Properties

Label 240.5.bg.c.193.2
Level $240$
Weight $5$
Character 240.193
Analytic conductor $24.809$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [240,5,Mod(97,240)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("240.97"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(240, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 240.bg (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,-84] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.8087911401\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 60x^{5} + 1973x^{4} - 3300x^{3} + 1800x^{2} + 31560x + 276676 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 193.2
Root \(3.30519 - 3.30519i\) of defining polynomial
Character \(\chi\) \(=\) 240.193
Dual form 240.5.bg.c.97.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.67423 - 3.67423i) q^{3} +(-8.43390 + 23.5344i) q^{5} +(-65.1093 + 65.1093i) q^{7} +27.0000i q^{9} -56.3999 q^{11} +(0.983822 + 0.983822i) q^{13} +(117.459 - 55.4829i) q^{15} +(159.144 - 159.144i) q^{17} -265.552i q^{19} +478.454 q^{21} +(185.430 + 185.430i) q^{23} +(-482.739 - 396.974i) q^{25} +(99.2043 - 99.2043i) q^{27} -544.071i q^{29} +710.805 q^{31} +(207.227 + 207.227i) q^{33} +(-983.184 - 2081.43i) q^{35} +(-639.026 + 639.026i) q^{37} -7.22958i q^{39} -1325.70 q^{41} +(22.3358 + 22.3358i) q^{43} +(-635.430 - 227.715i) q^{45} +(-456.136 + 456.136i) q^{47} -6077.44i q^{49} -1169.47 q^{51} +(-424.212 - 424.212i) q^{53} +(475.672 - 1327.34i) q^{55} +(-975.701 + 975.701i) q^{57} -3460.30i q^{59} +4937.82 q^{61} +(-1757.95 - 1757.95i) q^{63} +(-31.4511 + 14.8562i) q^{65} +(3801.58 - 3801.58i) q^{67} -1362.62i q^{69} -7950.20 q^{71} +(-1940.65 - 1940.65i) q^{73} +(315.118 + 3232.27i) q^{75} +(3672.16 - 3672.16i) q^{77} -4083.83i q^{79} -729.000 q^{81} +(9103.10 + 9103.10i) q^{83} +(2403.16 + 5087.58i) q^{85} +(-1999.04 + 1999.04i) q^{87} +7016.23i q^{89} -128.112 q^{91} +(-2611.66 - 2611.66i) q^{93} +(6249.62 + 2239.64i) q^{95} +(2571.87 - 2571.87i) q^{97} -1522.80i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 84 q^{5} - 20 q^{7} + 288 q^{11} - 340 q^{13} - 144 q^{15} + 900 q^{17} + 792 q^{21} + 1560 q^{23} - 1204 q^{25} + 512 q^{31} + 2700 q^{33} - 6600 q^{35} - 3820 q^{37} - 2712 q^{41} + 1240 q^{43}+ \cdots + 58640 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/240\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(181\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.67423 3.67423i −0.408248 0.408248i
\(4\) 0 0
\(5\) −8.43390 + 23.5344i −0.337356 + 0.941377i
\(6\) 0 0
\(7\) −65.1093 + 65.1093i −1.32876 + 1.32876i −0.422309 + 0.906452i \(0.638780\pi\)
−0.906452 + 0.422309i \(0.861220\pi\)
\(8\) 0 0
\(9\) 27.0000i 0.333333i
\(10\) 0 0
\(11\) −56.3999 −0.466115 −0.233058 0.972463i \(-0.574873\pi\)
−0.233058 + 0.972463i \(0.574873\pi\)
\(12\) 0 0
\(13\) 0.983822 + 0.983822i 0.00582143 + 0.00582143i 0.710012 0.704190i \(-0.248690\pi\)
−0.704190 + 0.710012i \(0.748690\pi\)
\(14\) 0 0
\(15\) 117.459 55.4829i 0.522041 0.246591i
\(16\) 0 0
\(17\) 159.144 159.144i 0.550673 0.550673i −0.375962 0.926635i \(-0.622688\pi\)
0.926635 + 0.375962i \(0.122688\pi\)
\(18\) 0 0
\(19\) 265.552i 0.735602i −0.929905 0.367801i \(-0.880111\pi\)
0.929905 0.367801i \(-0.119889\pi\)
\(20\) 0 0
\(21\) 478.454 1.08493
\(22\) 0 0
\(23\) 185.430 + 185.430i 0.350529 + 0.350529i 0.860306 0.509778i \(-0.170272\pi\)
−0.509778 + 0.860306i \(0.670272\pi\)
\(24\) 0 0
\(25\) −482.739 396.974i −0.772382 0.635159i
\(26\) 0 0
\(27\) 99.2043 99.2043i 0.136083 0.136083i
\(28\) 0 0
\(29\) 544.071i 0.646933i −0.946240 0.323467i \(-0.895152\pi\)
0.946240 0.323467i \(-0.104848\pi\)
\(30\) 0 0
\(31\) 710.805 0.739651 0.369826 0.929101i \(-0.379417\pi\)
0.369826 + 0.929101i \(0.379417\pi\)
\(32\) 0 0
\(33\) 207.227 + 207.227i 0.190291 + 0.190291i
\(34\) 0 0
\(35\) −983.184 2081.43i −0.802599 1.69913i
\(36\) 0 0
\(37\) −639.026 + 639.026i −0.466783 + 0.466783i −0.900871 0.434088i \(-0.857071\pi\)
0.434088 + 0.900871i \(0.357071\pi\)
\(38\) 0 0
\(39\) 7.22958i 0.00475318i
\(40\) 0 0
\(41\) −1325.70 −0.788638 −0.394319 0.918974i \(-0.629019\pi\)
−0.394319 + 0.918974i \(0.629019\pi\)
\(42\) 0 0
\(43\) 22.3358 + 22.3358i 0.0120799 + 0.0120799i 0.713121 0.701041i \(-0.247281\pi\)
−0.701041 + 0.713121i \(0.747281\pi\)
\(44\) 0 0
\(45\) −635.430 227.715i −0.313792 0.112452i
\(46\) 0 0
\(47\) −456.136 + 456.136i −0.206490 + 0.206490i −0.802774 0.596284i \(-0.796643\pi\)
0.596284 + 0.802774i \(0.296643\pi\)
\(48\) 0 0
\(49\) 6077.44i 2.53121i
\(50\) 0 0
\(51\) −1169.47 −0.449622
\(52\) 0 0
\(53\) −424.212 424.212i −0.151019 0.151019i 0.627554 0.778573i \(-0.284056\pi\)
−0.778573 + 0.627554i \(0.784056\pi\)
\(54\) 0 0
\(55\) 475.672 1327.34i 0.157247 0.438790i
\(56\) 0 0
\(57\) −975.701 + 975.701i −0.300308 + 0.300308i
\(58\) 0 0
\(59\) 3460.30i 0.994054i −0.867735 0.497027i \(-0.834425\pi\)
0.867735 0.497027i \(-0.165575\pi\)
\(60\) 0 0
\(61\) 4937.82 1.32701 0.663507 0.748170i \(-0.269067\pi\)
0.663507 + 0.748170i \(0.269067\pi\)
\(62\) 0 0
\(63\) −1757.95 1757.95i −0.442920 0.442920i
\(64\) 0 0
\(65\) −31.4511 + 14.8562i −0.00744406 + 0.00351627i
\(66\) 0 0
\(67\) 3801.58 3801.58i 0.846866 0.846866i −0.142874 0.989741i \(-0.545634\pi\)
0.989741 + 0.142874i \(0.0456345\pi\)
\(68\) 0 0
\(69\) 1362.62i 0.286206i
\(70\) 0 0
\(71\) −7950.20 −1.57711 −0.788554 0.614966i \(-0.789170\pi\)
−0.788554 + 0.614966i \(0.789170\pi\)
\(72\) 0 0
\(73\) −1940.65 1940.65i −0.364168 0.364168i 0.501177 0.865345i \(-0.332901\pi\)
−0.865345 + 0.501177i \(0.832901\pi\)
\(74\) 0 0
\(75\) 315.118 + 3232.27i 0.0560211 + 0.574626i
\(76\) 0 0
\(77\) 3672.16 3672.16i 0.619355 0.619355i
\(78\) 0 0
\(79\) 4083.83i 0.654355i −0.944963 0.327178i \(-0.893902\pi\)
0.944963 0.327178i \(-0.106098\pi\)
\(80\) 0 0
\(81\) −729.000 −0.111111
\(82\) 0 0
\(83\) 9103.10 + 9103.10i 1.32140 + 1.32140i 0.912646 + 0.408750i \(0.134035\pi\)
0.408750 + 0.912646i \(0.365965\pi\)
\(84\) 0 0
\(85\) 2403.16 + 5087.58i 0.332618 + 0.704164i
\(86\) 0 0
\(87\) −1999.04 + 1999.04i −0.264109 + 0.264109i
\(88\) 0 0
\(89\) 7016.23i 0.885775i 0.896577 + 0.442888i \(0.146046\pi\)
−0.896577 + 0.442888i \(0.853954\pi\)
\(90\) 0 0
\(91\) −128.112 −0.0154706
\(92\) 0 0
\(93\) −2611.66 2611.66i −0.301961 0.301961i
\(94\) 0 0
\(95\) 6249.62 + 2239.64i 0.692479 + 0.248160i
\(96\) 0 0
\(97\) 2571.87 2571.87i 0.273342 0.273342i −0.557102 0.830444i \(-0.688087\pi\)
0.830444 + 0.557102i \(0.188087\pi\)
\(98\) 0 0
\(99\) 1522.80i 0.155372i
\(100\) 0 0
\(101\) −7459.58 −0.731260 −0.365630 0.930760i \(-0.619146\pi\)
−0.365630 + 0.930760i \(0.619146\pi\)
\(102\) 0 0
\(103\) −4637.29 4637.29i −0.437109 0.437109i 0.453929 0.891038i \(-0.350022\pi\)
−0.891038 + 0.453929i \(0.850022\pi\)
\(104\) 0 0
\(105\) −4035.23 + 11260.1i −0.366007 + 1.02133i
\(106\) 0 0
\(107\) 8804.34 8804.34i 0.769005 0.769005i −0.208926 0.977931i \(-0.566997\pi\)
0.977931 + 0.208926i \(0.0669969\pi\)
\(108\) 0 0
\(109\) 7981.01i 0.671746i −0.941907 0.335873i \(-0.890969\pi\)
0.941907 0.335873i \(-0.109031\pi\)
\(110\) 0 0
\(111\) 4695.86 0.381126
\(112\) 0 0
\(113\) 1867.37 + 1867.37i 0.146242 + 0.146242i 0.776437 0.630195i \(-0.217025\pi\)
−0.630195 + 0.776437i \(0.717025\pi\)
\(114\) 0 0
\(115\) −5927.88 + 2800.09i −0.448233 + 0.211727i
\(116\) 0 0
\(117\) −26.5632 + 26.5632i −0.00194048 + 0.00194048i
\(118\) 0 0
\(119\) 20723.6i 1.46342i
\(120\) 0 0
\(121\) −11460.0 −0.782737
\(122\) 0 0
\(123\) 4870.93 + 4870.93i 0.321960 + 0.321960i
\(124\) 0 0
\(125\) 13413.9 8012.93i 0.858492 0.512828i
\(126\) 0 0
\(127\) −3139.44 + 3139.44i −0.194646 + 0.194646i −0.797700 0.603054i \(-0.793950\pi\)
0.603054 + 0.797700i \(0.293950\pi\)
\(128\) 0 0
\(129\) 164.134i 0.00986323i
\(130\) 0 0
\(131\) −28716.4 −1.67335 −0.836676 0.547698i \(-0.815504\pi\)
−0.836676 + 0.547698i \(0.815504\pi\)
\(132\) 0 0
\(133\) 17289.9 + 17289.9i 0.977439 + 0.977439i
\(134\) 0 0
\(135\) 1498.04 + 3171.40i 0.0821968 + 0.174014i
\(136\) 0 0
\(137\) −25626.6 + 25626.6i −1.36537 + 1.36537i −0.498453 + 0.866917i \(0.666098\pi\)
−0.866917 + 0.498453i \(0.833902\pi\)
\(138\) 0 0
\(139\) 16504.6i 0.854229i −0.904197 0.427115i \(-0.859530\pi\)
0.904197 0.427115i \(-0.140470\pi\)
\(140\) 0 0
\(141\) 3351.90 0.168598
\(142\) 0 0
\(143\) −55.4875 55.4875i −0.00271346 0.00271346i
\(144\) 0 0
\(145\) 12804.4 + 4588.64i 0.609008 + 0.218247i
\(146\) 0 0
\(147\) −22329.9 + 22329.9i −1.03336 + 1.03336i
\(148\) 0 0
\(149\) 10599.1i 0.477413i 0.971092 + 0.238707i \(0.0767235\pi\)
−0.971092 + 0.238707i \(0.923277\pi\)
\(150\) 0 0
\(151\) 30610.3 1.34250 0.671248 0.741233i \(-0.265758\pi\)
0.671248 + 0.741233i \(0.265758\pi\)
\(152\) 0 0
\(153\) 4296.90 + 4296.90i 0.183558 + 0.183558i
\(154\) 0 0
\(155\) −5994.86 + 16728.4i −0.249526 + 0.696291i
\(156\) 0 0
\(157\) 17506.2 17506.2i 0.710220 0.710220i −0.256361 0.966581i \(-0.582524\pi\)
0.966581 + 0.256361i \(0.0825237\pi\)
\(158\) 0 0
\(159\) 3117.31i 0.123306i
\(160\) 0 0
\(161\) −24146.4 −0.931538
\(162\) 0 0
\(163\) 13776.0 + 13776.0i 0.518500 + 0.518500i 0.917117 0.398618i \(-0.130510\pi\)
−0.398618 + 0.917117i \(0.630510\pi\)
\(164\) 0 0
\(165\) −6624.69 + 3129.23i −0.243331 + 0.114940i
\(166\) 0 0
\(167\) −22076.9 + 22076.9i −0.791598 + 0.791598i −0.981754 0.190156i \(-0.939101\pi\)
0.190156 + 0.981754i \(0.439101\pi\)
\(168\) 0 0
\(169\) 28559.1i 0.999932i
\(170\) 0 0
\(171\) 7169.91 0.245201
\(172\) 0 0
\(173\) 26956.5 + 26956.5i 0.900682 + 0.900682i 0.995495 0.0948128i \(-0.0302252\pi\)
−0.0948128 + 0.995495i \(0.530225\pi\)
\(174\) 0 0
\(175\) 57277.5 5584.06i 1.87028 0.182337i
\(176\) 0 0
\(177\) −12714.0 + 12714.0i −0.405821 + 0.405821i
\(178\) 0 0
\(179\) 43705.2i 1.36404i −0.731333 0.682020i \(-0.761102\pi\)
0.731333 0.682020i \(-0.238898\pi\)
\(180\) 0 0
\(181\) 30384.4 0.927456 0.463728 0.885978i \(-0.346512\pi\)
0.463728 + 0.885978i \(0.346512\pi\)
\(182\) 0 0
\(183\) −18142.7 18142.7i −0.541751 0.541751i
\(184\) 0 0
\(185\) −9649.62 20428.6i −0.281947 0.596891i
\(186\) 0 0
\(187\) −8975.73 + 8975.73i −0.256677 + 0.256677i
\(188\) 0 0
\(189\) 12918.2i 0.361643i
\(190\) 0 0
\(191\) −4369.57 −0.119777 −0.0598883 0.998205i \(-0.519074\pi\)
−0.0598883 + 0.998205i \(0.519074\pi\)
\(192\) 0 0
\(193\) −5475.99 5475.99i −0.147011 0.147011i 0.629771 0.776781i \(-0.283149\pi\)
−0.776781 + 0.629771i \(0.783149\pi\)
\(194\) 0 0
\(195\) 170.144 + 60.9736i 0.00447453 + 0.00160351i
\(196\) 0 0
\(197\) −11188.4 + 11188.4i −0.288295 + 0.288295i −0.836406 0.548111i \(-0.815347\pi\)
0.548111 + 0.836406i \(0.315347\pi\)
\(198\) 0 0
\(199\) 17995.1i 0.454409i −0.973847 0.227205i \(-0.927041\pi\)
0.973847 0.227205i \(-0.0729586\pi\)
\(200\) 0 0
\(201\) −27935.8 −0.691464
\(202\) 0 0
\(203\) 35424.1 + 35424.1i 0.859620 + 0.859620i
\(204\) 0 0
\(205\) 11180.8 31199.6i 0.266052 0.742406i
\(206\) 0 0
\(207\) −5006.60 + 5006.60i −0.116843 + 0.116843i
\(208\) 0 0
\(209\) 14977.1i 0.342875i
\(210\) 0 0
\(211\) 12455.8 0.279774 0.139887 0.990167i \(-0.455326\pi\)
0.139887 + 0.990167i \(0.455326\pi\)
\(212\) 0 0
\(213\) 29210.9 + 29210.9i 0.643852 + 0.643852i
\(214\) 0 0
\(215\) −714.039 + 337.282i −0.0154470 + 0.00729654i
\(216\) 0 0
\(217\) −46280.0 + 46280.0i −0.982820 + 0.982820i
\(218\) 0 0
\(219\) 14260.8i 0.297342i
\(220\) 0 0
\(221\) 313.140 0.00641141
\(222\) 0 0
\(223\) −26399.5 26399.5i −0.530867 0.530867i 0.389963 0.920830i \(-0.372488\pi\)
−0.920830 + 0.389963i \(0.872488\pi\)
\(224\) 0 0
\(225\) 10718.3 13033.9i 0.211720 0.257461i
\(226\) 0 0
\(227\) −32267.3 + 32267.3i −0.626197 + 0.626197i −0.947109 0.320912i \(-0.896011\pi\)
0.320912 + 0.947109i \(0.396011\pi\)
\(228\) 0 0
\(229\) 68117.5i 1.29894i −0.760389 0.649468i \(-0.774992\pi\)
0.760389 0.649468i \(-0.225008\pi\)
\(230\) 0 0
\(231\) −26984.7 −0.505702
\(232\) 0 0
\(233\) −65936.0 65936.0i −1.21454 1.21454i −0.969518 0.245019i \(-0.921206\pi\)
−0.245019 0.969518i \(-0.578794\pi\)
\(234\) 0 0
\(235\) −6887.90 14581.9i −0.124724 0.264045i
\(236\) 0 0
\(237\) −15005.0 + 15005.0i −0.267139 + 0.267139i
\(238\) 0 0
\(239\) 64820.9i 1.13480i −0.823443 0.567400i \(-0.807950\pi\)
0.823443 0.567400i \(-0.192050\pi\)
\(240\) 0 0
\(241\) −59597.9 −1.02612 −0.513058 0.858354i \(-0.671488\pi\)
−0.513058 + 0.858354i \(0.671488\pi\)
\(242\) 0 0
\(243\) 2678.52 + 2678.52i 0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) 143029. + 51256.5i 2.38282 + 0.853919i
\(246\) 0 0
\(247\) 261.256 261.256i 0.00428226 0.00428226i
\(248\) 0 0
\(249\) 66893.9i 1.07892i
\(250\) 0 0
\(251\) 33922.6 0.538445 0.269223 0.963078i \(-0.413233\pi\)
0.269223 + 0.963078i \(0.413233\pi\)
\(252\) 0 0
\(253\) −10458.2 10458.2i −0.163387 0.163387i
\(254\) 0 0
\(255\) 9863.18 27522.8i 0.151683 0.423264i
\(256\) 0 0
\(257\) 26107.3 26107.3i 0.395272 0.395272i −0.481290 0.876562i \(-0.659832\pi\)
0.876562 + 0.481290i \(0.159832\pi\)
\(258\) 0 0
\(259\) 83213.0i 1.24049i
\(260\) 0 0
\(261\) 14689.9 0.215644
\(262\) 0 0
\(263\) −25675.0 25675.0i −0.371192 0.371192i 0.496719 0.867911i \(-0.334538\pi\)
−0.867911 + 0.496719i \(0.834538\pi\)
\(264\) 0 0
\(265\) 13561.4 6405.83i 0.193113 0.0912186i
\(266\) 0 0
\(267\) 25779.3 25779.3i 0.361616 0.361616i
\(268\) 0 0
\(269\) 84488.9i 1.16760i −0.811896 0.583801i \(-0.801565\pi\)
0.811896 0.583801i \(-0.198435\pi\)
\(270\) 0 0
\(271\) −105918. −1.44222 −0.721109 0.692821i \(-0.756367\pi\)
−0.721109 + 0.692821i \(0.756367\pi\)
\(272\) 0 0
\(273\) 470.713 + 470.713i 0.00631584 + 0.00631584i
\(274\) 0 0
\(275\) 27226.4 + 22389.3i 0.360019 + 0.296057i
\(276\) 0 0
\(277\) 71448.5 71448.5i 0.931180 0.931180i −0.0665996 0.997780i \(-0.521215\pi\)
0.997780 + 0.0665996i \(0.0212150\pi\)
\(278\) 0 0
\(279\) 19191.7i 0.246550i
\(280\) 0 0
\(281\) 6316.20 0.0799914 0.0399957 0.999200i \(-0.487266\pi\)
0.0399957 + 0.999200i \(0.487266\pi\)
\(282\) 0 0
\(283\) −51729.2 51729.2i −0.645896 0.645896i 0.306102 0.951999i \(-0.400975\pi\)
−0.951999 + 0.306102i \(0.900975\pi\)
\(284\) 0 0
\(285\) −14733.6 31191.5i −0.181392 0.384014i
\(286\) 0 0
\(287\) 86315.4 86315.4i 1.04791 1.04791i
\(288\) 0 0
\(289\) 32867.1i 0.393519i
\(290\) 0 0
\(291\) −18899.3 −0.223183
\(292\) 0 0
\(293\) −71710.7 71710.7i −0.835312 0.835312i 0.152926 0.988238i \(-0.451130\pi\)
−0.988238 + 0.152926i \(0.951130\pi\)
\(294\) 0 0
\(295\) 81436.3 + 29183.9i 0.935780 + 0.335350i
\(296\) 0 0
\(297\) −5595.12 + 5595.12i −0.0634302 + 0.0634302i
\(298\) 0 0
\(299\) 364.860i 0.00408116i
\(300\) 0 0
\(301\) −2908.54 −0.0321027
\(302\) 0 0
\(303\) 27408.2 + 27408.2i 0.298535 + 0.298535i
\(304\) 0 0
\(305\) −41645.1 + 116209.i −0.447676 + 1.24922i
\(306\) 0 0
\(307\) −22058.5 + 22058.5i −0.234045 + 0.234045i −0.814379 0.580334i \(-0.802922\pi\)
0.580334 + 0.814379i \(0.302922\pi\)
\(308\) 0 0
\(309\) 34076.9i 0.356898i
\(310\) 0 0
\(311\) −100432. −1.03837 −0.519184 0.854663i \(-0.673764\pi\)
−0.519184 + 0.854663i \(0.673764\pi\)
\(312\) 0 0
\(313\) 32532.8 + 32532.8i 0.332072 + 0.332072i 0.853373 0.521301i \(-0.174553\pi\)
−0.521301 + 0.853373i \(0.674553\pi\)
\(314\) 0 0
\(315\) 56198.7 26546.0i 0.566377 0.267533i
\(316\) 0 0
\(317\) −72670.5 + 72670.5i −0.723169 + 0.723169i −0.969249 0.246080i \(-0.920857\pi\)
0.246080 + 0.969249i \(0.420857\pi\)
\(318\) 0 0
\(319\) 30685.6i 0.301545i
\(320\) 0 0
\(321\) −64698.4 −0.627890
\(322\) 0 0
\(323\) −42261.2 42261.2i −0.405076 0.405076i
\(324\) 0 0
\(325\) −84.3769 865.481i −0.000798834 0.00819390i
\(326\) 0 0
\(327\) −29324.1 + 29324.1i −0.274239 + 0.274239i
\(328\) 0 0
\(329\) 59397.4i 0.548751i
\(330\) 0 0
\(331\) −114400. −1.04417 −0.522085 0.852893i \(-0.674846\pi\)
−0.522085 + 0.852893i \(0.674846\pi\)
\(332\) 0 0
\(333\) −17253.7 17253.7i −0.155594 0.155594i
\(334\) 0 0
\(335\) 57405.9 + 121530.i 0.511525 + 1.08292i
\(336\) 0 0
\(337\) −75745.0 + 75745.0i −0.666952 + 0.666952i −0.957009 0.290058i \(-0.906326\pi\)
0.290058 + 0.957009i \(0.406326\pi\)
\(338\) 0 0
\(339\) 13722.3i 0.119406i
\(340\) 0 0
\(341\) −40089.3 −0.344763
\(342\) 0 0
\(343\) 239370. + 239370.i 2.03461 + 2.03461i
\(344\) 0 0
\(345\) 32068.6 + 11492.2i 0.269427 + 0.0965532i
\(346\) 0 0
\(347\) −49964.9 + 49964.9i −0.414960 + 0.414960i −0.883462 0.468502i \(-0.844794\pi\)
0.468502 + 0.883462i \(0.344794\pi\)
\(348\) 0 0
\(349\) 74192.9i 0.609132i 0.952491 + 0.304566i \(0.0985115\pi\)
−0.952491 + 0.304566i \(0.901489\pi\)
\(350\) 0 0
\(351\) 195.199 0.00158439
\(352\) 0 0
\(353\) −15476.1 15476.1i −0.124198 0.124198i 0.642276 0.766473i \(-0.277990\pi\)
−0.766473 + 0.642276i \(0.777990\pi\)
\(354\) 0 0
\(355\) 67051.2 187103.i 0.532047 1.48465i
\(356\) 0 0
\(357\) 76143.2 76143.2i 0.597441 0.597441i
\(358\) 0 0
\(359\) 46469.2i 0.360559i −0.983615 0.180279i \(-0.942300\pi\)
0.983615 0.180279i \(-0.0577002\pi\)
\(360\) 0 0
\(361\) 59803.0 0.458890
\(362\) 0 0
\(363\) 42106.9 + 42106.9i 0.319551 + 0.319551i
\(364\) 0 0
\(365\) 62039.4 29304.9i 0.465674 0.219965i
\(366\) 0 0
\(367\) −57731.0 + 57731.0i −0.428624 + 0.428624i −0.888160 0.459535i \(-0.848016\pi\)
0.459535 + 0.888160i \(0.348016\pi\)
\(368\) 0 0
\(369\) 35793.9i 0.262879i
\(370\) 0 0
\(371\) 55240.3 0.401336
\(372\) 0 0
\(373\) 166181. + 166181.i 1.19444 + 1.19444i 0.975807 + 0.218634i \(0.0701600\pi\)
0.218634 + 0.975807i \(0.429840\pi\)
\(374\) 0 0
\(375\) −78727.3 19844.5i −0.559839 0.141117i
\(376\) 0 0
\(377\) 535.269 535.269i 0.00376608 0.00376608i
\(378\) 0 0
\(379\) 41316.4i 0.287636i 0.989604 + 0.143818i \(0.0459380\pi\)
−0.989604 + 0.143818i \(0.954062\pi\)
\(380\) 0 0
\(381\) 23070.1 0.158928
\(382\) 0 0
\(383\) −72155.3 72155.3i −0.491893 0.491893i 0.417009 0.908902i \(-0.363078\pi\)
−0.908902 + 0.417009i \(0.863078\pi\)
\(384\) 0 0
\(385\) 55451.5 + 117393.i 0.374104 + 0.791990i
\(386\) 0 0
\(387\) −603.067 + 603.067i −0.00402665 + 0.00402665i
\(388\) 0 0
\(389\) 192183.i 1.27004i −0.772497 0.635018i \(-0.780993\pi\)
0.772497 0.635018i \(-0.219007\pi\)
\(390\) 0 0
\(391\) 59020.2 0.386053
\(392\) 0 0
\(393\) 105511. + 105511.i 0.683143 + 0.683143i
\(394\) 0 0
\(395\) 96110.7 + 34442.6i 0.615995 + 0.220751i
\(396\) 0 0
\(397\) −177091. + 177091.i −1.12361 + 1.12361i −0.132416 + 0.991194i \(0.542274\pi\)
−0.991194 + 0.132416i \(0.957726\pi\)
\(398\) 0 0
\(399\) 127054.i 0.798076i
\(400\) 0 0
\(401\) 208300. 1.29539 0.647694 0.761900i \(-0.275733\pi\)
0.647694 + 0.761900i \(0.275733\pi\)
\(402\) 0 0
\(403\) 699.305 + 699.305i 0.00430583 + 0.00430583i
\(404\) 0 0
\(405\) 6148.32 17156.6i 0.0374840 0.104597i
\(406\) 0 0
\(407\) 36041.0 36041.0i 0.217574 0.217574i
\(408\) 0 0
\(409\) 265733.i 1.58854i −0.607563 0.794271i \(-0.707853\pi\)
0.607563 0.794271i \(-0.292147\pi\)
\(410\) 0 0
\(411\) 188316. 1.11482
\(412\) 0 0
\(413\) 225298. + 225298.i 1.32086 + 1.32086i
\(414\) 0 0
\(415\) −291011. + 137462.i −1.68971 + 0.798151i
\(416\) 0 0
\(417\) −60641.6 + 60641.6i −0.348738 + 0.348738i
\(418\) 0 0
\(419\) 125608.i 0.715467i 0.933824 + 0.357734i \(0.116450\pi\)
−0.933824 + 0.357734i \(0.883550\pi\)
\(420\) 0 0
\(421\) −278634. −1.57206 −0.786031 0.618187i \(-0.787868\pi\)
−0.786031 + 0.618187i \(0.787868\pi\)
\(422\) 0 0
\(423\) −12315.7 12315.7i −0.0688300 0.0688300i
\(424\) 0 0
\(425\) −140001. + 13648.9i −0.775094 + 0.0755650i
\(426\) 0 0
\(427\) −321498. + 321498.i −1.76328 + 1.76328i
\(428\) 0 0
\(429\) 407.748i 0.00221553i
\(430\) 0 0
\(431\) −100603. −0.541575 −0.270787 0.962639i \(-0.587284\pi\)
−0.270787 + 0.962639i \(0.587284\pi\)
\(432\) 0 0
\(433\) −116014. 116014.i −0.618777 0.618777i 0.326440 0.945218i \(-0.394151\pi\)
−0.945218 + 0.326440i \(0.894151\pi\)
\(434\) 0 0
\(435\) −30186.6 63906.1i −0.159528 0.337726i
\(436\) 0 0
\(437\) 49241.3 49241.3i 0.257850 0.257850i
\(438\) 0 0
\(439\) 163656.i 0.849184i 0.905385 + 0.424592i \(0.139582\pi\)
−0.905385 + 0.424592i \(0.860418\pi\)
\(440\) 0 0
\(441\) 164091. 0.843737
\(442\) 0 0
\(443\) 117313. + 117313.i 0.597775 + 0.597775i 0.939720 0.341945i \(-0.111086\pi\)
−0.341945 + 0.939720i \(0.611086\pi\)
\(444\) 0 0
\(445\) −165123. 59174.2i −0.833849 0.298822i
\(446\) 0 0
\(447\) 38943.4 38943.4i 0.194903 0.194903i
\(448\) 0 0
\(449\) 342550.i 1.69915i 0.527468 + 0.849575i \(0.323141\pi\)
−0.527468 + 0.849575i \(0.676859\pi\)
\(450\) 0 0
\(451\) 74769.4 0.367596
\(452\) 0 0
\(453\) −112469. 112469.i −0.548072 0.548072i
\(454\) 0 0
\(455\) 1080.48 3015.04i 0.00521909 0.0145636i
\(456\) 0 0
\(457\) −162804. + 162804.i −0.779530 + 0.779530i −0.979751 0.200221i \(-0.935834\pi\)
0.200221 + 0.979751i \(0.435834\pi\)
\(458\) 0 0
\(459\) 31575.6i 0.149874i
\(460\) 0 0
\(461\) −283688. −1.33487 −0.667436 0.744667i \(-0.732608\pi\)
−0.667436 + 0.744667i \(0.732608\pi\)
\(462\) 0 0
\(463\) 34085.9 + 34085.9i 0.159006 + 0.159006i 0.782126 0.623120i \(-0.214135\pi\)
−0.623120 + 0.782126i \(0.714135\pi\)
\(464\) 0 0
\(465\) 83490.5 39437.5i 0.386128 0.182391i
\(466\) 0 0
\(467\) 124988. 124988.i 0.573107 0.573107i −0.359889 0.932995i \(-0.617185\pi\)
0.932995 + 0.359889i \(0.117185\pi\)
\(468\) 0 0
\(469\) 495037.i 2.25057i
\(470\) 0 0
\(471\) −128644. −0.579892
\(472\) 0 0
\(473\) −1259.74 1259.74i −0.00563064 0.00563064i
\(474\) 0 0
\(475\) −105417. + 128192.i −0.467224 + 0.568165i
\(476\) 0 0
\(477\) 11453.7 11453.7i 0.0503396 0.0503396i
\(478\) 0 0
\(479\) 248368.i 1.08249i −0.840864 0.541247i \(-0.817953\pi\)
0.840864 0.541247i \(-0.182047\pi\)
\(480\) 0 0
\(481\) −1257.37 −0.00543469
\(482\) 0 0
\(483\) 88719.5 + 88719.5i 0.380299 + 0.380299i
\(484\) 0 0
\(485\) 38836.6 + 82218.5i 0.165104 + 0.349531i
\(486\) 0 0
\(487\) 159374. 159374.i 0.671983 0.671983i −0.286190 0.958173i \(-0.592389\pi\)
0.958173 + 0.286190i \(0.0923888\pi\)
\(488\) 0 0
\(489\) 101233.i 0.423353i
\(490\) 0 0
\(491\) 16577.9 0.0687647 0.0343823 0.999409i \(-0.489054\pi\)
0.0343823 + 0.999409i \(0.489054\pi\)
\(492\) 0 0
\(493\) −86585.9 86585.9i −0.356249 0.356249i
\(494\) 0 0
\(495\) 35838.2 + 12843.1i 0.146263 + 0.0524156i
\(496\) 0 0
\(497\) 517632. 517632.i 2.09560 2.09560i
\(498\) 0 0
\(499\) 202437.i 0.812998i −0.913651 0.406499i \(-0.866750\pi\)
0.913651 0.406499i \(-0.133250\pi\)
\(500\) 0 0
\(501\) 162231. 0.646337
\(502\) 0 0
\(503\) 33478.6 + 33478.6i 0.132322 + 0.132322i 0.770166 0.637844i \(-0.220173\pi\)
−0.637844 + 0.770166i \(0.720173\pi\)
\(504\) 0 0
\(505\) 62913.4 175557.i 0.246695 0.688391i
\(506\) 0 0
\(507\) −104933. + 104933.i −0.408221 + 0.408221i
\(508\) 0 0
\(509\) 57834.5i 0.223229i −0.993752 0.111615i \(-0.964398\pi\)
0.993752 0.111615i \(-0.0356022\pi\)
\(510\) 0 0
\(511\) 252709. 0.967784
\(512\) 0 0
\(513\) −26343.9 26343.9i −0.100103 0.100103i
\(514\) 0 0
\(515\) 148246. 70025.4i 0.558945 0.264023i
\(516\) 0 0
\(517\) 25726.0 25726.0i 0.0962481 0.0962481i
\(518\) 0 0
\(519\) 198089.i 0.735404i
\(520\) 0 0
\(521\) −56237.4 −0.207181 −0.103591 0.994620i \(-0.533033\pi\)
−0.103591 + 0.994620i \(0.533033\pi\)
\(522\) 0 0
\(523\) −210047. 210047.i −0.767914 0.767914i 0.209825 0.977739i \(-0.432711\pi\)
−0.977739 + 0.209825i \(0.932711\pi\)
\(524\) 0 0
\(525\) −230968. 189934.i −0.837979 0.689102i
\(526\) 0 0
\(527\) 113121. 113121.i 0.407306 0.407306i
\(528\) 0 0
\(529\) 211073.i 0.754259i
\(530\) 0 0
\(531\) 93428.2 0.331351
\(532\) 0 0
\(533\) −1304.25 1304.25i −0.00459100 0.00459100i
\(534\) 0 0
\(535\) 132950. + 281460.i 0.464495 + 0.983352i
\(536\) 0 0
\(537\) −160583. + 160583.i −0.556867 + 0.556867i
\(538\) 0 0
\(539\) 342767.i 1.17984i
\(540\) 0 0
\(541\) 263561. 0.900505 0.450252 0.892901i \(-0.351334\pi\)
0.450252 + 0.892901i \(0.351334\pi\)
\(542\) 0 0
\(543\) −111639. 111639.i −0.378632 0.378632i
\(544\) 0 0
\(545\) 187829. + 67311.1i 0.632366 + 0.226618i
\(546\) 0 0
\(547\) 155327. 155327.i 0.519125 0.519125i −0.398182 0.917306i \(-0.630359\pi\)
0.917306 + 0.398182i \(0.130359\pi\)
\(548\) 0 0
\(549\) 133321.i 0.442338i
\(550\) 0 0
\(551\) −144479. −0.475885
\(552\) 0 0
\(553\) 265895. + 265895.i 0.869482 + 0.869482i
\(554\) 0 0
\(555\) −39604.4 + 110514.i −0.128575 + 0.358784i
\(556\) 0 0
\(557\) 144074. 144074.i 0.464381 0.464381i −0.435707 0.900088i \(-0.643502\pi\)
0.900088 + 0.435707i \(0.143502\pi\)
\(558\) 0 0
\(559\) 43.9489i 0.000140645i
\(560\) 0 0
\(561\) 65957.9 0.209576
\(562\) 0 0
\(563\) −348774. 348774.i −1.10034 1.10034i −0.994369 0.105970i \(-0.966205\pi\)
−0.105970 0.994369i \(-0.533795\pi\)
\(564\) 0 0
\(565\) −59696.6 + 28198.2i −0.187005 + 0.0883334i
\(566\) 0 0
\(567\) 47464.7 47464.7i 0.147640 0.147640i
\(568\) 0 0
\(569\) 183209.i 0.565878i 0.959138 + 0.282939i \(0.0913095\pi\)
−0.959138 + 0.282939i \(0.908691\pi\)
\(570\) 0 0
\(571\) −363497. −1.11488 −0.557440 0.830217i \(-0.688216\pi\)
−0.557440 + 0.830217i \(0.688216\pi\)
\(572\) 0 0
\(573\) 16054.8 + 16054.8i 0.0488986 + 0.0488986i
\(574\) 0 0
\(575\) −15903.3 163125.i −0.0481006 0.493383i
\(576\) 0 0
\(577\) 168516. 168516.i 0.506161 0.506161i −0.407184 0.913346i \(-0.633489\pi\)
0.913346 + 0.407184i \(0.133489\pi\)
\(578\) 0 0
\(579\) 40240.2i 0.120034i
\(580\) 0 0
\(581\) −1.18539e6 −3.51164
\(582\) 0 0
\(583\) 23925.5 + 23925.5i 0.0703922 + 0.0703922i
\(584\) 0 0
\(585\) −401.118 849.181i −0.00117209 0.00248135i
\(586\) 0 0
\(587\) 129891. 129891.i 0.376966 0.376966i −0.493040 0.870007i \(-0.664114\pi\)
0.870007 + 0.493040i \(0.164114\pi\)
\(588\) 0 0
\(589\) 188756.i 0.544089i
\(590\) 0 0
\(591\) 82217.9 0.235392
\(592\) 0 0
\(593\) −299982. 299982.i −0.853072 0.853072i 0.137438 0.990510i \(-0.456113\pi\)
−0.990510 + 0.137438i \(0.956113\pi\)
\(594\) 0 0
\(595\) −487717. 174780.i −1.37763 0.493695i
\(596\) 0 0
\(597\) −66118.1 + 66118.1i −0.185512 + 0.185512i
\(598\) 0 0
\(599\) 642365.i 1.79031i 0.445754 + 0.895155i \(0.352935\pi\)
−0.445754 + 0.895155i \(0.647065\pi\)
\(600\) 0 0
\(601\) 624794. 1.72977 0.864884 0.501971i \(-0.167392\pi\)
0.864884 + 0.501971i \(0.167392\pi\)
\(602\) 0 0
\(603\) 102643. + 102643.i 0.282289 + 0.282289i
\(604\) 0 0
\(605\) 96652.9 269706.i 0.264061 0.736850i
\(606\) 0 0
\(607\) 133169. 133169.i 0.361431 0.361431i −0.502909 0.864340i \(-0.667737\pi\)
0.864340 + 0.502909i \(0.167737\pi\)
\(608\) 0 0
\(609\) 260313.i 0.701877i
\(610\) 0 0
\(611\) −897.513 −0.00240413
\(612\) 0 0
\(613\) −394586. 394586.i −1.05008 1.05008i −0.998678 0.0513978i \(-0.983632\pi\)
−0.0513978 0.998678i \(-0.516368\pi\)
\(614\) 0 0
\(615\) −155716. + 73553.7i −0.411701 + 0.194471i
\(616\) 0 0
\(617\) 246284. 246284.i 0.646942 0.646942i −0.305311 0.952253i \(-0.598760\pi\)
0.952253 + 0.305311i \(0.0987603\pi\)
\(618\) 0 0
\(619\) 135789.i 0.354391i −0.984176 0.177195i \(-0.943298\pi\)
0.984176 0.177195i \(-0.0567025\pi\)
\(620\) 0 0
\(621\) 36790.9 0.0954018
\(622\) 0 0
\(623\) −456821. 456821.i −1.17698 1.17698i
\(624\) 0 0
\(625\) 75448.0 + 383269.i 0.193147 + 0.981170i
\(626\) 0 0
\(627\) 55029.5 55029.5i 0.139978 0.139978i
\(628\) 0 0
\(629\) 203395.i 0.514089i
\(630\) 0 0
\(631\) 566102. 1.42179 0.710896 0.703297i \(-0.248290\pi\)
0.710896 + 0.703297i \(0.248290\pi\)
\(632\) 0 0
\(633\) −45765.6 45765.6i −0.114217 0.114217i
\(634\) 0 0
\(635\) −47407.2 100363.i −0.117570 0.248900i
\(636\) 0 0
\(637\) 5979.11 5979.11i 0.0147353 0.0147353i
\(638\) 0 0
\(639\) 214655.i 0.525703i
\(640\) 0 0
\(641\) 398483. 0.969826 0.484913 0.874562i \(-0.338851\pi\)
0.484913 + 0.874562i \(0.338851\pi\)
\(642\) 0 0
\(643\) −270770. 270770.i −0.654905 0.654905i 0.299265 0.954170i \(-0.403259\pi\)
−0.954170 + 0.299265i \(0.903259\pi\)
\(644\) 0 0
\(645\) 3862.80 + 1384.29i 0.00928502 + 0.00332742i
\(646\) 0 0
\(647\) −22129.0 + 22129.0i −0.0528632 + 0.0528632i −0.733044 0.680181i \(-0.761901\pi\)
0.680181 + 0.733044i \(0.261901\pi\)
\(648\) 0 0
\(649\) 195161.i 0.463344i
\(650\) 0 0
\(651\) 340087. 0.802469
\(652\) 0 0
\(653\) −168610. 168610.i −0.395418 0.395418i 0.481195 0.876613i \(-0.340203\pi\)
−0.876613 + 0.481195i \(0.840203\pi\)
\(654\) 0 0
\(655\) 242191. 675824.i 0.564516 1.57526i
\(656\) 0 0
\(657\) 52397.6 52397.6i 0.121389 0.121389i
\(658\) 0 0
\(659\) 106032.i 0.244155i −0.992521 0.122078i \(-0.961044\pi\)
0.992521 0.122078i \(-0.0389557\pi\)
\(660\) 0 0
\(661\) −360211. −0.824432 −0.412216 0.911086i \(-0.635245\pi\)
−0.412216 + 0.911086i \(0.635245\pi\)
\(662\) 0 0
\(663\) −1150.55 1150.55i −0.00261745 0.00261745i
\(664\) 0 0
\(665\) −552730. + 261087.i −1.24988 + 0.590394i
\(666\) 0 0
\(667\) 100887. 100887.i 0.226769 0.226769i
\(668\) 0 0
\(669\) 193996.i 0.433451i
\(670\) 0 0
\(671\) −278492. −0.618541
\(672\) 0 0
\(673\) −174418. 174418.i −0.385090 0.385090i 0.487842 0.872932i \(-0.337784\pi\)
−0.872932 + 0.487842i \(0.837784\pi\)
\(674\) 0 0
\(675\) −87271.3 + 8508.20i −0.191542 + 0.0186737i
\(676\) 0 0
\(677\) 118882. 118882.i 0.259382 0.259382i −0.565421 0.824803i \(-0.691286\pi\)
0.824803 + 0.565421i \(0.191286\pi\)
\(678\) 0 0
\(679\) 334906.i 0.726412i
\(680\) 0 0
\(681\) 237115. 0.511288
\(682\) 0 0
\(683\) 464368. + 464368.i 0.995453 + 0.995453i 0.999990 0.00453640i \(-0.00144399\pi\)
−0.00453640 + 0.999990i \(0.501444\pi\)
\(684\) 0 0
\(685\) −386975. 819240.i −0.824712 1.74594i
\(686\) 0 0
\(687\) −250280. + 250280.i −0.530288 + 0.530288i
\(688\) 0 0
\(689\) 834.698i 0.00175829i
\(690\) 0 0
\(691\) −112733. −0.236099 −0.118050 0.993008i \(-0.537664\pi\)
−0.118050 + 0.993008i \(0.537664\pi\)
\(692\) 0 0
\(693\) 99148.3 + 99148.3i 0.206452 + 0.206452i
\(694\) 0 0
\(695\) 388425. + 139198.i 0.804152 + 0.288179i
\(696\) 0 0
\(697\) −210978. + 210978.i −0.434282 + 0.434282i
\(698\) 0 0
\(699\) 484529.i 0.991665i
\(700\) 0 0
\(701\) 540863. 1.10065 0.550327 0.834949i \(-0.314503\pi\)
0.550327 + 0.834949i \(0.314503\pi\)
\(702\) 0 0
\(703\) 169695. + 169695.i 0.343366 + 0.343366i
\(704\) 0 0
\(705\) −28269.6 + 78885.1i −0.0568777 + 0.158715i
\(706\) 0 0
\(707\) 485688. 485688.i 0.971669 0.971669i
\(708\) 0 0
\(709\) 209535.i 0.416835i 0.978040 + 0.208418i \(0.0668313\pi\)
−0.978040 + 0.208418i \(0.933169\pi\)
\(710\) 0 0
\(711\) 110263. 0.218118
\(712\) 0 0
\(713\) 131804. + 131804.i 0.259269 + 0.259269i
\(714\) 0 0
\(715\) 1773.84 837.890i 0.00346979 0.00163898i
\(716\) 0 0
\(717\) −238167. + 238167.i −0.463280 + 0.463280i
\(718\) 0 0
\(719\) 579641.i 1.12125i 0.828071 + 0.560623i \(0.189438\pi\)
−0.828071 + 0.560623i \(0.810562\pi\)
\(720\) 0 0
\(721\) 603861. 1.16163
\(722\) 0 0
\(723\) 218977. + 218977.i 0.418910 + 0.418910i
\(724\) 0 0
\(725\) −215982. + 262644.i −0.410905 + 0.499680i
\(726\) 0 0
\(727\) −666638. + 666638.i −1.26131 + 1.26131i −0.310848 + 0.950460i \(0.600613\pi\)
−0.950460 + 0.310848i \(0.899387\pi\)
\(728\) 0 0
\(729\) 19683.0i 0.0370370i
\(730\) 0 0
\(731\) 7109.24 0.0133042
\(732\) 0 0
\(733\) 184382. + 184382.i 0.343171 + 0.343171i 0.857558 0.514387i \(-0.171981\pi\)
−0.514387 + 0.857558i \(0.671981\pi\)
\(734\) 0 0
\(735\) −337194. 713850.i −0.624172 1.32139i
\(736\) 0 0
\(737\) −214409. + 214409.i −0.394737 + 0.394737i
\(738\) 0 0
\(739\) 175164.i 0.320742i −0.987057 0.160371i \(-0.948731\pi\)
0.987057 0.160371i \(-0.0512691\pi\)
\(740\) 0 0
\(741\) −1919.83 −0.00349645
\(742\) 0 0
\(743\) −540487. 540487.i −0.979057 0.979057i 0.0207283 0.999785i \(-0.493402\pi\)
−0.999785 + 0.0207283i \(0.993402\pi\)
\(744\) 0 0
\(745\) −249443. 89391.4i −0.449426 0.161058i
\(746\) 0 0
\(747\) −245784. + 245784.i −0.440465 + 0.440465i
\(748\) 0 0
\(749\) 1.14649e6i 2.04365i
\(750\) 0 0
\(751\) 588360. 1.04319 0.521595 0.853193i \(-0.325337\pi\)
0.521595 + 0.853193i \(0.325337\pi\)
\(752\) 0 0
\(753\) −124640. 124640.i −0.219819 0.219819i
\(754\) 0 0
\(755\) −258164. + 720395.i −0.452899 + 1.26380i
\(756\) 0 0
\(757\) 497479. 497479.i 0.868126 0.868126i −0.124139 0.992265i \(-0.539617\pi\)
0.992265 + 0.124139i \(0.0396168\pi\)
\(758\) 0 0
\(759\) 76851.9i 0.133405i
\(760\) 0 0
\(761\) 968464. 1.67230 0.836150 0.548501i \(-0.184801\pi\)
0.836150 + 0.548501i \(0.184801\pi\)
\(762\) 0 0
\(763\) 519638. + 519638.i 0.892589 + 0.892589i
\(764\) 0 0
\(765\) −137365. + 64885.4i −0.234721 + 0.110873i
\(766\) 0 0
\(767\) 3404.32 3404.32i 0.00578682 0.00578682i
\(768\) 0 0
\(769\) 63796.8i 0.107881i −0.998544 0.0539406i \(-0.982822\pi\)
0.998544 0.0539406i \(-0.0171782\pi\)
\(770\) 0 0
\(771\) −191849. −0.322738
\(772\) 0 0
\(773\) 142221. + 142221.i 0.238015 + 0.238015i 0.816028 0.578013i \(-0.196172\pi\)
−0.578013 + 0.816028i \(0.696172\pi\)
\(774\) 0 0
\(775\) −343133. 282171.i −0.571293 0.469796i
\(776\) 0 0
\(777\) −305744. + 305744.i −0.506426 + 0.506426i
\(778\) 0 0
\(779\) 352043.i 0.580124i
\(780\) 0 0
\(781\) 448391. 0.735114
\(782\) 0 0
\(783\) −53974.2 53974.2i −0.0880365 0.0880365i
\(784\) 0 0
\(785\) 264353. + 559644.i 0.428988 + 0.908181i
\(786\) 0 0
\(787\) 171318. 171318.i 0.276601 0.276601i −0.555150 0.831751i \(-0.687339\pi\)
0.831751 + 0.555150i \(0.187339\pi\)
\(788\) 0 0
\(789\) 188672.i 0.303077i
\(790\) 0 0
\(791\) −243166. −0.388642
\(792\) 0 0
\(793\) 4857.93 + 4857.93i 0.00772512 + 0.00772512i
\(794\) 0 0
\(795\) −73364.1 26291.1i −0.116078 0.0415982i
\(796\) 0 0
\(797\) −396832. + 396832.i −0.624727 + 0.624727i −0.946736 0.322010i \(-0.895642\pi\)
0.322010 + 0.946736i \(0.395642\pi\)
\(798\) 0 0
\(799\) 145183.i 0.227417i
\(800\) 0 0
\(801\) −189438. −0.295258
\(802\) 0 0
\(803\) 109453. + 109453.i 0.169744 + 0.169744i
\(804\) 0 0
\(805\) 203648. 568271.i 0.314260 0.876928i
\(806\) 0 0
\(807\) −310432. + 310432.i −0.476672 + 0.476672i
\(808\) 0 0
\(809\) 571851.i 0.873748i −0.899523 0.436874i \(-0.856086\pi\)
0.899523 0.436874i \(-0.143914\pi\)
\(810\) 0 0
\(811\) 851039. 1.29392 0.646960 0.762524i \(-0.276040\pi\)
0.646960 + 0.762524i \(0.276040\pi\)
\(812\) 0 0
\(813\) 389167. + 389167.i 0.588783 + 0.588783i
\(814\) 0 0
\(815\) −440396. + 208025.i −0.663023 + 0.313185i
\(816\) 0 0
\(817\) 5931.33 5931.33i 0.00888603 0.00888603i
\(818\) 0 0
\(819\) 3459.02i 0.00515686i
\(820\) 0 0
\(821\) −422213. −0.626391 −0.313195 0.949689i \(-0.601399\pi\)
−0.313195 + 0.949689i \(0.601399\pi\)
\(822\) 0 0
\(823\) 742417. + 742417.i 1.09609 + 1.09609i 0.994863 + 0.101231i \(0.0322783\pi\)
0.101231 + 0.994863i \(0.467722\pi\)
\(824\) 0 0
\(825\) −17772.7 182300.i −0.0261123 0.267842i
\(826\) 0 0
\(827\) 422050. 422050.i 0.617097 0.617097i −0.327689 0.944786i \(-0.606270\pi\)
0.944786 + 0.327689i \(0.106270\pi\)
\(828\) 0 0
\(829\) 310239.i 0.451427i 0.974194 + 0.225713i \(0.0724712\pi\)
−0.974194 + 0.225713i \(0.927529\pi\)
\(830\) 0 0
\(831\) −525037. −0.760305
\(832\) 0 0
\(833\) −967190. 967190.i −1.39387 1.39387i
\(834\) 0 0
\(835\) −333372. 705761.i −0.478142 1.01224i
\(836\) 0 0
\(837\) 70514.9 70514.9i 0.100654 0.100654i
\(838\) 0 0
\(839\) 1.20455e6i 1.71120i 0.517636 + 0.855601i \(0.326812\pi\)
−0.517636 + 0.855601i \(0.673188\pi\)
\(840\) 0 0
\(841\) 411268. 0.581477
\(842\) 0 0
\(843\) −23207.2 23207.2i −0.0326563 0.0326563i
\(844\) 0 0
\(845\) 672121. + 240864.i 0.941313 + 0.337333i
\(846\) 0 0
\(847\) 746155. 746155.i 1.04007 1.04007i
\(848\) 0 0
\(849\) 380130.i 0.527372i
\(850\) 0 0
\(851\) −236989. −0.327242
\(852\) 0 0
\(853\) 460012. + 460012.i 0.632224 + 0.632224i 0.948625 0.316402i \(-0.102475\pi\)
−0.316402 + 0.948625i \(0.602475\pi\)
\(854\) 0 0
\(855\) −60470.3 + 168740.i −0.0827199 + 0.230826i
\(856\) 0 0
\(857\) −398341. + 398341.i −0.542367 + 0.542367i −0.924222 0.381855i \(-0.875285\pi\)
0.381855 + 0.924222i \(0.375285\pi\)
\(858\) 0 0
\(859\) 323065.i 0.437828i −0.975744 0.218914i \(-0.929749\pi\)
0.975744 0.218914i \(-0.0702514\pi\)
\(860\) 0 0
\(861\) −634286. −0.855616
\(862\) 0 0
\(863\) −414986. 414986.i −0.557200 0.557200i 0.371309 0.928509i \(-0.378909\pi\)
−0.928509 + 0.371309i \(0.878909\pi\)
\(864\) 0 0
\(865\) −861755. + 407058.i −1.15173 + 0.544031i
\(866\) 0 0
\(867\) 120761. 120761.i 0.160653 0.160653i
\(868\) 0 0
\(869\) 230328.i 0.305005i
\(870\) 0 0
\(871\) 7480.16 0.00985995
\(872\) 0 0
\(873\) 69440.6 + 69440.6i 0.0911139 + 0.0911139i
\(874\) 0 0
\(875\) −351655. + 1.39509e6i −0.459304 + 1.82216i
\(876\) 0 0
\(877\) −257142. + 257142.i −0.334328 + 0.334328i −0.854228 0.519899i \(-0.825969\pi\)
0.519899 + 0.854228i \(0.325969\pi\)
\(878\) 0 0
\(879\) 526964.i 0.682029i
\(880\) 0 0
\(881\) −831152. −1.07085 −0.535425 0.844583i \(-0.679848\pi\)
−0.535425 + 0.844583i \(0.679848\pi\)
\(882\) 0 0
\(883\) −908952. 908952.i −1.16579 1.16579i −0.983187 0.182601i \(-0.941548\pi\)
−0.182601 0.983187i \(-0.558452\pi\)
\(884\) 0 0
\(885\) −191988. 406444.i −0.245124 0.518937i
\(886\) 0 0
\(887\) 93115.5 93115.5i 0.118352 0.118352i −0.645450 0.763802i \(-0.723330\pi\)
0.763802 + 0.645450i \(0.223330\pi\)
\(888\) 0 0
\(889\) 408814.i 0.517276i
\(890\) 0 0
\(891\) 41115.5 0.0517906
\(892\) 0 0
\(893\) 121128. + 121128.i 0.151894 + 0.151894i
\(894\) 0 0
\(895\) 1.02858e6 + 368606.i 1.28408 + 0.460167i
\(896\) 0 0
\(897\) 1340.58 1340.58i 0.00166613 0.00166613i
\(898\) 0 0
\(899\) 386728.i 0.478505i
\(900\) 0 0
\(901\) −135022. −0.166324
\(902\) 0 0
\(903\) 10686.6 + 10686.6i 0.0131059 + 0.0131059i
\(904\) 0 0
\(905\) −256259. + 715079.i −0.312883 + 0.873086i
\(906\) 0 0
\(907\) 62370.3 62370.3i 0.0758164 0.0758164i −0.668182 0.743998i \(-0.732927\pi\)
0.743998 + 0.668182i \(0.232927\pi\)
\(908\) 0 0
\(909\) 201409.i 0.243753i
\(910\) 0 0
\(911\) 1.18436e6 1.42708 0.713540 0.700615i \(-0.247091\pi\)
0.713540 + 0.700615i \(0.247091\pi\)
\(912\) 0 0
\(913\) −513414. 513414.i −0.615923 0.615923i
\(914\) 0 0
\(915\) 579992. 273964.i 0.692755 0.327229i
\(916\) 0 0
\(917\) 1.86970e6 1.86970e6i 2.22349 2.22349i
\(918\) 0 0
\(919\) 773358.i 0.915692i 0.889031 + 0.457846i \(0.151379\pi\)
−0.889031 + 0.457846i \(0.848621\pi\)
\(920\) 0 0
\(921\) 162096. 0.191097
\(922\) 0 0
\(923\) −7821.58 7821.58i −0.00918103 0.00918103i
\(924\) 0 0
\(925\) 562159. 54805.6i 0.657016 0.0640533i
\(926\) 0 0
\(927\) 125207. 125207.i 0.145703 0.145703i
\(928\) 0 0
\(929\) 881163.i 1.02100i 0.859878 + 0.510499i \(0.170539\pi\)
−0.859878 + 0.510499i \(0.829461\pi\)
\(930\) 0 0
\(931\) −1.61388e6 −1.86196
\(932\) 0 0
\(933\) 369010. + 369010.i 0.423912 + 0.423912i
\(934\) 0 0
\(935\) −135538. 286939.i −0.155038 0.328221i
\(936\) 0 0
\(937\) 992967. 992967.i 1.13098 1.13098i 0.140967 0.990014i \(-0.454979\pi\)
0.990014 0.140967i \(-0.0450212\pi\)
\(938\) 0 0
\(939\) 239066.i 0.271136i
\(940\) 0 0
\(941\) −1.13615e6 −1.28309 −0.641545 0.767085i \(-0.721706\pi\)
−0.641545 + 0.767085i \(0.721706\pi\)
\(942\) 0 0
\(943\) −245824. 245824.i −0.276440 0.276440i
\(944\) 0 0
\(945\) −304023. 108951.i −0.340442 0.122002i
\(946\) 0 0
\(947\) 208361. 208361.i 0.232336 0.232336i −0.581331 0.813667i \(-0.697468\pi\)
0.813667 + 0.581331i \(0.197468\pi\)
\(948\) 0 0
\(949\) 3818.51i 0.00423996i
\(950\) 0 0
\(951\) 534017. 0.590465
\(952\) 0 0
\(953\) −761064. 761064.i −0.837983 0.837983i 0.150610 0.988593i \(-0.451876\pi\)
−0.988593 + 0.150610i \(0.951876\pi\)
\(954\) 0 0
\(955\) 36852.6 102835.i 0.0404074 0.112755i
\(956\) 0 0
\(957\) 112746. 112746.i 0.123105 0.123105i
\(958\) 0 0
\(959\) 3.33706e6i 3.62850i
\(960\) 0 0
\(961\) −418277. −0.452916
\(962\) 0 0
\(963\) 237717. + 237717.i 0.256335 + 0.256335i
\(964\) 0 0
\(965\) 175058. 82690.4i 0.187987 0.0887974i
\(966\) 0 0
\(967\) −456976. + 456976.i −0.488698 + 0.488698i −0.907895 0.419197i \(-0.862312\pi\)
0.419197 + 0.907895i \(0.362312\pi\)
\(968\) 0 0
\(969\) 310555.i 0.330743i
\(970\) 0 0
\(971\) −1.23029e6 −1.30488 −0.652439 0.757841i \(-0.726254\pi\)
−0.652439 + 0.757841i \(0.726254\pi\)
\(972\) 0 0
\(973\) 1.07460e6 + 1.07460e6i 1.13507 + 1.13507i
\(974\) 0 0
\(975\) −2869.96 + 3490.00i −0.00301902 + 0.00367127i
\(976\) 0 0
\(977\) 120924. 120924.i 0.126684 0.126684i −0.640922 0.767606i \(-0.721448\pi\)
0.767606 + 0.640922i \(0.221448\pi\)
\(978\) 0 0
\(979\) 395715.i 0.412873i
\(980\) 0 0
\(981\) 215487. 0.223915
\(982\) 0 0
\(983\) 607621. + 607621.i 0.628819 + 0.628819i 0.947771 0.318952i \(-0.103331\pi\)
−0.318952 + 0.947771i \(0.603331\pi\)
\(984\) 0 0
\(985\) −168951. 357676.i −0.174136 0.368652i
\(986\) 0 0
\(987\) −218240. + 218240.i −0.224027 + 0.224027i
\(988\) 0 0
\(989\) 8283.45i 0.00846873i
\(990\) 0 0
\(991\) 32696.1 0.0332927 0.0166464 0.999861i \(-0.494701\pi\)
0.0166464 + 0.999861i \(0.494701\pi\)
\(992\) 0 0
\(993\) 420334. + 420334.i 0.426281 + 0.426281i
\(994\) 0 0
\(995\) 423504. + 151769.i 0.427771 + 0.153298i
\(996\) 0 0
\(997\) 196213. 196213.i 0.197395 0.197395i −0.601487 0.798882i \(-0.705425\pi\)
0.798882 + 0.601487i \(0.205425\pi\)
\(998\) 0 0
\(999\) 126788.i 0.127042i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 240.5.bg.c.193.2 8
4.3 odd 2 15.5.f.a.13.2 yes 8
5.2 odd 4 inner 240.5.bg.c.97.2 8
12.11 even 2 45.5.g.e.28.3 8
20.3 even 4 75.5.f.e.7.3 8
20.7 even 4 15.5.f.a.7.2 8
20.19 odd 2 75.5.f.e.43.3 8
60.23 odd 4 225.5.g.m.82.2 8
60.47 odd 4 45.5.g.e.37.3 8
60.59 even 2 225.5.g.m.118.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.5.f.a.7.2 8 20.7 even 4
15.5.f.a.13.2 yes 8 4.3 odd 2
45.5.g.e.28.3 8 12.11 even 2
45.5.g.e.37.3 8 60.47 odd 4
75.5.f.e.7.3 8 20.3 even 4
75.5.f.e.43.3 8 20.19 odd 2
225.5.g.m.82.2 8 60.23 odd 4
225.5.g.m.118.2 8 60.59 even 2
240.5.bg.c.97.2 8 5.2 odd 4 inner
240.5.bg.c.193.2 8 1.1 even 1 trivial