\pi\)
0.975350 0.220664i \(-0.0708224\pi\)
\(270\) 0 0
\(271\) −9.26866e9 −1.71846 −0.859230 0.511589i \(-0.829057\pi\)
−0.859230 + 0.511589i \(0.829057\pi\)
\(272\) 0 0
\(273\) 5.83479e8 1.07541e9i 0.105045 0.193609i
\(274\) 0 0
\(275\) −8.50149e8 2.05390e7i −0.148650 0.00359127i
\(276\) 0 0
\(277\) 5.73091e9i 0.973429i −0.873561 0.486714i \(-0.838195\pi\)
0.873561 0.486714i \(-0.161805\pi\)
\(278\) 0 0
\(279\) 6.96856e8 + 1.07164e9i 0.115007 + 0.176860i
\(280\) 0 0
\(281\) 9.07009e9i 1.45474i 0.686244 + 0.727371i \(0.259258\pi\)
−0.686244 + 0.727371i \(0.740742\pi\)
\(282\) 0 0
\(283\) 9.68545e8i 0.150999i 0.997146 + 0.0754995i \(0.0240551\pi\)
−0.997146 + 0.0754995i \(0.975945\pi\)
\(284\) 0 0
\(285\) −3.01449e9 1.06350e10i −0.456914 1.61197i
\(286\) 0 0
\(287\) 2.38263e9 0.351179
\(288\) 0 0
\(289\) 6.35450e8 0.0910940
\(290\) 0 0
\(291\) −2.68410e9 1.45629e9i −0.374305 0.203084i
\(292\) 0 0
\(293\) 7.35704e9 0.998234 0.499117 0.866535i \(-0.333658\pi\)
0.499117 + 0.866535i \(0.333658\pi\)
\(294\) 0 0
\(295\) 8.29877e9 + 8.50169e9i 1.09579 + 1.12258i
\(296\) 0 0
\(297\) −9.18256e7 1.15331e9i −0.0118015 0.148224i
\(298\) 0 0
\(299\) 1.53678e9i 0.192277i
\(300\) 0 0
\(301\) −4.20837e9 −0.512682
\(302\) 0 0
\(303\) −1.43594e10 7.79085e9i −1.70359 0.924303i
\(304\) 0 0
\(305\) 9.99895e9 9.76030e9i 1.15546 1.12788i
\(306\) 0 0
\(307\) 1.23892e10i 1.39472i −0.716719 0.697362i \(-0.754357\pi\)
0.716719 0.697362i \(-0.245643\pi\)
\(308\) 0 0
\(309\) −1.04422e10 5.66554e9i −1.14540 0.621452i
\(310\) 0 0
\(311\) 2.27468e9i 0.243153i −0.992582 0.121576i \(-0.961205\pi\)
0.992582 0.121576i \(-0.0387949\pi\)
\(312\) 0 0
\(313\) 1.95006e8i 0.0203175i −0.999948 0.0101588i \(-0.996766\pi\)
0.999948 0.0101588i \(-0.00323369\pi\)
\(314\) 0 0
\(315\) −6.56294e8 + 2.92240e9i −0.0666586 + 0.296823i
\(316\) 0 0
\(317\) 1.09690e10 1.08625 0.543125 0.839652i \(-0.317241\pi\)
0.543125 + 0.839652i \(0.317241\pi\)
\(318\) 0 0
\(319\) 1.22791e9 0.118578
\(320\) 0 0
\(321\) −4.50273e9 + 8.29901e9i −0.424088 + 0.781639i
\(322\) 0 0
\(323\) 1.90493e10 1.75012
\(324\) 0 0
\(325\) −8.07570e9 1.95103e8i −0.723847 0.0174876i
\(326\) 0 0
\(327\) 5.87252e9 1.08237e10i 0.513610 0.946638i
\(328\) 0 0
\(329\) 3.82006e9i 0.326052i
\(330\) 0 0
\(331\) −5.50117e9 −0.458293 −0.229147 0.973392i \(-0.573593\pi\)
−0.229147 + 0.973392i \(0.573593\pi\)
\(332\) 0 0
\(333\) 1.58765e10 1.03240e10i 1.29115 0.839601i
\(334\) 0 0
\(335\) 5.95518e9 + 6.10079e9i 0.472842 + 0.484403i
\(336\) 0 0
\(337\) 6.52223e9i 0.505681i 0.967508 + 0.252840i \(0.0813647\pi\)
−0.967508 + 0.252840i \(0.918635\pi\)
\(338\) 0 0
\(339\) 9.96020e9 1.83577e10i 0.754170 1.39002i
\(340\) 0 0
\(341\) 4.24150e8i 0.0313691i
\(342\) 0 0
\(343\) 8.03178e9i 0.580277i
\(344\) 0 0
\(345\) −1.02595e9 3.61951e9i −0.0724189 0.255490i
\(346\) 0 0
\(347\) −4.65773e8 −0.0321260 −0.0160630 0.999871i \(-0.505113\pi\)
−0.0160630 + 0.999871i \(0.505113\pi\)
\(348\) 0 0
\(349\) 4.05878e9 0.273586 0.136793 0.990600i \(-0.456320\pi\)
0.136793 + 0.990600i \(0.456320\pi\)
\(350\) 0 0
\(351\) −8.72266e8 1.09554e10i −0.0574673 0.721774i
\(352\) 0 0
\(353\) −2.43727e10 −1.56966 −0.784828 0.619713i \(-0.787249\pi\)
−0.784828 + 0.619713i \(0.787249\pi\)
\(354\) 0 0
\(355\) −6.51320e9 6.67245e9i −0.410092 0.420119i
\(356\) 0 0
\(357\) −4.53686e9 2.46153e9i −0.279307 0.151542i
\(358\) 0 0
\(359\) 5.90288e9i 0.355375i 0.984087 + 0.177687i \(0.0568616\pi\)
−0.984087 + 0.177687i \(0.943138\pi\)
\(360\) 0 0
\(361\) 3.06929e10 1.80721
\(362\) 0 0
\(363\) −8.09723e9 + 1.49241e10i −0.466348 + 0.859529i
\(364\) 0 0
\(365\) 4.35605e9 + 4.46256e9i 0.245426 + 0.251427i
\(366\) 0 0
\(367\) 1.56819e9i 0.0864438i −0.999065 0.0432219i \(-0.986238\pi\)
0.999065 0.0432219i \(-0.0137622\pi\)
\(368\) 0 0
\(369\) 1.79421e10 1.16672e10i 0.967759 0.629307i
\(370\) 0 0
\(371\) 1.71874e7i 0.000907225i
\(372\) 0 0
\(373\) 1.22323e10i 0.631936i −0.948770 0.315968i \(-0.897671\pi\)
0.948770 0.315968i \(-0.102329\pi\)
\(374\) 0 0
\(375\) 1.91505e10 4.93181e9i 0.968403 0.249391i
\(376\) 0 0
\(377\) 1.16641e10 0.577414
\(378\) 0 0
\(379\) −2.39355e10 −1.16007 −0.580037 0.814590i \(-0.696962\pi\)
−0.580037 + 0.814590i \(0.696962\pi\)
\(380\) 0 0
\(381\) −2.40935e10 1.30722e10i −1.14340 0.620367i
\(382\) 0 0
\(383\) 2.90510e10 1.35010 0.675049 0.737773i \(-0.264122\pi\)
0.675049 + 0.737773i \(0.264122\pi\)
\(384\) 0 0
\(385\) −7.11184e8 + 6.94210e8i −0.0323697 + 0.0315972i
\(386\) 0 0
\(387\) −3.16906e10 + 2.06075e10i −1.41282 + 0.918718i
\(388\) 0 0
\(389\) 6.21492e9i 0.271417i −0.990749 0.135709i \(-0.956669\pi\)
0.990749 0.135709i \(-0.0433311\pi\)
\(390\) 0 0
\(391\) 6.48325e9 0.277387
\(392\) 0 0
\(393\) −1.81171e10 9.82967e9i −0.759485 0.412068i
\(394\) 0 0
\(395\) 8.03483e9 7.84306e9i 0.330057 0.322179i
\(396\) 0 0
\(397\) 2.28461e10i 0.919709i 0.887994 + 0.459855i \(0.152099\pi\)
−0.887994 + 0.459855i \(0.847901\pi\)
\(398\) 0 0
\(399\) −1.13548e10 6.16070e9i −0.448012 0.243074i
\(400\) 0 0
\(401\) 2.23687e9i 0.0865093i 0.999064 + 0.0432546i \(0.0137727\pi\)
−0.999064 + 0.0432546i \(0.986227\pi\)
\(402\) 0 0
\(403\) 4.02907e9i 0.152751i
\(404\) 0 0
\(405\) 9.36824e9 + 2.52205e10i 0.348207 + 0.937418i
\(406\) 0 0
\(407\) 6.28386e9 0.229007
\(408\) 0 0
\(409\) −2.59818e10 −0.928486 −0.464243 0.885708i \(-0.653674\pi\)
−0.464243 + 0.885708i \(0.653674\pi\)
\(410\) 0 0
\(411\) 6.57536e9 1.21191e10i 0.230437 0.424720i
\(412\) 0 0
\(413\) 1.38845e10 0.477234
\(414\) 0 0
\(415\) −6.80403e9 + 6.64164e9i −0.229390 + 0.223915i
\(416\) 0 0
\(417\) −2.38039e10 + 4.38732e10i −0.787236 + 1.45096i
\(418\) 0 0
\(419\) 1.01456e10i 0.329172i 0.986363 + 0.164586i \(0.0526288\pi\)
−0.986363 + 0.164586i \(0.947371\pi\)
\(420\) 0 0
\(421\) −2.70663e10 −0.861590 −0.430795 0.902450i \(-0.641767\pi\)
−0.430795 + 0.902450i \(0.641767\pi\)
\(422\) 0 0
\(423\) −1.87060e10 2.87665e10i −0.584279 0.898514i
\(424\) 0 0
\(425\) −8.23083e8 + 3.40691e10i −0.0252283 + 1.04425i
\(426\) 0 0
\(427\) 1.63298e10i 0.491212i
\(428\) 0 0
\(429\) 1.73905e9 3.20526e9i 0.0513433 0.0946312i
\(430\) 0 0
\(431\) 4.84284e10i 1.40343i 0.712458 + 0.701715i \(0.247582\pi\)
−0.712458 + 0.701715i \(0.752418\pi\)
\(432\) 0 0
\(433\) 6.72992e9i 0.191451i −0.995408 0.0957257i \(-0.969483\pi\)
0.995408 0.0957257i \(-0.0305172\pi\)
\(434\) 0 0
\(435\) −2.74719e10 + 7.78695e9i −0.767242 + 0.217476i
\(436\) 0 0
\(437\) 1.62263e10 0.444931
\(438\) 0 0
\(439\) 4.12187e10 1.10978 0.554889 0.831924i \(-0.312761\pi\)
0.554889 + 0.831924i \(0.312761\pi\)
\(440\) 0 0
\(441\) −1.87109e10 2.87739e10i −0.494697 0.760753i
\(442\) 0 0
\(443\) −4.80890e10 −1.24862 −0.624311 0.781176i \(-0.714620\pi\)
−0.624311 + 0.781176i \(0.714620\pi\)
\(444\) 0 0
\(445\) −3.07526e10 3.15045e10i −0.784227 0.803402i
\(446\) 0 0
\(447\) −3.04888e10 1.65421e10i −0.763679 0.414343i
\(448\) 0 0
\(449\) 7.27138e10i 1.78909i 0.446981 + 0.894543i \(0.352499\pi\)
−0.446981 + 0.894543i \(0.647501\pi\)
\(450\) 0 0
\(451\) 7.10140e9 0.171648
\(452\) 0 0
\(453\) −4.75124e9 + 8.75704e9i −0.112827 + 0.207953i
\(454\) 0 0
\(455\) −6.75566e9 + 6.59442e9i −0.157624 + 0.153862i
\(456\) 0 0
\(457\) 1.44181e10i 0.330556i −0.986247 0.165278i \(-0.947148\pi\)
0.986247 0.165278i \(-0.0528521\pi\)
\(458\) 0 0
\(459\) −4.62178e10 + 3.67984e9i −1.04126 + 0.0829045i
\(460\) 0 0
\(461\) 4.70966e10i 1.04276i −0.853324 0.521382i \(-0.825417\pi\)
0.853324 0.521382i \(-0.174583\pi\)
\(462\) 0 0
\(463\) 1.72398e10i 0.375153i 0.982250 + 0.187576i \(0.0600632\pi\)
−0.982250 + 0.187576i \(0.939937\pi\)
\(464\) 0 0
\(465\) −2.68980e9 9.48946e9i −0.0575318 0.202969i
\(466\) 0 0
\(467\) 2.51932e10 0.529682 0.264841 0.964292i \(-0.414680\pi\)
0.264841 + 0.964292i \(0.414680\pi\)
\(468\) 0 0
\(469\) 9.96351e9 0.205931
\(470\) 0 0
\(471\) 4.10798e10 + 2.22884e10i 0.834728 + 0.452892i
\(472\) 0 0
\(473\) −1.25430e10 −0.250587
\(474\) 0 0
\(475\) −2.06001e9 + 8.52679e10i −0.0404664 + 1.67499i
\(476\) 0 0
\(477\) 8.41632e7 + 1.29428e8i 0.00162573 + 0.00250008i
\(478\) 0 0
\(479\) 5.83204e10i 1.10784i 0.832569 + 0.553921i \(0.186869\pi\)
−0.832569 + 0.553921i \(0.813131\pi\)
\(480\) 0 0
\(481\) 5.96914e10 1.11515
\(482\) 0 0
\(483\) −3.86451e9 2.09674e9i −0.0710078 0.0385261i
\(484\) 0 0
\(485\) 1.64588e10 + 1.68613e10i 0.297462 + 0.304736i
\(486\) 0 0
\(487\) 5.49773e9i 0.0977389i 0.998805 + 0.0488694i \(0.0155618\pi\)
−0.998805 + 0.0488694i \(0.984438\pi\)
\(488\) 0 0
\(489\) 7.28446e10 + 3.95227e10i 1.27398 + 0.691212i
\(490\) 0 0
\(491\) 4.11937e10i 0.708769i 0.935100 + 0.354384i \(0.115310\pi\)
−0.935100 + 0.354384i \(0.884690\pi\)
\(492\) 0 0
\(493\) 4.92076e10i 0.832999i
\(494\) 0 0
\(495\) −1.95608e9 + 8.71018e9i −0.0325811 + 0.145080i
\(496\) 0 0
\(497\) −1.08971e10 −0.178602
\(498\) 0 0
\(499\) 7.74223e10 1.24872 0.624358 0.781138i \(-0.285361\pi\)
0.624358 + 0.781138i \(0.285361\pi\)
\(500\) 0 0
\(501\) 2.37033e10 4.36877e10i 0.376234 0.693440i
\(502\) 0 0
\(503\) −2.52285e10 −0.394112 −0.197056 0.980392i \(-0.563138\pi\)
−0.197056 + 0.980392i \(0.563138\pi\)
\(504\) 0 0
\(505\) 8.80514e10 + 9.02043e10i 1.35385 + 1.38695i
\(506\) 0 0
\(507\) −1.49907e10 + 2.76294e10i −0.226876 + 0.418157i
\(508\) 0 0
\(509\) 4.44215e10i 0.661793i 0.943667 + 0.330896i \(0.107351\pi\)
−0.943667 + 0.330896i \(0.892649\pi\)
\(510\) 0 0
\(511\) 7.28803e9 0.106887
\(512\) 0 0
\(513\) −1.15674e11 + 9.20989e9i −1.67019 + 0.132980i
\(514\) 0 0
\(515\) 6.40314e10 + 6.55970e10i 0.910257 + 0.932514i
\(516\) 0 0
\(517\) 1.13857e10i 0.159366i
\(518\) 0 0
\(519\) 8.69440e9 1.60247e10i 0.119831 0.220862i
\(520\) 0 0
\(521\) 1.17782e11i 1.59855i 0.600964 + 0.799276i \(0.294784\pi\)
−0.600964 + 0.799276i \(0.705216\pi\)
\(522\) 0 0
\(523\) 1.43437e11i 1.91714i −0.284858 0.958570i \(-0.591946\pi\)
0.284858 0.958570i \(-0.408054\pi\)
\(524\) 0 0
\(525\) 1.15088e10 2.00416e10i 0.151494 0.263812i
\(526\) 0 0
\(527\) 1.69975e10 0.220365
\(528\) 0 0
\(529\) −7.27885e10 −0.929480
\(530\) 0 0
\(531\) 1.04556e11 6.79897e10i 1.31513 0.855194i
\(532\) 0 0
\(533\) 6.74574e10 0.835835
\(534\) 0 0
\(535\) 5.21337e10 5.08894e10i 0.636360 0.621172i
\(536\) 0 0
\(537\) −5.18499e10 2.81318e10i −0.623521 0.338299i
\(538\) 0 0
\(539\) 1.13886e10i 0.134932i
\(540\) 0 0
\(541\) 1.24963e11 1.45879 0.729395 0.684092i \(-0.239802\pi\)
0.729395 + 0.684092i \(0.239802\pi\)
\(542\) 0 0
\(543\) −3.69492e9 + 6.81013e9i −0.0425017 + 0.0783351i
\(544\) 0 0
\(545\) −6.79934e10 + 6.63706e10i −0.770692 + 0.752298i
\(546\) 0 0
\(547\) 9.81775e10i 1.09664i 0.836270 + 0.548318i \(0.184732\pi\)
−0.836270 + 0.548318i \(0.815268\pi\)
\(548\) 0 0
\(549\) −7.99636e10 1.22969e11i −0.880244 1.35365i
\(550\) 0 0
\(551\) 1.23157e11i 1.33614i
\(552\) 0 0
\(553\) 1.31221e10i 0.140314i
\(554\) 0 0
\(555\) −1.40588e11 + 3.98499e10i −1.48176 + 0.420006i
\(556\) 0 0
\(557\) 1.37299e11 1.42642 0.713209 0.700951i \(-0.247241\pi\)
0.713209 + 0.700951i \(0.247241\pi\)
\(558\) 0 0
\(559\) −1.19148e11 −1.22023
\(560\) 0 0
\(561\) −1.35221e10 7.33657e9i −0.136519 0.0740699i
\(562\) 0 0
\(563\) −1.43382e11 −1.42712 −0.713560 0.700594i \(-0.752918\pi\)
−0.713560 + 0.700594i \(0.752918\pi\)
\(564\) 0 0
\(565\) −1.15322e11 + 1.12569e11i −1.13166 + 1.10465i
\(566\) 0 0
\(567\) 2.87394e10 + 1.27538e10i 0.278065 + 0.123398i
\(568\) 0 0
\(569\) 1.19680e11i 1.14175i 0.821037 + 0.570875i \(0.193396\pi\)
−0.821037 + 0.570875i \(0.806604\pi\)
\(570\) 0 0
\(571\) −1.15478e11 −1.08631 −0.543155 0.839633i \(-0.682770\pi\)
−0.543155 + 0.839633i \(0.682770\pi\)
\(572\) 0 0
\(573\) −1.81787e11 9.86307e10i −1.68634 0.914942i
\(574\) 0 0
\(575\) −7.01105e8 + 2.90201e10i −0.00641375 + 0.265478i
\(576\) 0 0
\(577\) 2.12014e11i 1.91277i 0.292115 + 0.956383i \(0.405641\pi\)
−0.292115 + 0.956383i \(0.594359\pi\)
\(578\) 0 0
\(579\) 2.21891e10 + 1.20390e10i 0.197436 + 0.107121i
\(580\) 0 0
\(581\) 1.11120e10i 0.0975187i
\(582\) 0 0
\(583\) 5.12270e7i 0.000443429i
\(584\) 0 0
\(585\) −1.85811e10 + 8.27395e10i −0.158653 + 0.706463i
\(586\) 0 0
\(587\) 1.33379e11 1.12340 0.561700 0.827341i \(-0.310147\pi\)
0.561700 + 0.827341i \(0.310147\pi\)
\(588\) 0 0
\(589\) 4.25412e10 0.353467
\(590\) 0 0
\(591\) 4.16170e10 7.67046e10i 0.341131 0.628741i
\(592\) 0 0
\(593\) −3.04033e10 −0.245868 −0.122934 0.992415i \(-0.539230\pi\)
−0.122934 + 0.992415i \(0.539230\pi\)
\(594\) 0 0
\(595\) 2.78199e10 + 2.85002e10i 0.221967 + 0.227394i
\(596\) 0 0
\(597\) 3.61624e10 6.66512e10i 0.284682 0.524700i
\(598\) 0 0
\(599\) 1.35292e11i 1.05091i 0.850821 + 0.525456i \(0.176105\pi\)
−0.850821 + 0.525456i \(0.823895\pi\)
\(600\) 0 0
\(601\) 7.80555e10 0.598282 0.299141 0.954209i \(-0.403300\pi\)
0.299141 + 0.954209i \(0.403300\pi\)
\(602\) 0 0
\(603\) 7.50289e10 4.87892e10i 0.567492 0.369024i
\(604\) 0 0
\(605\) 9.37517e10 9.15140e10i 0.699773 0.683072i
\(606\) 0 0
\(607\) 1.85685e11i 1.36780i 0.729577 + 0.683899i \(0.239717\pi\)
−0.729577 + 0.683899i \(0.760283\pi\)
\(608\) 0 0
\(609\) −1.59142e10 + 2.93315e10i −0.115695 + 0.213238i
\(610\) 0 0
\(611\) 1.08154e11i 0.776030i
\(612\) 0 0
\(613\) 1.15663e11i 0.819126i −0.912282 0.409563i \(-0.865681\pi\)
0.912282 0.409563i \(-0.134319\pi\)
\(614\) 0 0
\(615\) −1.58879e11 + 4.50344e10i −1.11062 + 0.314807i
\(616\) 0 0
\(617\) −2.17291e11 −1.49934 −0.749671 0.661811i \(-0.769788\pi\)
−0.749671 + 0.661811i \(0.769788\pi\)
\(618\) 0 0
\(619\) 3.38274e10 0.230412 0.115206 0.993342i \(-0.463247\pi\)
0.115206 + 0.993342i \(0.463247\pi\)
\(620\) 0 0
\(621\) −3.93685e10 + 3.13450e9i −0.264717 + 0.0210767i
\(622\) 0 0
\(623\) −5.14516e10 −0.341544
\(624\) 0 0
\(625\) −1.52410e11 7.36852e9i −0.998833 0.0482903i
\(626\) 0 0
\(627\) −3.38430e10 1.83619e10i −0.218977 0.118809i
\(628\) 0 0
\(629\) 2.51821e11i 1.60875i
\(630\) 0 0
\(631\) −1.52115e11 −0.959518 −0.479759 0.877400i \(-0.659276\pi\)
−0.479759 + 0.877400i \(0.659276\pi\)
\(632\) 0 0
\(633\) 5.54208e7 1.02146e8i 0.000345190 0.000636222i
\(634\) 0 0
\(635\) 1.47741e11 + 1.51353e11i 0.908668 + 0.930886i
\(636\) 0 0
\(637\) 1.08182e11i 0.657049i
\(638\) 0 0
\(639\) −8.20593e10 + 5.33609e10i −0.492181 + 0.320052i
\(640\) 0 0
\(641\) 4.57219e10i 0.270827i −0.990789 0.135414i \(-0.956764\pi\)
0.990789 0.135414i \(-0.0432363\pi\)
\(642\) 0 0
\(643\) 1.00594e11i 0.588478i −0.955732 0.294239i \(-0.904934\pi\)
0.955732 0.294239i \(-0.0950661\pi\)
\(644\) 0 0
\(645\) 2.80624e11 7.95432e10i 1.62138 0.459583i
\(646\) 0 0
\(647\) −3.59986e10 −0.205432 −0.102716 0.994711i \(-0.532753\pi\)
−0.102716 + 0.994711i \(0.532753\pi\)
\(648\) 0 0
\(649\) 4.13827e10 0.233260
\(650\) 0 0
\(651\) −1.01318e10 5.49713e9i −0.0564108 0.0306064i
\(652\) 0 0
\(653\) 2.65780e11 1.46174 0.730868 0.682518i \(-0.239115\pi\)
0.730868 + 0.682518i \(0.239115\pi\)
\(654\) 0 0
\(655\) 1.11094e11 + 1.13810e11i 0.603567 + 0.618324i
\(656\) 0 0
\(657\) 5.48816e10 3.56880e10i 0.294554 0.191540i
\(658\) 0 0
\(659\) 2.80479e10i 0.148716i 0.997232 + 0.0743582i \(0.0236908\pi\)
−0.997232 + 0.0743582i \(0.976309\pi\)
\(660\) 0 0
\(661\) −1.78499e11 −0.935041 −0.467520 0.883982i \(-0.654853\pi\)
−0.467520 + 0.883982i \(0.654853\pi\)
\(662\) 0 0
\(663\) −1.28448e11 6.96913e10i −0.664775 0.360682i
\(664\) 0 0
\(665\) 6.96276e10 + 7.13301e10i 0.356037 + 0.364742i
\(666\) 0 0
\(667\) 4.19152e10i 0.211772i
\(668\) 0 0
\(669\) −1.11363e10 6.04213e9i −0.0555950 0.0301638i
\(670\) 0 0
\(671\) 4.86708e10i 0.240093i
\(672\) 0 0
\(673\) 1.05186e11i 0.512740i −0.966579 0.256370i \(-0.917473\pi\)
0.966579 0.256370i \(-0.0825266\pi\)
\(674\) 0 0
\(675\) −1.14735e10 2.07277e11i −0.0552691 0.998471i
\(676\) 0 0
\(677\) −8.52625e10 −0.405885 −0.202943 0.979191i \(-0.565050\pi\)
−0.202943 + 0.979191i \(0.565050\pi\)
\(678\) 0 0
\(679\) 2.75370e10 0.129550
\(680\) 0 0
\(681\) −1.42811e10 + 2.63217e10i −0.0664010 + 0.122384i
\(682\) 0 0
\(683\) −4.98208e9 −0.0228943 −0.0114472 0.999934i \(-0.503644\pi\)
−0.0114472 + 0.999934i \(0.503644\pi\)
\(684\) 0 0
\(685\) −7.61311e10 + 7.43140e10i −0.345780 + 0.337527i
\(686\) 0 0
\(687\) −2.17347e10 + 4.00594e10i −0.0975723 + 0.179836i
\(688\) 0 0
\(689\) 4.86613e8i 0.00215927i
\(690\) 0 0
\(691\) 2.04194e11 0.895635 0.447818 0.894125i \(-0.352201\pi\)
0.447818 + 0.894125i \(0.352201\pi\)
\(692\) 0 0
\(693\) 5.68748e9 + 8.74631e9i 0.0246597 + 0.0379221i
\(694\) 0 0
\(695\) 2.75608e11 2.69030e11i 1.18128 1.15308i
\(696\) 0 0
\(697\) 2.84583e11i 1.20581i
\(698\) 0 0
\(699\) 1.38648e11 2.55543e11i 0.580770 1.07042i
\(700\) 0 0
\(701\) 2.11340e11i 0.875205i −0.899169 0.437602i \(-0.855828\pi\)
0.899169 0.437602i \(-0.144172\pi\)
\(702\) 0 0
\(703\) 6.30256e11i 2.58045i
\(704\) 0 0
\(705\) 7.22036e10 + 2.54730e11i 0.292282 + 1.03115i
\(706\) 0 0
\(707\) 1.47317e11 0.589625
\(708\) 0 0
\(709\) −1.90004e11 −0.751929 −0.375964 0.926634i \(-0.622688\pi\)
−0.375964 + 0.926634i \(0.622688\pi\)
\(710\) 0 0
\(711\) −6.42561e10 9.88142e10i −0.251441 0.386670i
\(712\) 0 0
\(713\) 1.44785e10 0.0560229
\(714\) 0 0
\(715\) −2.01352e10 + 1.96546e10i −0.0770427 + 0.0752039i
\(716\) 0 0
\(717\) 2.79016e11 + 1.51383e11i 1.05573 + 0.572798i
\(718\) 0 0
\(719\) 2.56685e11i 0.960474i −0.877139 0.480237i \(-0.840551\pi\)
0.877139 0.480237i \(-0.159449\pi\)
\(720\) 0 0
\(721\) 1.07130e11 0.396432
\(722\) 0 0
\(723\) 1.89088e11 3.48509e11i 0.692007 1.27544i
\(724\) 0 0
\(725\) 2.20262e11 + 5.32136e9i 0.797236 + 0.0192606i
\(726\) 0 0
\(727\) 1.56910e11i 0.561712i 0.959750 + 0.280856i \(0.0906183\pi\)
−0.959750 + 0.280856i \(0.909382\pi\)
\(728\) 0 0
\(729\) 2.78871e11 4.46905e10i 0.987401 0.158236i
\(730\) 0 0
\(731\) 5.02652e11i 1.76035i
\(732\) 0 0
\(733\) 4.26702e11i 1.47812i −0.673642 0.739058i \(-0.735271\pi\)
0.673642 0.739058i \(-0.264729\pi\)
\(734\) 0 0
\(735\) 7.22222e10 + 2.54796e11i 0.247469 + 0.873058i
\(736\) 0 0
\(737\) 2.96962e10 0.100654
\(738\) 0 0
\(739\) −3.08781e10 −0.103532 −0.0517658 0.998659i \(-0.516485\pi\)
−0.0517658 + 0.998659i \(0.516485\pi\)
\(740\) 0 0
\(741\) −3.21480e11 1.74423e11i −1.06631 0.578537i
\(742\) 0 0
\(743\) −9.68533e10 −0.317804 −0.158902 0.987294i \(-0.550795\pi\)
−0.158902 + 0.987294i \(0.550795\pi\)
\(744\) 0 0
\(745\) 1.86957e11 + 1.91528e11i 0.606899 + 0.621739i
\(746\) 0 0
\(747\) 5.44132e10 + 8.36775e10i 0.174752 + 0.268736i
\(748\) 0 0
\(749\) 8.51421e10i 0.270531i
\(750\) 0 0
\(751\) −4.26875e10 −0.134196 −0.0670982 0.997746i \(-0.521374\pi\)
−0.0670982 + 0.997746i \(0.521374\pi\)
\(752\) 0 0
\(753\) −1.06080e11 5.75548e10i −0.329953 0.179020i
\(754\) 0 0
\(755\) 5.50110e10 5.36980e10i 0.169302 0.165261i
\(756\) 0 0
\(757\) 9.28927e10i 0.282877i −0.989947 0.141439i \(-0.954827\pi\)
0.989947 0.141439i \(-0.0451728\pi\)
\(758\) 0 0
\(759\) −1.15182e10 6.24931e9i −0.0347069 0.0188306i
\(760\) 0 0
\(761\) 1.68912e11i 0.503643i 0.967774 + 0.251821i \(0.0810295\pi\)
−0.967774 + 0.251821i \(0.918970\pi\)
\(762\) 0 0
\(763\) 1.11043e11i 0.327639i
\(764\) 0 0
\(765\) 3.49054e11 + 7.83884e10i 1.01917 + 0.228879i
\(766\) 0 0
\(767\) 3.93102e11 1.13586
\(768\) 0 0
\(769\) 2.66965e11 0.763394 0.381697 0.924288i \(-0.375340\pi\)
0.381697 + 0.924288i \(0.375340\pi\)
\(770\) 0 0
\(771\) −1.88295e11 + 3.47048e11i −0.532871 + 0.982138i
\(772\) 0 0
\(773\) −5.94080e11 −1.66390 −0.831950 0.554851i \(-0.812775\pi\)
−0.831950 + 0.554851i \(0.812775\pi\)
\(774\) 0 0
\(775\) −1.83812e9 + 7.60836e10i −0.00509528 + 0.210904i
\(776\) 0 0
\(777\) −8.14410e10 + 1.50104e11i −0.223439 + 0.411822i
\(778\) 0 0
\(779\) 7.12254e11i 1.93413i
\(780\) 0 0
\(781\) −3.24788e10 −0.0872962
\(782\) 0 0
\(783\) 2.37907e10 + 2.98805e11i 0.0632937 + 0.794953i
\(784\) 0 0
\(785\) −2.51901e11 2.58060e11i −0.663363 0.679583i
\(786\) 0 0
\(787\) 2.88926e11i 0.753162i −0.926384 0.376581i \(-0.877100\pi\)
0.926384 0.376581i \(-0.122900\pi\)
\(788\) 0 0
\(789\) −1.86325e11 + 3.43417e11i −0.480799 + 0.886164i
\(790\) 0 0
\(791\) 1.88337e11i 0.481095i
\(792\) 0 0
\(793\) 4.62332e11i 1.16913i
\(794\) 0 0
\(795\) −3.24862e8 1.14610e9i −0.000813262 0.00286914i
\(796\) 0 0
\(797\) 6.62883e11 1.64287 0.821436 0.570300i \(-0.193173\pi\)
0.821436 + 0.570300i \(0.193173\pi\)
\(798\) 0 0
\(799\) −4.56271e11 −1.11953
\(800\) 0 0
\(801\) −3.87450e11 + 2.51948e11i −0.941207 + 0.612041i
\(802\) 0 0
\(803\) 2.17219e10 0.0522439
\(804\) 0 0
\(805\) 2.36971e10 + 2.42765e10i 0.0564303 + 0.0578100i
\(806\) 0 0
\(807\) 1.64523e11 + 8.92637e10i 0.387910 + 0.210465i
\(808\) 0 0
\(809\) 1.18255e10i 0.0276073i −0.999905 0.0138037i \(-0.995606\pi\)
0.999905 0.0138037i \(-0.00439398\pi\)
\(810\) 0 0
\(811\) −3.61021e11 −0.834543 −0.417272 0.908782i \(-0.637014\pi\)
−0.417272 + 0.908782i \(0.637014\pi\)
\(812\) 0 0
\(813\) 3.58032e11 6.59891e11i 0.819520 1.51046i
\(814\) 0 0
\(815\) −4.46682e11 4.57603e11i −1.01244 1.03719i
\(816\) 0 0
\(817\) 1.25804e12i 2.82361i
\(818\) 0 0
\(819\) 5.40263e10 + 8.30826e10i 0.120080 + 0.184661i
\(820\) 0 0
\(821\) 5.25498e11i 1.15664i −0.815810 0.578321i \(-0.803708\pi\)
0.815810 0.578321i \(-0.196292\pi\)
\(822\) 0 0
\(823\) 4.67936e11i 1.01997i −0.860183 0.509985i \(-0.829651\pi\)
0.860183 0.509985i \(-0.170349\pi\)
\(824\) 0 0
\(825\) 3.43020e10 5.97337e10i 0.0740464 0.128945i
\(826\) 0 0
\(827\) −7.96968e10 −0.170380 −0.0851900 0.996365i \(-0.527150\pi\)
−0.0851900 + 0.996365i \(0.527150\pi\)
\(828\) 0 0
\(829\) −6.02617e11 −1.27592 −0.637960 0.770070i \(-0.720221\pi\)
−0.637960 + 0.770070i \(0.720221\pi\)
\(830\) 0 0
\(831\) 4.08017e11 + 2.21375e11i 0.855607 + 0.464220i
\(832\) 0 0
\(833\) −4.56389e11 −0.947884
\(834\) 0 0
\(835\) −2.74443e11 + 2.67892e11i −0.564554 + 0.551080i
\(836\) 0 0
\(837\) −1.03214e11 + 8.21788e9i −0.210300 + 0.0167440i
\(838\) 0 0
\(839\) 6.85128e11i 1.38269i 0.722526 + 0.691344i \(0.242981\pi\)
−0.722526 + 0.691344i \(0.757019\pi\)
\(840\) 0 0
\(841\) 1.82112e11 0.364044
\(842\) 0 0
\(843\) −6.45753e11 3.50361e11i −1.27866 0.693755i
\(844\) 0 0
\(845\) 1.73565e11 1.69423e11i 0.340437 0.332311i
\(846\) 0 0
\(847\) 1.53111e11i 0.297489i
\(848\) 0 0
\(849\) −6.89565e10 3.74132e10i −0.132722 0.0720101i
\(850\) 0 0
\(851\) 2.14502e11i 0.408990i
\(852\) 0 0
\(853\) 1.32424e11i 0.250133i 0.992148 + 0.125066i \(0.0399144\pi\)
−0.992148 + 0.125066i \(0.960086\pi\)
\(854\) 0 0
\(855\) 8.73611e11 + 1.96190e11i 1.63476 + 0.367124i
\(856\) 0 0
\(857\) 1.29958e11 0.240924 0.120462 0.992718i \(-0.461562\pi\)
0.120462 + 0.992718i \(0.461562\pi\)
\(858\) 0 0
\(859\) 7.50473e11 1.37836 0.689180 0.724590i \(-0.257971\pi\)
0.689180 + 0.724590i \(0.257971\pi\)
\(860\) 0 0
\(861\) −9.20366e10 + 1.69633e11i −0.167474 + 0.308673i
\(862\) 0 0
\(863\) −6.04327e11 −1.08950 −0.544752 0.838597i \(-0.683376\pi\)
−0.544752 + 0.838597i \(0.683376\pi\)
\(864\) 0 0
\(865\) −1.00666e11 + 9.82633e10i −0.179812 + 0.175520i
\(866\) 0 0
\(867\) −2.45463e10 + 4.52414e10i −0.0434420 + 0.0800682i
\(868\) 0 0
\(869\) 3.91103e10i 0.0685823i
\(870\) 0 0
\(871\) 2.82089e11 0.490132
\(872\) 0 0
\(873\) 2.07364e11 1.34843e11i 0.357006 0.232151i
\(874\) 0 0
\(875\) −1.30580e11 + 1.21445e11i −0.222764 + 0.207179i
\(876\) 0 0
\(877\) 3.31935e11i 0.561118i 0.959837 + 0.280559i \(0.0905198\pi\)
−0.959837 + 0.280559i \(0.909480\pi\)
\(878\) 0 0
\(879\) −2.84189e11 + 5.23791e11i −0.476049 + 0.877410i
\(880\) 0 0
\(881\) 6.49478e11i 1.07810i 0.842272 + 0.539052i \(0.181217\pi\)
−0.842272 + 0.539052i \(0.818783\pi\)
\(882\) 0 0
\(883\) 5.92973e11i 0.975421i 0.873005 + 0.487710i \(0.162168\pi\)
−0.873005 + 0.487710i \(0.837832\pi\)
\(884\) 0 0
\(885\) −9.25852e11 + 2.62434e11i −1.50928 + 0.427806i
\(886\) 0 0
\(887\) −1.10066e12 −1.77811 −0.889055 0.457801i \(-0.848637\pi\)
−0.889055 + 0.457801i \(0.848637\pi\)
\(888\) 0 0
\(889\) 2.47182e11 0.395740
\(890\) 0 0
\(891\) 8.56577e10 + 3.80125e10i 0.135911 + 0.0603137i
\(892\) 0 0
\(893\) −1.14195e12 −1.79574
\(894\) 0 0
\(895\) 3.17943e11 + 3.25717e11i 0.495515 + 0.507631i
\(896\) 0 0
\(897\) −1.09413e11 5.93633e10i −0.169005 0.0916955i
\(898\) 0 0
\(899\) 1.09891e11i 0.168238i
\(900\) 0 0
\(901\) 2.05288e9 0.00311505
\(902\) 0 0
\(903\) 1.62562e11 2.99619e11i 0.244494 0.450628i
\(904\) 0 0
\(905\) 4.27807e10 4.17596e10i 0.0637754 0.0622533i
\(906\) 0 0
\(907\) 9.58927e11i 1.41696i 0.705733 + 0.708478i \(0.250618\pi\)
−0.705733 + 0.708478i \(0.749382\pi\)
\(908\) 0 0
\(909\) 1.10935e12 7.21382e11i 1.62485 1.05660i
\(910\) 0 0
\(911\) 6.47922e11i 0.940696i −0.882481 0.470348i \(-0.844128\pi\)
0.882481 0.470348i \(-0.155872\pi\)
\(912\) 0 0
\(913\) 3.31192e10i 0.0476648i
\(914\) 0 0
\(915\) 3.08652e11 + 1.08891e12i 0.440337 + 1.55348i
\(916\) 0 0
\(917\) 1.85869e11 0.262864
\(918\) 0 0
\(919\) 1.94228e11 0.272302 0.136151 0.990688i \(-0.456527\pi\)
0.136151 + 0.990688i \(0.456527\pi\)
\(920\) 0 0
\(921\) 8.82058e11 + 4.78571e11i 1.22591 + 0.665132i
\(922\) 0 0
\(923\) −3.08521e11 −0.425088
\(924\) 0 0
\(925\) 1.12719e12 + 2.72322e10i 1.53968 + 0.0371976i
\(926\) 0 0
\(927\) 8.06727e11 5.24592e11i 1.09247 0.710400i
\(928\) 0 0
\(929\) 5.12221e11i 0.687693i −0.939026 0.343847i \(-0.888270\pi\)
0.939026 0.343847i \(-0.111730\pi\)
\(930\) 0 0
\(931\) −1.14225e12 −1.52041
\(932\) 0 0
\(933\) 1.61948e11 + 8.78668e10i 0.213722 + 0.115957i
\(934\) 0 0
\(935\) 8.29171e10 + 8.49446e10i 0.108492 + 0.111145i
\(936\) 0 0
\(937\) 8.32141e11i 1.07954i −0.841813 0.539770i \(-0.818511\pi\)
0.841813 0.539770i \(-0.181489\pi\)
\(938\) 0 0
\(939\) 1.38837e10 + 7.53274e9i 0.0178584 + 0.00968927i
\(940\) 0 0
\(941\) 1.31067e12i 1.67162i 0.549022 + 0.835808i \(0.315000\pi\)
−0.549022 + 0.835808i \(0.685000\pi\)
\(942\) 0 0
\(943\) 2.42409e11i 0.306550i
\(944\) 0 0
\(945\) −1.82711e11 1.59612e11i −0.229107 0.200143i
\(946\) 0 0
\(947\) −9.13380e11 −1.13567 −0.567834 0.823143i \(-0.692219\pi\)
−0.567834 + 0.823143i \(0.692219\pi\)
\(948\) 0 0
\(949\) 2.06340e11 0.254401
\(950\) 0 0
\(951\) −4.23712e11 + 7.80947e11i −0.518023 + 0.954772i
\(952\) 0 0
\(953\) −9.07769e11 −1.10053 −0.550267 0.834989i \(-0.685474\pi\)
−0.550267 + 0.834989i \(0.685474\pi\)
\(954\) 0 0
\(955\) 1.11471e12 + 1.14197e12i 1.34014 + 1.37291i
\(956\) 0 0
\(957\) −4.74320e10 + 8.74223e10i −0.0565489 + 0.104226i
\(958\) 0 0
\(959\) 1.24333e11i 0.146999i
\(960\) 0 0
\(961\) −8.14932e11 −0.955494
\(962\) 0 0
\(963\) −4.16923e11 6.41152e11i −0.484787 0.745514i
\(964\) 0 0
\(965\) −1.36063e11 1.39390e11i −0.156903 0.160739i
\(966\) 0 0
\(967\) 2.24389e11i 0.256624i −0.991734 0.128312i \(-0.959044\pi\)
0.991734 0.128312i \(-0.0409558\pi\)
\(968\) 0 0
\(969\) −7.35840e11 + 1.35623e12i −0.834620 + 1.53829i
\(970\) 0 0
\(971\) 4.09704e10i 0.0460885i −0.999734 0.0230443i \(-0.992664\pi\)
0.999734 0.0230443i \(-0.00733587\pi\)
\(972\) 0 0
\(973\) 4.50109e11i 0.502188i
\(974\) 0 0
\(975\) 3.25841e11 5.67421e11i 0.360568 0.627895i
\(976\) 0 0
\(977\) −7.04262e11 −0.772958 −0.386479 0.922298i \(-0.626309\pi\)
−0.386479 + 0.922298i \(0.626309\pi\)
\(978\) 0 0
\(979\) −1.53351e11 −0.166938
\(980\) 0 0
\(981\) 5.43757e11 + 8.36199e11i 0.587123 + 0.902887i
\(982\) 0 0
\(983\) 2.23345e11 0.239200 0.119600 0.992822i \(-0.461839\pi\)
0.119600 + 0.992822i \(0.461839\pi\)
\(984\) 0 0
\(985\) −4.81852e11 + 4.70351e11i −0.511881 + 0.499663i
\(986\) 0 0
\(987\) 2.71973e11 + 1.47562e11i 0.286587 + 0.155491i
\(988\) 0 0
\(989\) 4.28161e11i 0.447530i
\(990\) 0 0
\(991\) 9.74500e11 1.01039 0.505193 0.863007i \(-0.331421\pi\)
0.505193 + 0.863007i \(0.331421\pi\)
\(992\) 0 0
\(993\) 2.12500e11 3.91661e11i 0.218556 0.402822i
\(994\) 0 0
\(995\) −4.18697e11 + 4.08704e11i −0.427177 + 0.416981i
\(996\) 0 0
\(997\) 1.22811e12i 1.24295i 0.783432 + 0.621477i \(0.213467\pi\)
−0.783432 + 0.621477i \(0.786533\pi\)
\(998\) 0 0
\(999\) 1.21749e11 + 1.52914e12i 0.122238 + 1.53527i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 240.9.c.e.209.8 16
3.2 odd 2 inner 240.9.c.e.209.10 16
4.3 odd 2 30.9.b.a.29.13 yes 16
5.4 even 2 inner 240.9.c.e.209.9 16
12.11 even 2 30.9.b.a.29.3 16
15.14 odd 2 inner 240.9.c.e.209.7 16
20.3 even 4 150.9.d.e.101.8 16
20.7 even 4 150.9.d.e.101.9 16
20.19 odd 2 30.9.b.a.29.4 yes 16
60.23 odd 4 150.9.d.e.101.16 16
60.47 odd 4 150.9.d.e.101.1 16
60.59 even 2 30.9.b.a.29.14 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.9.b.a.29.3 16 12.11 even 2
30.9.b.a.29.4 yes 16 20.19 odd 2
30.9.b.a.29.13 yes 16 4.3 odd 2
30.9.b.a.29.14 yes 16 60.59 even 2
150.9.d.e.101.1 16 60.47 odd 4
150.9.d.e.101.8 16 20.3 even 4
150.9.d.e.101.9 16 20.7 even 4
150.9.d.e.101.16 16 60.23 odd 4
240.9.c.e.209.7 16 15.14 odd 2 inner
240.9.c.e.209.8 16 1.1 even 1 trivial
240.9.c.e.209.9 16 5.4 even 2 inner
240.9.c.e.209.10 16 3.2 odd 2 inner