Properties

Label 240.9.c.e.209.11
Level $240$
Weight $9$
Character 240.209
Analytic conductor $97.771$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [240,9,Mod(209,240)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("240.209"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(240, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 240.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,21928] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(97.7708664147\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 11030 x^{14} + 49274731 x^{12} + 114127354194 x^{10} + 145952808215673 x^{8} + \cdots + 37\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{44}\cdot 3^{20}\cdot 5^{10} \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 209.11
Root \(-1.41421 + 26.0340i\) of defining polynomial
Character \(\chi\) \(=\) 240.209
Dual form 240.9.c.e.209.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(59.7326 - 54.7084i) q^{3} +(-556.269 + 284.937i) q^{5} +2732.68i q^{7} +(574.975 - 6535.76i) q^{9} +138.973i q^{11} -39979.9i q^{13} +(-17639.0 + 47452.7i) q^{15} -90959.5 q^{17} -23974.1 q^{19} +(149501. + 163230. i) q^{21} +435843. q^{23} +(228247. - 317004. i) q^{25} +(-323216. - 421854. i) q^{27} -631532. i q^{29} +603686. q^{31} +(7603.01 + 8301.24i) q^{33} +(-778644. - 1.52011e6i) q^{35} +3.25530e6i q^{37} +(-2.18724e6 - 2.38810e6i) q^{39} +2.45798e6i q^{41} +3.58077e6i q^{43} +(1.54244e6 + 3.79947e6i) q^{45} -1.43490e6 q^{47} -1.70276e6 q^{49} +(-5.43325e6 + 4.97625e6i) q^{51} -3.71194e6 q^{53} +(-39598.7 - 77306.6i) q^{55} +(-1.43203e6 + 1.31158e6i) q^{57} +4.19381e6i q^{59} -1.96341e7 q^{61} +(1.78602e7 + 1.57122e6i) q^{63} +(1.13918e7 + 2.22396e7i) q^{65} +3.59493e7i q^{67} +(2.60341e7 - 2.38443e7i) q^{69} +3.72539e7i q^{71} +9.08762e6i q^{73} +(-3.70902e6 - 3.14225e7i) q^{75} -379770. q^{77} +4.51811e7 q^{79} +(-4.23855e7 - 7.51579e6i) q^{81} -6.35482e7 q^{83} +(5.05980e7 - 2.59177e7i) q^{85} +(-3.45501e7 - 3.77230e7i) q^{87} +3.28534e7i q^{89} +1.09252e8 q^{91} +(3.60597e7 - 3.30267e7i) q^{93} +(1.33360e7 - 6.83110e6i) q^{95} +9.60947e7i q^{97} +(908296. + 79906.1i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 21928 q^{9} + 62920 q^{15} - 96048 q^{19} + 667112 q^{21} + 1292160 q^{25} + 5127152 q^{31} + 5420160 q^{39} - 8741480 q^{45} - 21439680 q^{49} - 3556688 q^{51} - 27329120 q^{55} + 67157264 q^{61}+ \cdots - 754526432 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/240\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(181\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 59.7326 54.7084i 0.737440 0.675413i
\(4\) 0 0
\(5\) −556.269 + 284.937i −0.890031 + 0.455900i
\(6\) 0 0
\(7\) 2732.68i 1.13814i 0.822288 + 0.569072i \(0.192698\pi\)
−0.822288 + 0.569072i \(0.807302\pi\)
\(8\) 0 0
\(9\) 574.975 6535.76i 0.0876352 0.996153i
\(10\) 0 0
\(11\) 138.973i 0.00949206i 0.999989 + 0.00474603i \(0.00151071\pi\)
−0.999989 + 0.00474603i \(0.998489\pi\)
\(12\) 0 0
\(13\) 39979.9i 1.39981i −0.714238 0.699903i \(-0.753227\pi\)
0.714238 0.699903i \(-0.246773\pi\)
\(14\) 0 0
\(15\) −17639.0 + 47452.7i −0.348424 + 0.937337i
\(16\) 0 0
\(17\) −90959.5 −1.08906 −0.544531 0.838741i \(-0.683292\pi\)
−0.544531 + 0.838741i \(0.683292\pi\)
\(18\) 0 0
\(19\) −23974.1 −0.183962 −0.0919808 0.995761i \(-0.529320\pi\)
−0.0919808 + 0.995761i \(0.529320\pi\)
\(20\) 0 0
\(21\) 149501. + 163230.i 0.768717 + 0.839313i
\(22\) 0 0
\(23\) 435843. 1.55747 0.778734 0.627354i \(-0.215862\pi\)
0.778734 + 0.627354i \(0.215862\pi\)
\(24\) 0 0
\(25\) 228247. 317004.i 0.584311 0.811530i
\(26\) 0 0
\(27\) −323216. 421854.i −0.608188 0.793793i
\(28\) 0 0
\(29\) 631532.i 0.892900i −0.894808 0.446450i \(-0.852688\pi\)
0.894808 0.446450i \(-0.147312\pi\)
\(30\) 0 0
\(31\) 603686. 0.653678 0.326839 0.945080i \(-0.394016\pi\)
0.326839 + 0.945080i \(0.394016\pi\)
\(32\) 0 0
\(33\) 7603.01 + 8301.24i 0.00641106 + 0.00699983i
\(34\) 0 0
\(35\) −778644. 1.52011e6i −0.518880 1.01298i
\(36\) 0 0
\(37\) 3.25530e6i 1.73694i 0.495743 + 0.868469i \(0.334896\pi\)
−0.495743 + 0.868469i \(0.665104\pi\)
\(38\) 0 0
\(39\) −2.18724e6 2.38810e6i −0.945447 1.03227i
\(40\) 0 0
\(41\) 2.45798e6i 0.869848i 0.900467 + 0.434924i \(0.143225\pi\)
−0.900467 + 0.434924i \(0.856775\pi\)
\(42\) 0 0
\(43\) 3.58077e6i 1.04738i 0.851910 + 0.523688i \(0.175444\pi\)
−0.851910 + 0.523688i \(0.824556\pi\)
\(44\) 0 0
\(45\) 1.54244e6 + 3.79947e6i 0.376148 + 0.926560i
\(46\) 0 0
\(47\) −1.43490e6 −0.294057 −0.147029 0.989132i \(-0.546971\pi\)
−0.147029 + 0.989132i \(0.546971\pi\)
\(48\) 0 0
\(49\) −1.70276e6 −0.295373
\(50\) 0 0
\(51\) −5.43325e6 + 4.97625e6i −0.803117 + 0.735566i
\(52\) 0 0
\(53\) −3.71194e6 −0.470432 −0.235216 0.971943i \(-0.575580\pi\)
−0.235216 + 0.971943i \(0.575580\pi\)
\(54\) 0 0
\(55\) −39598.7 77306.6i −0.00432743 0.00844823i
\(56\) 0 0
\(57\) −1.43203e6 + 1.31158e6i −0.135661 + 0.124250i
\(58\) 0 0
\(59\) 4.19381e6i 0.346099i 0.984913 + 0.173050i \(0.0553621\pi\)
−0.984913 + 0.173050i \(0.944638\pi\)
\(60\) 0 0
\(61\) −1.96341e7 −1.41805 −0.709026 0.705183i \(-0.750865\pi\)
−0.709026 + 0.705183i \(0.750865\pi\)
\(62\) 0 0
\(63\) 1.78602e7 + 1.57122e6i 1.13377 + 0.0997416i
\(64\) 0 0
\(65\) 1.13918e7 + 2.22396e7i 0.638171 + 1.24587i
\(66\) 0 0
\(67\) 3.59493e7i 1.78399i 0.452049 + 0.891993i \(0.350693\pi\)
−0.452049 + 0.891993i \(0.649307\pi\)
\(68\) 0 0
\(69\) 2.60341e7 2.38443e7i 1.14854 1.05193i
\(70\) 0 0
\(71\) 3.72539e7i 1.46602i 0.680220 + 0.733008i \(0.261884\pi\)
−0.680220 + 0.733008i \(0.738116\pi\)
\(72\) 0 0
\(73\) 9.08762e6i 0.320006i 0.987116 + 0.160003i \(0.0511505\pi\)
−0.987116 + 0.160003i \(0.948850\pi\)
\(74\) 0 0
\(75\) −3.70902e6 3.14225e7i −0.117223 0.993106i
\(76\) 0 0
\(77\) −379770. −0.0108033
\(78\) 0 0
\(79\) 4.51811e7 1.15997 0.579987 0.814626i \(-0.303058\pi\)
0.579987 + 0.814626i \(0.303058\pi\)
\(80\) 0 0
\(81\) −4.23855e7 7.51579e6i −0.984640 0.174596i
\(82\) 0 0
\(83\) −6.35482e7 −1.33903 −0.669516 0.742797i \(-0.733499\pi\)
−0.669516 + 0.742797i \(0.733499\pi\)
\(84\) 0 0
\(85\) 5.05980e7 2.59177e7i 0.969299 0.496503i
\(86\) 0 0
\(87\) −3.45501e7 3.77230e7i −0.603076 0.658460i
\(88\) 0 0
\(89\) 3.28534e7i 0.523625i 0.965119 + 0.261813i \(0.0843203\pi\)
−0.965119 + 0.261813i \(0.915680\pi\)
\(90\) 0 0
\(91\) 1.09252e8 1.59318
\(92\) 0 0
\(93\) 3.60597e7 3.30267e7i 0.482048 0.441503i
\(94\) 0 0
\(95\) 1.33360e7 6.83110e6i 0.163732 0.0838680i
\(96\) 0 0
\(97\) 9.60947e7i 1.08546i 0.839908 + 0.542728i \(0.182609\pi\)
−0.839908 + 0.542728i \(0.817391\pi\)
\(98\) 0 0
\(99\) 908296. + 79906.1i 0.00945554 + 0.000831839i
\(100\) 0 0
\(101\) 3.67333e7i 0.353000i −0.984301 0.176500i \(-0.943522\pi\)
0.984301 0.176500i \(-0.0564775\pi\)
\(102\) 0 0
\(103\) 9.43652e7i 0.838423i −0.907889 0.419211i \(-0.862307\pi\)
0.907889 0.419211i \(-0.137693\pi\)
\(104\) 0 0
\(105\) −1.29673e8 4.82017e7i −1.06682 0.396557i
\(106\) 0 0
\(107\) −8.69727e7 −0.663511 −0.331755 0.943365i \(-0.607641\pi\)
−0.331755 + 0.943365i \(0.607641\pi\)
\(108\) 0 0
\(109\) 2.38438e8 1.68915 0.844577 0.535434i \(-0.179852\pi\)
0.844577 + 0.535434i \(0.179852\pi\)
\(110\) 0 0
\(111\) 1.78093e8 + 1.94448e8i 1.17315 + 1.28089i
\(112\) 0 0
\(113\) −8.57304e7 −0.525801 −0.262900 0.964823i \(-0.584679\pi\)
−0.262900 + 0.964823i \(0.584679\pi\)
\(114\) 0 0
\(115\) −2.42446e8 + 1.24188e8i −1.38620 + 0.710049i
\(116\) 0 0
\(117\) −2.61299e8 2.29874e7i −1.39442 0.122672i
\(118\) 0 0
\(119\) 2.48564e8i 1.23951i
\(120\) 0 0
\(121\) 2.14340e8 0.999910
\(122\) 0 0
\(123\) 1.34472e8 + 1.46822e8i 0.587507 + 0.641461i
\(124\) 0 0
\(125\) −3.66404e7 + 2.41375e8i −0.150079 + 0.988674i
\(126\) 0 0
\(127\) 7.43701e7i 0.285880i −0.989731 0.142940i \(-0.954344\pi\)
0.989731 0.142940i \(-0.0456556\pi\)
\(128\) 0 0
\(129\) 1.95898e8 + 2.13889e8i 0.707412 + 0.772378i
\(130\) 0 0
\(131\) 2.87710e8i 0.976944i 0.872580 + 0.488472i \(0.162446\pi\)
−0.872580 + 0.488472i \(0.837554\pi\)
\(132\) 0 0
\(133\) 6.55135e7i 0.209375i
\(134\) 0 0
\(135\) 2.99997e8 + 1.42568e8i 0.903196 + 0.429227i
\(136\) 0 0
\(137\) 5.65629e8 1.60564 0.802822 0.596219i \(-0.203331\pi\)
0.802822 + 0.596219i \(0.203331\pi\)
\(138\) 0 0
\(139\) 4.25011e8 1.13852 0.569261 0.822157i \(-0.307230\pi\)
0.569261 + 0.822157i \(0.307230\pi\)
\(140\) 0 0
\(141\) −8.57106e7 + 7.85014e7i −0.216849 + 0.198610i
\(142\) 0 0
\(143\) 5.55613e6 0.0132870
\(144\) 0 0
\(145\) 1.79947e8 + 3.51302e8i 0.407073 + 0.794709i
\(146\) 0 0
\(147\) −1.01711e8 + 9.31556e7i −0.217820 + 0.199498i
\(148\) 0 0
\(149\) 3.05645e7i 0.0620116i 0.999519 + 0.0310058i \(0.00987103\pi\)
−0.999519 + 0.0310058i \(0.990129\pi\)
\(150\) 0 0
\(151\) 4.93529e7 0.0949302 0.0474651 0.998873i \(-0.484886\pi\)
0.0474651 + 0.998873i \(0.484886\pi\)
\(152\) 0 0
\(153\) −5.22994e7 + 5.94489e8i −0.0954401 + 1.08487i
\(154\) 0 0
\(155\) −3.35812e8 + 1.72013e8i −0.581794 + 0.298012i
\(156\) 0 0
\(157\) 6.00890e8i 0.989001i 0.869177 + 0.494500i \(0.164649\pi\)
−0.869177 + 0.494500i \(0.835351\pi\)
\(158\) 0 0
\(159\) −2.21724e8 + 2.03074e8i −0.346915 + 0.317736i
\(160\) 0 0
\(161\) 1.19102e9i 1.77262i
\(162\) 0 0
\(163\) 7.84714e8i 1.11163i 0.831305 + 0.555816i \(0.187594\pi\)
−0.831305 + 0.555816i \(0.812406\pi\)
\(164\) 0 0
\(165\) −6.59466e6 2.45135e6i −0.00889726 0.00330726i
\(166\) 0 0
\(167\) −7.21668e8 −0.927836 −0.463918 0.885878i \(-0.653557\pi\)
−0.463918 + 0.885878i \(0.653557\pi\)
\(168\) 0 0
\(169\) −7.82658e8 −0.959456
\(170\) 0 0
\(171\) −1.37845e7 + 1.56689e8i −0.0161215 + 0.183254i
\(172\) 0 0
\(173\) −1.34867e9 −1.50564 −0.752821 0.658225i \(-0.771308\pi\)
−0.752821 + 0.658225i \(0.771308\pi\)
\(174\) 0 0
\(175\) 8.66272e8 + 6.23726e8i 0.923638 + 0.665030i
\(176\) 0 0
\(177\) 2.29437e8 + 2.50507e8i 0.233760 + 0.255228i
\(178\) 0 0
\(179\) 9.68358e8i 0.943244i 0.881801 + 0.471622i \(0.156331\pi\)
−0.881801 + 0.471622i \(0.843669\pi\)
\(180\) 0 0
\(181\) 5.79390e8 0.539829 0.269915 0.962884i \(-0.413005\pi\)
0.269915 + 0.962884i \(0.413005\pi\)
\(182\) 0 0
\(183\) −1.17280e9 + 1.07415e9i −1.04573 + 0.957770i
\(184\) 0 0
\(185\) −9.27557e8 1.81083e9i −0.791870 1.54593i
\(186\) 0 0
\(187\) 1.26409e7i 0.0103374i
\(188\) 0 0
\(189\) 1.15279e9 8.83248e8i 0.903451 0.692206i
\(190\) 0 0
\(191\) 1.13330e9i 0.851553i 0.904828 + 0.425777i \(0.139999\pi\)
−0.904828 + 0.425777i \(0.860001\pi\)
\(192\) 0 0
\(193\) 1.62798e9i 1.17333i −0.809831 0.586663i \(-0.800441\pi\)
0.809831 0.586663i \(-0.199559\pi\)
\(194\) 0 0
\(195\) 1.89715e9 + 7.05203e8i 1.31209 + 0.487726i
\(196\) 0 0
\(197\) 5.30676e8 0.352342 0.176171 0.984360i \(-0.443629\pi\)
0.176171 + 0.984360i \(0.443629\pi\)
\(198\) 0 0
\(199\) 1.73556e9 1.10669 0.553346 0.832951i \(-0.313351\pi\)
0.553346 + 0.832951i \(0.313351\pi\)
\(200\) 0 0
\(201\) 1.96673e9 + 2.14735e9i 1.20493 + 1.31558i
\(202\) 0 0
\(203\) 1.72578e9 1.01625
\(204\) 0 0
\(205\) −7.00371e8 1.36730e9i −0.396563 0.774192i
\(206\) 0 0
\(207\) 2.50599e8 2.84857e9i 0.136489 1.55148i
\(208\) 0 0
\(209\) 3.33175e6i 0.00174618i
\(210\) 0 0
\(211\) −1.24909e9 −0.630178 −0.315089 0.949062i \(-0.602034\pi\)
−0.315089 + 0.949062i \(0.602034\pi\)
\(212\) 0 0
\(213\) 2.03810e9 + 2.22528e9i 0.990166 + 1.08110i
\(214\) 0 0
\(215\) −1.02030e9 1.99187e9i −0.477499 0.932198i
\(216\) 0 0
\(217\) 1.64968e9i 0.743980i
\(218\) 0 0
\(219\) 4.97169e8 + 5.42827e8i 0.216136 + 0.235985i
\(220\) 0 0
\(221\) 3.63655e9i 1.52447i
\(222\) 0 0
\(223\) 3.79992e9i 1.53658i −0.640103 0.768289i \(-0.721108\pi\)
0.640103 0.768289i \(-0.278892\pi\)
\(224\) 0 0
\(225\) −1.94062e9 1.67403e9i −0.757201 0.653182i
\(226\) 0 0
\(227\) −2.14940e9 −0.809493 −0.404746 0.914429i \(-0.632640\pi\)
−0.404746 + 0.914429i \(0.632640\pi\)
\(228\) 0 0
\(229\) −2.61527e8 −0.0950989 −0.0475494 0.998869i \(-0.515141\pi\)
−0.0475494 + 0.998869i \(0.515141\pi\)
\(230\) 0 0
\(231\) −2.26847e7 + 2.07766e7i −0.00796681 + 0.00729671i
\(232\) 0 0
\(233\) −1.11109e9 −0.376986 −0.188493 0.982074i \(-0.560360\pi\)
−0.188493 + 0.982074i \(0.560360\pi\)
\(234\) 0 0
\(235\) 7.98194e8 4.08858e8i 0.261720 0.134061i
\(236\) 0 0
\(237\) 2.69878e9 2.47179e9i 0.855411 0.783461i
\(238\) 0 0
\(239\) 1.68005e9i 0.514908i 0.966291 + 0.257454i \(0.0828836\pi\)
−0.966291 + 0.257454i \(0.917116\pi\)
\(240\) 0 0
\(241\) 3.35727e9 0.995217 0.497608 0.867402i \(-0.334212\pi\)
0.497608 + 0.867402i \(0.334212\pi\)
\(242\) 0 0
\(243\) −2.94298e9 + 1.86991e9i −0.844037 + 0.536284i
\(244\) 0 0
\(245\) 9.47196e8 4.85181e8i 0.262891 0.134660i
\(246\) 0 0
\(247\) 9.58479e8i 0.257510i
\(248\) 0 0
\(249\) −3.79590e9 + 3.47662e9i −0.987456 + 0.904400i
\(250\) 0 0
\(251\) 7.51224e8i 0.189267i −0.995512 0.0946334i \(-0.969832\pi\)
0.995512 0.0946334i \(-0.0301679\pi\)
\(252\) 0 0
\(253\) 6.05706e7i 0.0147836i
\(254\) 0 0
\(255\) 1.60443e9 4.31627e9i 0.379455 1.02082i
\(256\) 0 0
\(257\) −4.57720e9 −1.04922 −0.524612 0.851342i \(-0.675789\pi\)
−0.524612 + 0.851342i \(0.675789\pi\)
\(258\) 0 0
\(259\) −8.89572e9 −1.97689
\(260\) 0 0
\(261\) −4.12754e9 3.63115e8i −0.889465 0.0782495i
\(262\) 0 0
\(263\) 7.25043e9 1.51545 0.757723 0.652576i \(-0.226312\pi\)
0.757723 + 0.652576i \(0.226312\pi\)
\(264\) 0 0
\(265\) 2.06484e9 1.05767e9i 0.418699 0.214470i
\(266\) 0 0
\(267\) 1.79736e9 + 1.96242e9i 0.353663 + 0.386142i
\(268\) 0 0
\(269\) 4.13659e9i 0.790012i −0.918678 0.395006i \(-0.870742\pi\)
0.918678 0.395006i \(-0.129258\pi\)
\(270\) 0 0
\(271\) 2.06046e9 0.382020 0.191010 0.981588i \(-0.438824\pi\)
0.191010 + 0.981588i \(0.438824\pi\)
\(272\) 0 0
\(273\) 6.52593e9 5.97702e9i 1.17488 1.07605i
\(274\) 0 0
\(275\) 4.40551e7 + 3.17202e7i 0.00770309 + 0.00554632i
\(276\) 0 0
\(277\) 4.00090e9i 0.679577i 0.940502 + 0.339789i \(0.110356\pi\)
−0.940502 + 0.339789i \(0.889644\pi\)
\(278\) 0 0
\(279\) 3.47104e8 3.94554e9i 0.0572852 0.651163i
\(280\) 0 0
\(281\) 9.28447e9i 1.48913i −0.667552 0.744563i \(-0.732658\pi\)
0.667552 0.744563i \(-0.267342\pi\)
\(282\) 0 0
\(283\) 2.65616e9i 0.414103i 0.978330 + 0.207051i \(0.0663867\pi\)
−0.978330 + 0.207051i \(0.933613\pi\)
\(284\) 0 0
\(285\) 4.22878e8 1.13763e9i 0.0640966 0.172434i
\(286\) 0 0
\(287\) −6.71689e9 −0.990013
\(288\) 0 0
\(289\) 1.29787e9 0.186055
\(290\) 0 0
\(291\) 5.25719e9 + 5.73999e9i 0.733131 + 0.800459i
\(292\) 0 0
\(293\) −1.31400e10 −1.78290 −0.891448 0.453122i \(-0.850310\pi\)
−0.891448 + 0.453122i \(0.850310\pi\)
\(294\) 0 0
\(295\) −1.19497e9 2.33289e9i −0.157787 0.308039i
\(296\) 0 0
\(297\) 5.86264e7 4.49184e7i 0.00753473 0.00577296i
\(298\) 0 0
\(299\) 1.74250e10i 2.18015i
\(300\) 0 0
\(301\) −9.78512e9 −1.19207
\(302\) 0 0
\(303\) −2.00962e9 2.19418e9i −0.238421 0.260316i
\(304\) 0 0
\(305\) 1.09219e10 5.59449e9i 1.26211 0.646489i
\(306\) 0 0
\(307\) 1.07169e9i 0.120647i 0.998179 + 0.0603236i \(0.0192133\pi\)
−0.998179 + 0.0603236i \(0.980787\pi\)
\(308\) 0 0
\(309\) −5.16257e9 5.63668e9i −0.566281 0.618286i
\(310\) 0 0
\(311\) 1.10247e10i 1.17849i 0.807954 + 0.589245i \(0.200575\pi\)
−0.807954 + 0.589245i \(0.799425\pi\)
\(312\) 0 0
\(313\) 2.37337e9i 0.247279i 0.992327 + 0.123640i \(0.0394567\pi\)
−0.992327 + 0.123640i \(0.960543\pi\)
\(314\) 0 0
\(315\) −1.03828e10 + 4.21500e9i −1.05456 + 0.428110i
\(316\) 0 0
\(317\) 1.16552e10 1.15421 0.577103 0.816672i \(-0.304183\pi\)
0.577103 + 0.816672i \(0.304183\pi\)
\(318\) 0 0
\(319\) 8.77660e7 0.00847547
\(320\) 0 0
\(321\) −5.19511e9 + 4.75814e9i −0.489299 + 0.448144i
\(322\) 0 0
\(323\) 2.18067e9 0.200345
\(324\) 0 0
\(325\) −1.26738e10 9.12526e9i −1.13598 0.817922i
\(326\) 0 0
\(327\) 1.42425e10 1.30446e10i 1.24565 1.14088i
\(328\) 0 0
\(329\) 3.92114e9i 0.334679i
\(330\) 0 0
\(331\) 3.25495e9 0.271164 0.135582 0.990766i \(-0.456710\pi\)
0.135582 + 0.990766i \(0.456710\pi\)
\(332\) 0 0
\(333\) 2.12759e10 + 1.87172e9i 1.73026 + 0.152217i
\(334\) 0 0
\(335\) −1.02433e10 1.99975e10i −0.813319 1.58780i
\(336\) 0 0
\(337\) 1.06140e9i 0.0822921i 0.999153 + 0.0411461i \(0.0131009\pi\)
−0.999153 + 0.0411461i \(0.986899\pi\)
\(338\) 0 0
\(339\) −5.12090e9 + 4.69018e9i −0.387746 + 0.355133i
\(340\) 0 0
\(341\) 8.38962e7i 0.00620476i
\(342\) 0 0
\(343\) 1.11003e10i 0.801968i
\(344\) 0 0
\(345\) −7.68783e9 + 2.06819e10i −0.542659 + 1.45987i
\(346\) 0 0
\(347\) −2.72743e9 −0.188120 −0.0940600 0.995567i \(-0.529985\pi\)
−0.0940600 + 0.995567i \(0.529985\pi\)
\(348\) 0 0
\(349\) 1.33281e9 0.0898394 0.0449197 0.998991i \(-0.485697\pi\)
0.0449197 + 0.998991i \(0.485697\pi\)
\(350\) 0 0
\(351\) −1.68657e10 + 1.29221e10i −1.11116 + 0.851346i
\(352\) 0 0
\(353\) 4.09481e9 0.263715 0.131857 0.991269i \(-0.457906\pi\)
0.131857 + 0.991269i \(0.457906\pi\)
\(354\) 0 0
\(355\) −1.06150e10 2.07232e10i −0.668356 1.30480i
\(356\) 0 0
\(357\) −1.35985e10 1.48474e10i −0.837180 0.914063i
\(358\) 0 0
\(359\) 1.26490e10i 0.761517i −0.924674 0.380759i \(-0.875663\pi\)
0.924674 0.380759i \(-0.124337\pi\)
\(360\) 0 0
\(361\) −1.64088e10 −0.966158
\(362\) 0 0
\(363\) 1.28031e10 1.17262e10i 0.737373 0.675352i
\(364\) 0 0
\(365\) −2.58940e9 5.05516e9i −0.145891 0.284816i
\(366\) 0 0
\(367\) 2.60644e10i 1.43676i 0.695651 + 0.718380i \(0.255116\pi\)
−0.695651 + 0.718380i \(0.744884\pi\)
\(368\) 0 0
\(369\) 1.60648e10 + 1.41328e9i 0.866502 + 0.0762293i
\(370\) 0 0
\(371\) 1.01435e10i 0.535420i
\(372\) 0 0
\(373\) 1.06671e10i 0.551074i 0.961290 + 0.275537i \(0.0888557\pi\)
−0.961290 + 0.275537i \(0.911144\pi\)
\(374\) 0 0
\(375\) 1.10166e10 + 1.64225e10i 0.557089 + 0.830453i
\(376\) 0 0
\(377\) −2.52485e10 −1.24989
\(378\) 0 0
\(379\) 1.58507e10 0.768231 0.384116 0.923285i \(-0.374506\pi\)
0.384116 + 0.923285i \(0.374506\pi\)
\(380\) 0 0
\(381\) −4.06867e9 4.44232e9i −0.193087 0.210819i
\(382\) 0 0
\(383\) −7.03804e9 −0.327082 −0.163541 0.986537i \(-0.552292\pi\)
−0.163541 + 0.986537i \(0.552292\pi\)
\(384\) 0 0
\(385\) 2.11255e8 1.08211e8i 0.00961531 0.00492524i
\(386\) 0 0
\(387\) 2.34031e10 + 2.05885e9i 1.04335 + 0.0917871i
\(388\) 0 0
\(389\) 2.67699e10i 1.16909i −0.811360 0.584546i \(-0.801273\pi\)
0.811360 0.584546i \(-0.198727\pi\)
\(390\) 0 0
\(391\) −3.96441e10 −1.69618
\(392\) 0 0
\(393\) 1.57402e10 + 1.71857e10i 0.659840 + 0.720438i
\(394\) 0 0
\(395\) −2.51329e10 + 1.28738e10i −1.03241 + 0.528832i
\(396\) 0 0
\(397\) 3.89022e10i 1.56607i −0.621975 0.783037i \(-0.713669\pi\)
0.621975 0.783037i \(-0.286331\pi\)
\(398\) 0 0
\(399\) −3.58414e9 3.91330e9i −0.141414 0.154401i
\(400\) 0 0
\(401\) 3.78185e10i 1.46261i 0.682053 + 0.731303i \(0.261087\pi\)
−0.682053 + 0.731303i \(0.738913\pi\)
\(402\) 0 0
\(403\) 2.41353e10i 0.915023i
\(404\) 0 0
\(405\) 2.57193e10 7.89641e9i 0.955959 0.293501i
\(406\) 0 0
\(407\) −4.52400e8 −0.0164871
\(408\) 0 0
\(409\) 3.18590e9 0.113852 0.0569258 0.998378i \(-0.481870\pi\)
0.0569258 + 0.998378i \(0.481870\pi\)
\(410\) 0 0
\(411\) 3.37865e10 3.09447e10i 1.18407 1.08447i
\(412\) 0 0
\(413\) −1.14604e10 −0.393911
\(414\) 0 0
\(415\) 3.53500e10 1.81073e10i 1.19178 0.610465i
\(416\) 0 0
\(417\) 2.53870e10 2.32517e10i 0.839591 0.768972i
\(418\) 0 0
\(419\) 2.70655e10i 0.878131i 0.898455 + 0.439065i \(0.144690\pi\)
−0.898455 + 0.439065i \(0.855310\pi\)
\(420\) 0 0
\(421\) 5.67845e10 1.80760 0.903798 0.427959i \(-0.140767\pi\)
0.903798 + 0.427959i \(0.140767\pi\)
\(422\) 0 0
\(423\) −8.25034e8 + 9.37819e9i −0.0257698 + 0.292926i
\(424\) 0 0
\(425\) −2.07612e10 + 2.88345e10i −0.636351 + 0.883806i
\(426\) 0 0
\(427\) 5.36538e10i 1.61395i
\(428\) 0 0
\(429\) 3.31882e8 3.03967e8i 0.00979840 0.00897424i
\(430\) 0 0
\(431\) 2.71837e10i 0.787769i −0.919160 0.393884i \(-0.871131\pi\)
0.919160 0.393884i \(-0.128869\pi\)
\(432\) 0 0
\(433\) 6.53469e9i 0.185897i −0.995671 0.0929487i \(-0.970371\pi\)
0.995671 0.0929487i \(-0.0296293\pi\)
\(434\) 0 0
\(435\) 2.99679e10 + 1.11396e10i 0.836949 + 0.311108i
\(436\) 0 0
\(437\) −1.04489e10 −0.286514
\(438\) 0 0
\(439\) 9.86558e9 0.265622 0.132811 0.991141i \(-0.457600\pi\)
0.132811 + 0.991141i \(0.457600\pi\)
\(440\) 0 0
\(441\) −9.79047e8 + 1.11289e10i −0.0258851 + 0.294236i
\(442\) 0 0
\(443\) −3.59381e10 −0.933127 −0.466563 0.884488i \(-0.654508\pi\)
−0.466563 + 0.884488i \(0.654508\pi\)
\(444\) 0 0
\(445\) −9.36117e9 1.82754e10i −0.238721 0.466043i
\(446\) 0 0
\(447\) 1.67214e9 + 1.82570e9i 0.0418834 + 0.0457298i
\(448\) 0 0
\(449\) 2.10210e10i 0.517212i 0.965983 + 0.258606i \(0.0832632\pi\)
−0.965983 + 0.258606i \(0.916737\pi\)
\(450\) 0 0
\(451\) −3.41594e8 −0.00825665
\(452\) 0 0
\(453\) 2.94798e9 2.70002e9i 0.0700053 0.0641171i
\(454\) 0 0
\(455\) −6.07737e10 + 3.11301e10i −1.41798 + 0.726331i
\(456\) 0 0
\(457\) 4.53613e10i 1.03997i 0.854176 + 0.519985i \(0.174062\pi\)
−0.854176 + 0.519985i \(0.825938\pi\)
\(458\) 0 0
\(459\) 2.93996e10 + 3.83716e10i 0.662355 + 0.864489i
\(460\) 0 0
\(461\) 7.50697e10i 1.66211i −0.556187 0.831057i \(-0.687736\pi\)
0.556187 0.831057i \(-0.312264\pi\)
\(462\) 0 0
\(463\) 5.77718e10i 1.25716i 0.777743 + 0.628582i \(0.216364\pi\)
−0.777743 + 0.628582i \(0.783636\pi\)
\(464\) 0 0
\(465\) −1.06484e10 + 2.86465e10i −0.227757 + 0.612717i
\(466\) 0 0
\(467\) −1.87315e10 −0.393826 −0.196913 0.980421i \(-0.563092\pi\)
−0.196913 + 0.980421i \(0.563092\pi\)
\(468\) 0 0
\(469\) −9.82382e10 −2.03043
\(470\) 0 0
\(471\) 3.28738e10 + 3.58928e10i 0.667984 + 0.729329i
\(472\) 0 0
\(473\) −4.97632e8 −0.00994177
\(474\) 0 0
\(475\) −5.47199e9 + 7.59987e9i −0.107491 + 0.149290i
\(476\) 0 0
\(477\) −2.13427e9 + 2.42603e10i −0.0412264 + 0.468622i
\(478\) 0 0
\(479\) 1.66308e10i 0.315916i 0.987446 + 0.157958i \(0.0504910\pi\)
−0.987446 + 0.157958i \(0.949509\pi\)
\(480\) 0 0
\(481\) 1.30147e11 2.43138
\(482\) 0 0
\(483\) 6.51590e10 + 7.11429e10i 1.19725 + 1.30720i
\(484\) 0 0
\(485\) −2.73810e10 5.34546e10i −0.494859 0.966091i
\(486\) 0 0
\(487\) 7.82184e10i 1.39057i 0.718734 + 0.695285i \(0.244722\pi\)
−0.718734 + 0.695285i \(0.755278\pi\)
\(488\) 0 0
\(489\) 4.29305e10 + 4.68730e10i 0.750810 + 0.819762i
\(490\) 0 0
\(491\) 7.12593e10i 1.22607i −0.790056 0.613035i \(-0.789948\pi\)
0.790056 0.613035i \(-0.210052\pi\)
\(492\) 0 0
\(493\) 5.74438e10i 0.972423i
\(494\) 0 0
\(495\) −5.28026e8 + 2.14358e8i −0.00879496 + 0.00357042i
\(496\) 0 0
\(497\) −1.01803e11 −1.66854
\(498\) 0 0
\(499\) −7.30983e9 −0.117898 −0.0589488 0.998261i \(-0.518775\pi\)
−0.0589488 + 0.998261i \(0.518775\pi\)
\(500\) 0 0
\(501\) −4.31071e10 + 3.94813e10i −0.684224 + 0.626673i
\(502\) 0 0
\(503\) 6.85791e10 1.07132 0.535661 0.844433i \(-0.320063\pi\)
0.535661 + 0.844433i \(0.320063\pi\)
\(504\) 0 0
\(505\) 1.04667e10 + 2.04336e10i 0.160933 + 0.314181i
\(506\) 0 0
\(507\) −4.67502e10 + 4.28180e10i −0.707541 + 0.648029i
\(508\) 0 0
\(509\) 6.50774e10i 0.969525i 0.874646 + 0.484762i \(0.161094\pi\)
−0.874646 + 0.484762i \(0.838906\pi\)
\(510\) 0 0
\(511\) −2.48336e10 −0.364213
\(512\) 0 0
\(513\) 7.74881e9 + 1.01136e10i 0.111883 + 0.146027i
\(514\) 0 0
\(515\) 2.68882e10 + 5.24925e10i 0.382237 + 0.746222i
\(516\) 0 0
\(517\) 1.99413e8i 0.00279121i
\(518\) 0 0
\(519\) −8.05597e10 + 7.37837e10i −1.11032 + 1.01693i
\(520\) 0 0
\(521\) 3.04885e10i 0.413795i −0.978363 0.206898i \(-0.933663\pi\)
0.978363 0.206898i \(-0.0663367\pi\)
\(522\) 0 0
\(523\) 1.41009e10i 0.188469i 0.995550 + 0.0942345i \(0.0300403\pi\)
−0.995550 + 0.0942345i \(0.969960\pi\)
\(524\) 0 0
\(525\) 8.58677e10 1.01356e10i 1.13030 0.133417i
\(526\) 0 0
\(527\) −5.49109e10 −0.711896
\(528\) 0 0
\(529\) 1.11649e11 1.42571
\(530\) 0 0
\(531\) 2.74097e10 + 2.41134e9i 0.344768 + 0.0303305i
\(532\) 0 0
\(533\) 9.82698e10 1.21762
\(534\) 0 0
\(535\) 4.83803e10 2.47818e10i 0.590545 0.302494i
\(536\) 0 0
\(537\) 5.29774e10 + 5.78426e10i 0.637079 + 0.695586i
\(538\) 0 0
\(539\) 2.36639e8i 0.00280370i
\(540\) 0 0
\(541\) −1.48883e11 −1.73802 −0.869010 0.494794i \(-0.835243\pi\)
−0.869010 + 0.494794i \(0.835243\pi\)
\(542\) 0 0
\(543\) 3.46085e10 3.16975e10i 0.398092 0.364608i
\(544\) 0 0
\(545\) −1.32636e11 + 6.79399e10i −1.50340 + 0.770085i
\(546\) 0 0
\(547\) 3.44145e10i 0.384408i 0.981355 + 0.192204i \(0.0615635\pi\)
−0.981355 + 0.192204i \(0.938436\pi\)
\(548\) 0 0
\(549\) −1.12891e10 + 1.28324e11i −0.124271 + 1.41260i
\(550\) 0 0
\(551\) 1.51404e10i 0.164259i
\(552\) 0 0
\(553\) 1.23466e11i 1.32022i
\(554\) 0 0
\(555\) −1.54473e11 5.74202e10i −1.62810 0.605191i
\(556\) 0 0
\(557\) −4.19800e10 −0.436136 −0.218068 0.975934i \(-0.569975\pi\)
−0.218068 + 0.975934i \(0.569975\pi\)
\(558\) 0 0
\(559\) 1.43159e11 1.46612
\(560\) 0 0
\(561\) −6.91566e8 7.55077e8i −0.00698204 0.00762324i
\(562\) 0 0
\(563\) −1.00579e11 −1.00109 −0.500547 0.865710i \(-0.666868\pi\)
−0.500547 + 0.865710i \(0.666868\pi\)
\(564\) 0 0
\(565\) 4.76892e10 2.44278e10i 0.467979 0.239712i
\(566\) 0 0
\(567\) 2.05383e10 1.15826e11i 0.198716 1.12066i
\(568\) 0 0
\(569\) 5.71322e10i 0.545045i 0.962149 + 0.272522i \(0.0878579\pi\)
−0.962149 + 0.272522i \(0.912142\pi\)
\(570\) 0 0
\(571\) 4.61293e10 0.433942 0.216971 0.976178i \(-0.430382\pi\)
0.216971 + 0.976178i \(0.430382\pi\)
\(572\) 0 0
\(573\) 6.20011e10 + 6.76951e10i 0.575150 + 0.627969i
\(574\) 0 0
\(575\) 9.94797e10 1.38164e11i 0.910046 1.26393i
\(576\) 0 0
\(577\) 3.38834e10i 0.305691i −0.988250 0.152846i \(-0.951156\pi\)
0.988250 0.152846i \(-0.0488437\pi\)
\(578\) 0 0
\(579\) −8.90641e10 9.72433e10i −0.792480 0.865258i
\(580\) 0 0
\(581\) 1.73657e11i 1.52401i
\(582\) 0 0
\(583\) 5.15860e8i 0.00446537i
\(584\) 0 0
\(585\) 1.51902e11 6.16665e10i 1.29700 0.526533i
\(586\) 0 0
\(587\) −6.45108e10 −0.543350 −0.271675 0.962389i \(-0.587578\pi\)
−0.271675 + 0.962389i \(0.587578\pi\)
\(588\) 0 0
\(589\) −1.44728e10 −0.120252
\(590\) 0 0
\(591\) 3.16987e10 2.90325e10i 0.259831 0.237976i
\(592\) 0 0
\(593\) −3.86595e10 −0.312635 −0.156317 0.987707i \(-0.549962\pi\)
−0.156317 + 0.987707i \(0.549962\pi\)
\(594\) 0 0
\(595\) 7.08250e10 + 1.38268e11i 0.565092 + 1.10320i
\(596\) 0 0
\(597\) 1.03669e11 9.49497e10i 0.816119 0.747474i
\(598\) 0 0
\(599\) 1.01190e11i 0.786016i 0.919535 + 0.393008i \(0.128566\pi\)
−0.919535 + 0.393008i \(0.871434\pi\)
\(600\) 0 0
\(601\) 8.63507e10 0.661863 0.330932 0.943655i \(-0.392637\pi\)
0.330932 + 0.943655i \(0.392637\pi\)
\(602\) 0 0
\(603\) 2.34956e11 + 2.06700e10i 1.77712 + 0.156340i
\(604\) 0 0
\(605\) −1.19231e11 + 6.10733e10i −0.889951 + 0.455859i
\(606\) 0 0
\(607\) 2.18211e11i 1.60739i −0.595040 0.803696i \(-0.702864\pi\)
0.595040 0.803696i \(-0.297136\pi\)
\(608\) 0 0
\(609\) 1.03085e11 9.44145e10i 0.749423 0.686388i
\(610\) 0 0
\(611\) 5.73673e10i 0.411623i
\(612\) 0 0
\(613\) 2.62660e11i 1.86016i −0.367352 0.930082i \(-0.619736\pi\)
0.367352 0.930082i \(-0.380264\pi\)
\(614\) 0 0
\(615\) −1.16638e11 4.33563e10i −0.815341 0.303076i
\(616\) 0 0
\(617\) −1.06035e11 −0.731658 −0.365829 0.930682i \(-0.619215\pi\)
−0.365829 + 0.930682i \(0.619215\pi\)
\(618\) 0 0
\(619\) −7.46029e10 −0.508152 −0.254076 0.967184i \(-0.581771\pi\)
−0.254076 + 0.967184i \(0.581771\pi\)
\(620\) 0 0
\(621\) −1.40872e11 1.83862e11i −0.947234 1.23631i
\(622\) 0 0
\(623\) −8.97781e10 −0.595961
\(624\) 0 0
\(625\) −4.83950e10 1.44710e11i −0.317161 0.948372i
\(626\) 0 0
\(627\) −1.82275e8 1.99014e8i −0.00117939 0.00128770i
\(628\) 0 0
\(629\) 2.96101e11i 1.89163i
\(630\) 0 0
\(631\) −1.57908e10 −0.0996063 −0.0498032 0.998759i \(-0.515859\pi\)
−0.0498032 + 0.998759i \(0.515859\pi\)
\(632\) 0 0
\(633\) −7.46113e10 + 6.83356e10i −0.464718 + 0.425630i
\(634\) 0 0
\(635\) 2.11908e10 + 4.13698e10i 0.130333 + 0.254442i
\(636\) 0 0
\(637\) 6.80763e10i 0.413464i
\(638\) 0 0
\(639\) 2.43483e11 + 2.14201e10i 1.46038 + 0.128475i
\(640\) 0 0
\(641\) 1.75340e11i 1.03860i 0.854591 + 0.519301i \(0.173808\pi\)
−0.854591 + 0.519301i \(0.826192\pi\)
\(642\) 0 0
\(643\) 2.52429e11i 1.47671i 0.674413 + 0.738354i \(0.264397\pi\)
−0.674413 + 0.738354i \(0.735603\pi\)
\(644\) 0 0
\(645\) −1.69917e11 6.31612e10i −0.981745 0.364931i
\(646\) 0 0
\(647\) −1.72802e11 −0.986124 −0.493062 0.869994i \(-0.664122\pi\)
−0.493062 + 0.869994i \(0.664122\pi\)
\(648\) 0 0
\(649\) −5.82828e8 −0.00328520
\(650\) 0 0
\(651\) 9.02515e10 + 9.85399e10i 0.502494 + 0.548641i
\(652\) 0 0
\(653\) 2.59647e11 1.42801 0.714003 0.700143i \(-0.246880\pi\)
0.714003 + 0.700143i \(0.246880\pi\)
\(654\) 0 0
\(655\) −8.19793e10 1.60044e11i −0.445388 0.869511i
\(656\) 0 0
\(657\) 5.93945e10 + 5.22515e9i 0.318775 + 0.0280438i
\(658\) 0 0
\(659\) 3.06755e11i 1.62649i −0.581925 0.813243i \(-0.697700\pi\)
0.581925 0.813243i \(-0.302300\pi\)
\(660\) 0 0
\(661\) −7.89336e10 −0.413481 −0.206741 0.978396i \(-0.566286\pi\)
−0.206741 + 0.978396i \(0.566286\pi\)
\(662\) 0 0
\(663\) 1.98950e11 + 2.17221e11i 1.02965 + 1.12421i
\(664\) 0 0
\(665\) 1.86672e10 + 3.64432e10i 0.0954539 + 0.186350i
\(666\) 0 0
\(667\) 2.75249e11i 1.39066i
\(668\) 0 0
\(669\) −2.07888e11 2.26979e11i −1.03782 1.13313i
\(670\) 0 0
\(671\) 2.72862e9i 0.0134602i
\(672\) 0 0
\(673\) 3.07460e11i 1.49875i 0.662146 + 0.749375i \(0.269646\pi\)
−0.662146 + 0.749375i \(0.730354\pi\)
\(674\) 0 0
\(675\) −2.07502e11 + 6.17411e9i −0.999558 + 0.0297412i
\(676\) 0 0
\(677\) 2.14869e11 1.02287 0.511433 0.859323i \(-0.329115\pi\)
0.511433 + 0.859323i \(0.329115\pi\)
\(678\) 0 0
\(679\) −2.62597e11 −1.23541
\(680\) 0 0
\(681\) −1.28389e11 + 1.17590e11i −0.596952 + 0.546742i
\(682\) 0 0
\(683\) 1.86313e11 0.856170 0.428085 0.903738i \(-0.359188\pi\)
0.428085 + 0.903738i \(0.359188\pi\)
\(684\) 0 0
\(685\) −3.14642e11 + 1.61169e11i −1.42907 + 0.732012i
\(686\) 0 0
\(687\) −1.56217e10 + 1.43078e10i −0.0701297 + 0.0642310i
\(688\) 0 0
\(689\) 1.48403e11i 0.658514i
\(690\) 0 0
\(691\) −2.15983e11 −0.947343 −0.473672 0.880702i \(-0.657072\pi\)
−0.473672 + 0.880702i \(0.657072\pi\)
\(692\) 0 0
\(693\) −2.18358e8 + 2.48209e9i −0.000946753 + 0.0107618i
\(694\) 0 0
\(695\) −2.36421e11 + 1.21102e11i −1.01332 + 0.519051i
\(696\) 0 0
\(697\) 2.23577e11i 0.947318i
\(698\) 0 0
\(699\) −6.63684e10 + 6.07860e10i −0.278005 + 0.254621i
\(700\) 0 0
\(701\) 1.11048e11i 0.459876i −0.973205 0.229938i \(-0.926148\pi\)
0.973205 0.229938i \(-0.0738523\pi\)
\(702\) 0 0
\(703\) 7.80428e10i 0.319530i
\(704\) 0 0
\(705\) 2.53102e10 6.80901e10i 0.102457 0.275631i
\(706\) 0 0
\(707\) 1.00381e11 0.401765
\(708\) 0 0
\(709\) −1.92847e10 −0.0763181 −0.0381590 0.999272i \(-0.512149\pi\)
−0.0381590 + 0.999272i \(0.512149\pi\)
\(710\) 0 0
\(711\) 2.59780e10 2.95293e11i 0.101655 1.15551i
\(712\) 0 0
\(713\) 2.63112e11 1.01808
\(714\) 0 0
\(715\) −3.09071e9 + 1.58315e9i −0.0118259 + 0.00605756i
\(716\) 0 0
\(717\) 9.19127e10 + 1.00354e11i 0.347775 + 0.379714i
\(718\) 0 0
\(719\) 8.08348e10i 0.302470i −0.988498 0.151235i \(-0.951675\pi\)
0.988498 0.151235i \(-0.0483251\pi\)
\(720\) 0 0
\(721\) 2.57870e11 0.954246
\(722\) 0 0
\(723\) 2.00538e11 1.83671e11i 0.733912 0.672182i
\(724\) 0 0
\(725\) −2.00198e11 1.44145e11i −0.724615 0.521732i
\(726\) 0 0
\(727\) 8.16014e10i 0.292119i −0.989276 0.146060i \(-0.953341\pi\)
0.989276 0.146060i \(-0.0466591\pi\)
\(728\) 0 0
\(729\) −7.34920e10 + 2.72700e11i −0.260214 + 0.965551i
\(730\) 0 0
\(731\) 3.25705e11i 1.14066i
\(732\) 0 0
\(733\) 1.18380e11i 0.410073i 0.978754 + 0.205036i \(0.0657313\pi\)
−0.978754 + 0.205036i \(0.934269\pi\)
\(734\) 0 0
\(735\) 3.00350e10 8.08008e10i 0.102915 0.276864i
\(736\) 0 0
\(737\) −4.99600e9 −0.0169337
\(738\) 0 0
\(739\) −3.41688e7 −0.000114565 −5.72826e−5 1.00000i \(-0.500018\pi\)
−5.72826e−5 1.00000i \(0.500018\pi\)
\(740\) 0 0
\(741\) 5.24369e10 + 5.72525e10i 0.173926 + 0.189899i
\(742\) 0 0
\(743\) 4.64134e11 1.52296 0.761479 0.648190i \(-0.224474\pi\)
0.761479 + 0.648190i \(0.224474\pi\)
\(744\) 0 0
\(745\) −8.70898e9 1.70021e10i −0.0282711 0.0551922i
\(746\) 0 0
\(747\) −3.65386e10 + 4.15336e11i −0.117346 + 1.33388i
\(748\) 0 0
\(749\) 2.37669e11i 0.755171i
\(750\) 0 0
\(751\) −5.06216e11 −1.59139 −0.795693 0.605699i \(-0.792893\pi\)
−0.795693 + 0.605699i \(0.792893\pi\)
\(752\) 0 0
\(753\) −4.10983e10 4.48726e10i −0.127833 0.139573i
\(754\) 0 0
\(755\) −2.74535e10 + 1.40625e10i −0.0844909 + 0.0432787i
\(756\) 0 0
\(757\) 5.78541e11i 1.76178i −0.473325 0.880888i \(-0.656946\pi\)
0.473325 0.880888i \(-0.343054\pi\)
\(758\) 0 0
\(759\) 3.31372e9 + 3.61804e9i 0.00998502 + 0.0109020i
\(760\) 0 0
\(761\) 1.05017e11i 0.313128i 0.987668 + 0.156564i \(0.0500417\pi\)
−0.987668 + 0.156564i \(0.949958\pi\)
\(762\) 0 0
\(763\) 6.51576e11i 1.92250i
\(764\) 0 0
\(765\) −1.40300e11 3.45598e11i −0.409648 1.00908i
\(766\) 0 0
\(767\) 1.67668e11 0.484472
\(768\) 0 0
\(769\) −2.55088e11 −0.729432 −0.364716 0.931119i \(-0.618834\pi\)
−0.364716 + 0.931119i \(0.618834\pi\)
\(770\) 0 0
\(771\) −2.73408e11 + 2.50412e11i −0.773739 + 0.708659i
\(772\) 0 0
\(773\) 5.12267e11 1.43476 0.717379 0.696684i \(-0.245342\pi\)
0.717379 + 0.696684i \(0.245342\pi\)
\(774\) 0 0
\(775\) 1.37789e11 1.91371e11i 0.381951 0.530479i
\(776\) 0 0
\(777\) −5.31365e11 + 4.86671e11i −1.45784 + 1.33521i
\(778\) 0 0
\(779\) 5.89278e10i 0.160019i
\(780\) 0 0
\(781\) −5.17730e9 −0.0139155
\(782\) 0 0
\(783\) −2.66414e11 + 2.04121e11i −0.708778 + 0.543052i
\(784\) 0 0
\(785\) −1.71216e11 3.34257e11i −0.450885 0.880241i
\(786\) 0 0
\(787\) 4.20303e11i 1.09563i −0.836600 0.547814i \(-0.815460\pi\)
0.836600 0.547814i \(-0.184540\pi\)
\(788\) 0 0
\(789\) 4.33087e11 3.96660e11i 1.11755 1.02355i
\(790\) 0 0
\(791\) 2.34274e11i 0.598437i
\(792\) 0 0
\(793\) 7.84969e11i 1.98500i
\(794\) 0 0
\(795\) 6.54747e10 1.76141e11i 0.163910 0.440953i
\(796\) 0 0
\(797\) −4.85908e11 −1.20426 −0.602130 0.798398i \(-0.705681\pi\)
−0.602130 + 0.798398i \(0.705681\pi\)
\(798\) 0 0
\(799\) 1.30518e11 0.320246
\(800\) 0 0
\(801\) 2.14722e11 + 1.88899e10i 0.521611 + 0.0458880i
\(802\) 0 0
\(803\) −1.26294e9 −0.00303752
\(804\) 0 0
\(805\) −3.39367e11 6.62530e11i −0.808139 1.57769i
\(806\) 0 0
\(807\) −2.26307e11 2.47090e11i −0.533584 0.582587i
\(808\) 0 0
\(809\) 1.86200e11i 0.434695i 0.976094 + 0.217348i \(0.0697405\pi\)
−0.976094 + 0.217348i \(0.930259\pi\)
\(810\) 0 0
\(811\) −1.47774e11 −0.341598 −0.170799 0.985306i \(-0.554635\pi\)
−0.170799 + 0.985306i \(0.554635\pi\)
\(812\) 0 0
\(813\) 1.23076e11 1.12724e11i 0.281717 0.258021i
\(814\) 0 0
\(815\) −2.23594e11 4.36513e11i −0.506793 0.989387i
\(816\) 0 0
\(817\) 8.58457e10i 0.192677i
\(818\) 0 0
\(819\) 6.28173e10 7.14047e11i 0.139619 1.58705i
\(820\) 0 0
\(821\) 7.04918e11i 1.55155i 0.631009 + 0.775776i \(0.282641\pi\)
−0.631009 + 0.775776i \(0.717359\pi\)
\(822\) 0 0
\(823\) 1.75927e11i 0.383473i −0.981446 0.191736i \(-0.938588\pi\)
0.981446 0.191736i \(-0.0614118\pi\)
\(824\) 0 0
\(825\) 4.36689e9 5.15455e8i 0.00942662 0.00111269i
\(826\) 0 0
\(827\) −3.58495e11 −0.766410 −0.383205 0.923663i \(-0.625180\pi\)
−0.383205 + 0.923663i \(0.625180\pi\)
\(828\) 0 0
\(829\) −5.08041e11 −1.07567 −0.537837 0.843049i \(-0.680758\pi\)
−0.537837 + 0.843049i \(0.680758\pi\)
\(830\) 0 0
\(831\) 2.18883e11 + 2.38984e11i 0.458995 + 0.501147i
\(832\) 0 0
\(833\) 1.54883e11 0.321679
\(834\) 0 0
\(835\) 4.01442e11 2.05630e11i 0.825803 0.423000i
\(836\) 0 0
\(837\) −1.95121e11 2.54667e11i −0.397560 0.518885i
\(838\) 0 0
\(839\) 5.88276e11i 1.18723i 0.804751 + 0.593613i \(0.202299\pi\)
−0.804751 + 0.593613i \(0.797701\pi\)
\(840\) 0 0
\(841\) 1.01414e11 0.202729
\(842\) 0 0
\(843\) −5.07939e11 5.54586e11i −1.00578 1.09814i
\(844\) 0 0
\(845\) 4.35369e11 2.23008e11i 0.853946 0.437416i
\(846\) 0 0
\(847\) 5.85722e11i 1.13804i
\(848\) 0 0
\(849\) 1.45314e11 + 1.58659e11i 0.279690 + 0.305376i
\(850\) 0 0
\(851\) 1.41880e12i 2.70523i
\(852\) 0 0
\(853\) 2.11606e10i 0.0399698i 0.999800 + 0.0199849i \(0.00636181\pi\)
−0.999800 + 0.0199849i \(0.993638\pi\)
\(854\) 0 0
\(855\) −3.69785e10 9.10888e10i −0.0691967 0.170451i
\(856\) 0 0
\(857\) 8.17007e11 1.51462 0.757308 0.653058i \(-0.226514\pi\)
0.757308 + 0.653058i \(0.226514\pi\)
\(858\) 0 0
\(859\) 5.49220e11 1.00873 0.504364 0.863491i \(-0.331727\pi\)
0.504364 + 0.863491i \(0.331727\pi\)
\(860\) 0 0
\(861\) −4.01218e11 + 3.67471e11i −0.730075 + 0.668667i
\(862\) 0 0
\(863\) 1.06081e12 1.91247 0.956234 0.292604i \(-0.0945217\pi\)
0.956234 + 0.292604i \(0.0945217\pi\)
\(864\) 0 0
\(865\) 7.50225e11 3.84287e11i 1.34007 0.686422i
\(866\) 0 0
\(867\) 7.75253e10 7.10045e10i 0.137204 0.125664i
\(868\) 0 0
\(869\) 6.27896e9i 0.0110105i
\(870\) 0 0
\(871\) 1.43725e12 2.49723
\(872\) 0 0
\(873\) 6.28052e11 + 5.52520e10i 1.08128 + 0.0951243i
\(874\) 0 0
\(875\) −6.59603e11 1.00127e11i −1.12525 0.170811i
\(876\) 0 0
\(877\) 4.00990e11i 0.677852i 0.940813 + 0.338926i \(0.110064\pi\)
−0.940813 + 0.338926i \(0.889936\pi\)
\(878\) 0 0
\(879\) −7.84889e11 + 7.18871e11i −1.31478 + 1.20419i
\(880\) 0 0
\(881\) 1.61379e10i 0.0267883i 0.999910 + 0.0133941i \(0.00426361\pi\)
−0.999910 + 0.0133941i \(0.995736\pi\)
\(882\) 0 0
\(883\) 2.73511e11i 0.449916i 0.974368 + 0.224958i \(0.0722245\pi\)
−0.974368 + 0.224958i \(0.927776\pi\)
\(884\) 0 0
\(885\) −1.99008e11 7.39745e10i −0.324412 0.120589i
\(886\) 0 0
\(887\) 5.67434e11 0.916687 0.458343 0.888775i \(-0.348443\pi\)
0.458343 + 0.888775i \(0.348443\pi\)
\(888\) 0 0
\(889\) 2.03230e11 0.325373
\(890\) 0 0
\(891\) 1.04449e9 5.89046e9i 0.00165728 0.00934627i
\(892\) 0 0
\(893\) 3.44005e10 0.0540952
\(894\) 0 0
\(895\) −2.75921e11 5.38668e11i −0.430025 0.839517i
\(896\) 0 0
\(897\) −9.53292e11 1.04084e12i −1.47250 1.60773i
\(898\) 0 0
\(899\) 3.81246e11i 0.583670i
\(900\) 0 0
\(901\) 3.37636e11 0.512329
\(902\) 0 0
\(903\) −5.84491e11 + 5.35329e11i −0.879077 + 0.805137i
\(904\) 0 0
\(905\) −3.22297e11 + 1.65090e11i −0.480465 + 0.246108i
\(906\) 0 0
\(907\) 6.34471e11i 0.937525i 0.883324 + 0.468762i \(0.155300\pi\)
−0.883324 + 0.468762i \(0.844700\pi\)
\(908\) 0 0
\(909\) −2.40080e11 2.11207e10i −0.351642 0.0309352i
\(910\) 0 0
\(911\) 2.98891e11i 0.433949i 0.976177 + 0.216975i \(0.0696189\pi\)
−0.976177 + 0.216975i \(0.930381\pi\)
\(912\) 0 0
\(913\) 8.83151e9i 0.0127102i
\(914\) 0 0
\(915\) 3.46325e11 9.31691e11i 0.494083 1.32919i
\(916\) 0 0
\(917\) −7.86221e11 −1.11190
\(918\) 0 0
\(919\) −5.56887e11 −0.780737 −0.390369 0.920659i \(-0.627652\pi\)
−0.390369 + 0.920659i \(0.627652\pi\)
\(920\) 0 0
\(921\) 5.86307e10 + 6.40151e10i 0.0814867 + 0.0889701i
\(922\) 0 0
\(923\) 1.48941e12 2.05214
\(924\) 0 0
\(925\) 1.03194e12 + 7.43011e11i 1.40958 + 1.01491i
\(926\) 0 0
\(927\) −6.16748e11 5.42576e10i −0.835197 0.0734754i
\(928\) 0 0
\(929\) 7.18845e10i 0.0965101i 0.998835 + 0.0482550i \(0.0153660\pi\)
−0.998835 + 0.0482550i \(0.984634\pi\)
\(930\) 0 0
\(931\) 4.08222e10 0.0543372
\(932\) 0 0
\(933\) 6.03145e11 + 6.58536e11i 0.795967 + 0.869066i
\(934\) 0 0
\(935\) 3.60188e9 + 7.03177e9i 0.00471284 + 0.00920064i
\(936\) 0 0
\(937\) 1.88285e11i 0.244262i −0.992514 0.122131i \(-0.961027\pi\)
0.992514 0.122131i \(-0.0389729\pi\)
\(938\) 0 0
\(939\) 1.29843e11 + 1.41767e11i 0.167016 + 0.182354i
\(940\) 0 0
\(941\) 1.83977e11i 0.234642i 0.993094 + 0.117321i \(0.0374306\pi\)
−0.993094 + 0.117321i \(0.962569\pi\)
\(942\) 0 0
\(943\) 1.07130e12i 1.35476i
\(944\) 0 0
\(945\) −3.89594e11 + 8.19798e11i −0.488523 + 1.02797i
\(946\) 0 0
\(947\) 6.05359e10 0.0752685 0.0376343 0.999292i \(-0.488018\pi\)
0.0376343 + 0.999292i \(0.488018\pi\)
\(948\) 0 0
\(949\) 3.63322e11 0.447947
\(950\) 0 0
\(951\) 6.96196e11 6.37638e11i 0.851157 0.779565i
\(952\) 0 0
\(953\) −7.22112e11 −0.875454 −0.437727 0.899108i \(-0.644216\pi\)
−0.437727 + 0.899108i \(0.644216\pi\)
\(954\) 0 0
\(955\) −3.22920e11 6.30421e11i −0.388223 0.757909i
\(956\) 0 0
\(957\) 5.24250e9 4.80154e9i 0.00625015 0.00572444i
\(958\) 0 0
\(959\) 1.54568e12i 1.82745i
\(960\) 0 0
\(961\) −4.88455e11 −0.572705
\(962\) 0 0
\(963\) −5.00071e10 + 5.68433e11i −0.0581469 + 0.660958i
\(964\) 0 0
\(965\) 4.63871e11 + 9.05594e11i 0.534919 + 1.04430i
\(966\) 0 0
\(967\) 3.69045e11i 0.422059i 0.977480 + 0.211030i \(0.0676816\pi\)
−0.977480 + 0.211030i \(0.932318\pi\)
\(968\) 0 0
\(969\) 1.30257e11 1.19301e11i 0.147743 0.135316i
\(970\) 0 0
\(971\) 1.13835e12i 1.28056i 0.768143 + 0.640278i \(0.221181\pi\)
−0.768143 + 0.640278i \(0.778819\pi\)
\(972\) 0 0
\(973\) 1.16142e12i 1.29580i
\(974\) 0 0
\(975\) −1.25627e12 + 1.48286e11i −1.39015 + 0.164090i
\(976\) 0 0
\(977\) −2.96676e11 −0.325615 −0.162807 0.986658i \(-0.552055\pi\)
−0.162807 + 0.986658i \(0.552055\pi\)
\(978\) 0 0
\(979\) −4.56575e9 −0.00497029
\(980\) 0 0
\(981\) 1.37096e11 1.55837e12i 0.148029 1.68266i
\(982\) 0 0
\(983\) −3.62593e11 −0.388334 −0.194167 0.980968i \(-0.562200\pi\)
−0.194167 + 0.980968i \(0.562200\pi\)
\(984\) 0 0
\(985\) −2.95199e11 + 1.51209e11i −0.313596 + 0.160633i
\(986\) 0 0
\(987\) −2.14520e11 2.34220e11i −0.226047 0.246806i
\(988\) 0 0
\(989\) 1.56066e12i 1.63126i
\(990\) 0 0
\(991\) −6.08713e11 −0.631129 −0.315565 0.948904i \(-0.602194\pi\)
−0.315565 + 0.948904i \(0.602194\pi\)
\(992\) 0 0
\(993\) 1.94427e11 1.78073e11i 0.199967 0.183148i
\(994\) 0 0
\(995\) −9.65438e11 + 4.94525e11i −0.984991 + 0.504541i
\(996\) 0 0
\(997\) 3.95370e11i 0.400150i 0.979781 + 0.200075i \(0.0641186\pi\)
−0.979781 + 0.200075i \(0.935881\pi\)
\(998\) 0 0
\(999\) 1.37326e12 1.05217e12i 1.37877 1.05639i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 240.9.c.e.209.11 16
3.2 odd 2 inner 240.9.c.e.209.5 16
4.3 odd 2 30.9.b.a.29.12 yes 16
5.4 even 2 inner 240.9.c.e.209.6 16
12.11 even 2 30.9.b.a.29.6 yes 16
15.14 odd 2 inner 240.9.c.e.209.12 16
20.3 even 4 150.9.d.e.101.2 16
20.7 even 4 150.9.d.e.101.15 16
20.19 odd 2 30.9.b.a.29.5 16
60.23 odd 4 150.9.d.e.101.10 16
60.47 odd 4 150.9.d.e.101.7 16
60.59 even 2 30.9.b.a.29.11 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.9.b.a.29.5 16 20.19 odd 2
30.9.b.a.29.6 yes 16 12.11 even 2
30.9.b.a.29.11 yes 16 60.59 even 2
30.9.b.a.29.12 yes 16 4.3 odd 2
150.9.d.e.101.2 16 20.3 even 4
150.9.d.e.101.7 16 60.47 odd 4
150.9.d.e.101.10 16 60.23 odd 4
150.9.d.e.101.15 16 20.7 even 4
240.9.c.e.209.5 16 3.2 odd 2 inner
240.9.c.e.209.6 16 5.4 even 2 inner
240.9.c.e.209.11 16 1.1 even 1 trivial
240.9.c.e.209.12 16 15.14 odd 2 inner