Properties

Label 45.5.g.e.28.3
Level $45$
Weight $5$
Character 45.28
Analytic conductor $4.652$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [45,5,Mod(28,45)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("45.28"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(45, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 45.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.65164833877\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 60x^{5} + 1973x^{4} - 3300x^{3} + 1800x^{2} + 31560x + 276676 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 28.3
Root \(-2.08045 - 2.08045i\) of defining polynomial
Character \(\chi\) \(=\) 45.28
Dual form 45.5.g.e.37.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.08045 - 2.08045i) q^{2} +7.34348i q^{4} +(8.43390 - 23.5344i) q^{5} +(65.1093 - 65.1093i) q^{7} +(48.5649 + 48.5649i) q^{8} +(-31.4158 - 66.5084i) q^{10} -56.3999 q^{11} +(0.983822 + 0.983822i) q^{13} -270.913i q^{14} +84.5776 q^{16} +(-159.144 + 159.144i) q^{17} +265.552i q^{19} +(172.825 + 61.9342i) q^{20} +(-117.337 + 117.337i) q^{22} +(185.430 + 185.430i) q^{23} +(-482.739 - 396.974i) q^{25} +4.09358 q^{26} +(478.129 + 478.129i) q^{28} +544.071i q^{29} -710.805 q^{31} +(-601.079 + 601.079i) q^{32} +662.183i q^{34} +(-983.184 - 2081.43i) q^{35} +(-639.026 + 639.026i) q^{37} +(552.467 + 552.467i) q^{38} +(1552.54 - 733.355i) q^{40} +1325.70 q^{41} +(-22.3358 - 22.3358i) q^{43} -414.172i q^{44} +771.553 q^{46} +(-456.136 + 456.136i) q^{47} -6077.44i q^{49} +(-1830.20 + 178.428i) q^{50} +(-7.22468 + 7.22468i) q^{52} +(424.212 + 424.212i) q^{53} +(-475.672 + 1327.34i) q^{55} +6324.05 q^{56} +(1131.91 + 1131.91i) q^{58} -3460.30i q^{59} +4937.82 q^{61} +(-1478.79 + 1478.79i) q^{62} +3854.27i q^{64} +(31.4511 - 14.8562i) q^{65} +(-3801.58 + 3801.58i) q^{67} +(-1168.67 - 1168.67i) q^{68} +(-6375.78 - 2284.85i) q^{70} -7950.20 q^{71} +(-1940.65 - 1940.65i) q^{73} +2658.92i q^{74} -1950.08 q^{76} +(-3672.16 + 3672.16i) q^{77} +4083.83i q^{79} +(713.319 - 1990.48i) q^{80} +(2758.05 - 2758.05i) q^{82} +(9103.10 + 9103.10i) q^{83} +(2403.16 + 5087.58i) q^{85} -92.9369 q^{86} +(-2739.06 - 2739.06i) q^{88} -7016.23i q^{89} +128.112 q^{91} +(-1361.70 + 1361.70i) q^{92} +1897.93i q^{94} +(6249.62 + 2239.64i) q^{95} +(2571.87 - 2571.87i) q^{97} +(-12643.8 - 12643.8i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 84 q^{5} + 20 q^{7} - 180 q^{8} + 104 q^{10} + 288 q^{11} - 340 q^{13} + 620 q^{16} - 900 q^{17} - 564 q^{20} - 1100 q^{22} + 1560 q^{23} - 1204 q^{25} + 3024 q^{26} + 3580 q^{28} - 512 q^{31} - 4980 q^{32}+ \cdots - 46440 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.08045 2.08045i 0.520112 0.520112i −0.397493 0.917605i \(-0.630120\pi\)
0.917605 + 0.397493i \(0.130120\pi\)
\(3\) 0 0
\(4\) 7.34348i 0.458968i
\(5\) 8.43390 23.5344i 0.337356 0.941377i
\(6\) 0 0
\(7\) 65.1093 65.1093i 1.32876 1.32876i 0.422309 0.906452i \(-0.361220\pi\)
0.906452 0.422309i \(-0.138780\pi\)
\(8\) 48.5649 + 48.5649i 0.758826 + 0.758826i
\(9\) 0 0
\(10\) −31.4158 66.5084i −0.314158 0.665084i
\(11\) −56.3999 −0.466115 −0.233058 0.972463i \(-0.574873\pi\)
−0.233058 + 0.972463i \(0.574873\pi\)
\(12\) 0 0
\(13\) 0.983822 + 0.983822i 0.00582143 + 0.00582143i 0.710012 0.704190i \(-0.248690\pi\)
−0.704190 + 0.710012i \(0.748690\pi\)
\(14\) 270.913i 1.38221i
\(15\) 0 0
\(16\) 84.5776 0.330381
\(17\) −159.144 + 159.144i −0.550673 + 0.550673i −0.926635 0.375962i \(-0.877312\pi\)
0.375962 + 0.926635i \(0.377312\pi\)
\(18\) 0 0
\(19\) 265.552i 0.735602i 0.929905 + 0.367801i \(0.119889\pi\)
−0.929905 + 0.367801i \(0.880111\pi\)
\(20\) 172.825 + 61.9342i 0.432062 + 0.154836i
\(21\) 0 0
\(22\) −117.337 + 117.337i −0.242432 + 0.242432i
\(23\) 185.430 + 185.430i 0.350529 + 0.350529i 0.860306 0.509778i \(-0.170272\pi\)
−0.509778 + 0.860306i \(0.670272\pi\)
\(24\) 0 0
\(25\) −482.739 396.974i −0.772382 0.635159i
\(26\) 4.09358 0.00605559
\(27\) 0 0
\(28\) 478.129 + 478.129i 0.609858 + 0.609858i
\(29\) 544.071i 0.646933i 0.946240 + 0.323467i \(0.104848\pi\)
−0.946240 + 0.323467i \(0.895152\pi\)
\(30\) 0 0
\(31\) −710.805 −0.739651 −0.369826 0.929101i \(-0.620583\pi\)
−0.369826 + 0.929101i \(0.620583\pi\)
\(32\) −601.079 + 601.079i −0.586991 + 0.586991i
\(33\) 0 0
\(34\) 662.183i 0.572823i
\(35\) −983.184 2081.43i −0.802599 1.69913i
\(36\) 0 0
\(37\) −639.026 + 639.026i −0.466783 + 0.466783i −0.900871 0.434088i \(-0.857071\pi\)
0.434088 + 0.900871i \(0.357071\pi\)
\(38\) 552.467 + 552.467i 0.382595 + 0.382595i
\(39\) 0 0
\(40\) 1552.54 733.355i 0.970336 0.458347i
\(41\) 1325.70 0.788638 0.394319 0.918974i \(-0.370981\pi\)
0.394319 + 0.918974i \(0.370981\pi\)
\(42\) 0 0
\(43\) −22.3358 22.3358i −0.0120799 0.0120799i 0.701041 0.713121i \(-0.252719\pi\)
−0.713121 + 0.701041i \(0.752719\pi\)
\(44\) 414.172i 0.213932i
\(45\) 0 0
\(46\) 771.553 0.364628
\(47\) −456.136 + 456.136i −0.206490 + 0.206490i −0.802774 0.596284i \(-0.796643\pi\)
0.596284 + 0.802774i \(0.296643\pi\)
\(48\) 0 0
\(49\) 6077.44i 2.53121i
\(50\) −1830.20 + 178.428i −0.732078 + 0.0713713i
\(51\) 0 0
\(52\) −7.22468 + 7.22468i −0.00267185 + 0.00267185i
\(53\) 424.212 + 424.212i 0.151019 + 0.151019i 0.778573 0.627554i \(-0.215944\pi\)
−0.627554 + 0.778573i \(0.715944\pi\)
\(54\) 0 0
\(55\) −475.672 + 1327.34i −0.157247 + 0.438790i
\(56\) 6324.05 2.01660
\(57\) 0 0
\(58\) 1131.91 + 1131.91i 0.336478 + 0.336478i
\(59\) 3460.30i 0.994054i −0.867735 0.497027i \(-0.834425\pi\)
0.867735 0.497027i \(-0.165575\pi\)
\(60\) 0 0
\(61\) 4937.82 1.32701 0.663507 0.748170i \(-0.269067\pi\)
0.663507 + 0.748170i \(0.269067\pi\)
\(62\) −1478.79 + 1478.79i −0.384701 + 0.384701i
\(63\) 0 0
\(64\) 3854.27i 0.940983i
\(65\) 31.4511 14.8562i 0.00744406 0.00351627i
\(66\) 0 0
\(67\) −3801.58 + 3801.58i −0.846866 + 0.846866i −0.989741 0.142874i \(-0.954366\pi\)
0.142874 + 0.989741i \(0.454366\pi\)
\(68\) −1168.67 1168.67i −0.252741 0.252741i
\(69\) 0 0
\(70\) −6375.78 2284.85i −1.30118 0.466296i
\(71\) −7950.20 −1.57711 −0.788554 0.614966i \(-0.789170\pi\)
−0.788554 + 0.614966i \(0.789170\pi\)
\(72\) 0 0
\(73\) −1940.65 1940.65i −0.364168 0.364168i 0.501177 0.865345i \(-0.332901\pi\)
−0.865345 + 0.501177i \(0.832901\pi\)
\(74\) 2658.92i 0.485558i
\(75\) 0 0
\(76\) −1950.08 −0.337617
\(77\) −3672.16 + 3672.16i −0.619355 + 0.619355i
\(78\) 0 0
\(79\) 4083.83i 0.654355i 0.944963 + 0.327178i \(0.106098\pi\)
−0.944963 + 0.327178i \(0.893902\pi\)
\(80\) 713.319 1990.48i 0.111456 0.311013i
\(81\) 0 0
\(82\) 2758.05 2758.05i 0.410180 0.410180i
\(83\) 9103.10 + 9103.10i 1.32140 + 1.32140i 0.912646 + 0.408750i \(0.134035\pi\)
0.408750 + 0.912646i \(0.365965\pi\)
\(84\) 0 0
\(85\) 2403.16 + 5087.58i 0.332618 + 0.704164i
\(86\) −92.9369 −0.0125658
\(87\) 0 0
\(88\) −2739.06 2739.06i −0.353700 0.353700i
\(89\) 7016.23i 0.885775i −0.896577 0.442888i \(-0.853954\pi\)
0.896577 0.442888i \(-0.146046\pi\)
\(90\) 0 0
\(91\) 128.112 0.0154706
\(92\) −1361.70 + 1361.70i −0.160881 + 0.160881i
\(93\) 0 0
\(94\) 1897.93i 0.214796i
\(95\) 6249.62 + 2239.64i 0.692479 + 0.248160i
\(96\) 0 0
\(97\) 2571.87 2571.87i 0.273342 0.273342i −0.557102 0.830444i \(-0.688087\pi\)
0.830444 + 0.557102i \(0.188087\pi\)
\(98\) −12643.8 12643.8i −1.31651 1.31651i
\(99\) 0 0
\(100\) 2915.17 3544.98i 0.291517 0.354498i
\(101\) 7459.58 0.731260 0.365630 0.930760i \(-0.380854\pi\)
0.365630 + 0.930760i \(0.380854\pi\)
\(102\) 0 0
\(103\) 4637.29 + 4637.29i 0.437109 + 0.437109i 0.891038 0.453929i \(-0.149978\pi\)
−0.453929 + 0.891038i \(0.649978\pi\)
\(104\) 95.5584i 0.00883491i
\(105\) 0 0
\(106\) 1765.10 0.157093
\(107\) 8804.34 8804.34i 0.769005 0.769005i −0.208926 0.977931i \(-0.566997\pi\)
0.977931 + 0.208926i \(0.0669969\pi\)
\(108\) 0 0
\(109\) 7981.01i 0.671746i −0.941907 0.335873i \(-0.890969\pi\)
0.941907 0.335873i \(-0.109031\pi\)
\(110\) 1771.85 + 3751.07i 0.146434 + 0.310006i
\(111\) 0 0
\(112\) 5506.78 5506.78i 0.438997 0.438997i
\(113\) −1867.37 1867.37i −0.146242 0.146242i 0.630195 0.776437i \(-0.282975\pi\)
−0.776437 + 0.630195i \(0.782975\pi\)
\(114\) 0 0
\(115\) 5927.88 2800.09i 0.448233 0.211727i
\(116\) −3995.38 −0.296921
\(117\) 0 0
\(118\) −7198.98 7198.98i −0.517019 0.517019i
\(119\) 20723.6i 1.46342i
\(120\) 0 0
\(121\) −11460.0 −0.782737
\(122\) 10272.9 10272.9i 0.690195 0.690195i
\(123\) 0 0
\(124\) 5219.78i 0.339476i
\(125\) −13413.9 + 8012.93i −0.858492 + 0.512828i
\(126\) 0 0
\(127\) 3139.44 3139.44i 0.194646 0.194646i −0.603054 0.797700i \(-0.706050\pi\)
0.797700 + 0.603054i \(0.206050\pi\)
\(128\) −1598.67 1598.67i −0.0975748 0.0975748i
\(129\) 0 0
\(130\) 34.5248 96.3400i 0.00204289 0.00570059i
\(131\) −28716.4 −1.67335 −0.836676 0.547698i \(-0.815504\pi\)
−0.836676 + 0.547698i \(0.815504\pi\)
\(132\) 0 0
\(133\) 17289.9 + 17289.9i 0.977439 + 0.977439i
\(134\) 15818.0i 0.880930i
\(135\) 0 0
\(136\) −15457.7 −0.835730
\(137\) 25626.6 25626.6i 1.36537 1.36537i 0.498453 0.866917i \(-0.333902\pi\)
0.866917 0.498453i \(-0.166098\pi\)
\(138\) 0 0
\(139\) 16504.6i 0.854229i 0.904197 + 0.427115i \(0.140470\pi\)
−0.904197 + 0.427115i \(0.859530\pi\)
\(140\) 15285.0 7220.00i 0.779846 0.368367i
\(141\) 0 0
\(142\) −16540.0 + 16540.0i −0.820272 + 0.820272i
\(143\) −55.4875 55.4875i −0.00271346 0.00271346i
\(144\) 0 0
\(145\) 12804.4 + 4588.64i 0.609008 + 0.218247i
\(146\) −8074.84 −0.378816
\(147\) 0 0
\(148\) −4692.67 4692.67i −0.214238 0.214238i
\(149\) 10599.1i 0.477413i −0.971092 0.238707i \(-0.923277\pi\)
0.971092 0.238707i \(-0.0767235\pi\)
\(150\) 0 0
\(151\) −30610.3 −1.34250 −0.671248 0.741233i \(-0.734242\pi\)
−0.671248 + 0.741233i \(0.734242\pi\)
\(152\) −12896.5 + 12896.5i −0.558194 + 0.558194i
\(153\) 0 0
\(154\) 15279.5i 0.644268i
\(155\) −5994.86 + 16728.4i −0.249526 + 0.696291i
\(156\) 0 0
\(157\) 17506.2 17506.2i 0.710220 0.710220i −0.256361 0.966581i \(-0.582524\pi\)
0.966581 + 0.256361i \(0.0825237\pi\)
\(158\) 8496.20 + 8496.20i 0.340338 + 0.340338i
\(159\) 0 0
\(160\) 9076.61 + 19215.5i 0.354555 + 0.750605i
\(161\) 24146.4 0.931538
\(162\) 0 0
\(163\) −13776.0 13776.0i −0.518500 0.518500i 0.398618 0.917117i \(-0.369490\pi\)
−0.917117 + 0.398618i \(0.869490\pi\)
\(164\) 9735.26i 0.361959i
\(165\) 0 0
\(166\) 37877.0 1.37455
\(167\) −22076.9 + 22076.9i −0.791598 + 0.791598i −0.981754 0.190156i \(-0.939101\pi\)
0.190156 + 0.981754i \(0.439101\pi\)
\(168\) 0 0
\(169\) 28559.1i 0.999932i
\(170\) 15584.1 + 5584.79i 0.539242 + 0.193245i
\(171\) 0 0
\(172\) 164.023 164.023i 0.00554430 0.00554430i
\(173\) −26956.5 26956.5i −0.900682 0.900682i 0.0948128 0.995495i \(-0.469775\pi\)
−0.995495 + 0.0948128i \(0.969775\pi\)
\(174\) 0 0
\(175\) −57277.5 + 5584.06i −1.87028 + 0.182337i
\(176\) −4770.17 −0.153996
\(177\) 0 0
\(178\) −14596.9 14596.9i −0.460702 0.460702i
\(179\) 43705.2i 1.36404i −0.731333 0.682020i \(-0.761102\pi\)
0.731333 0.682020i \(-0.238898\pi\)
\(180\) 0 0
\(181\) 30384.4 0.927456 0.463728 0.885978i \(-0.346512\pi\)
0.463728 + 0.885978i \(0.346512\pi\)
\(182\) 266.530 266.530i 0.00804643 0.00804643i
\(183\) 0 0
\(184\) 18010.7i 0.531981i
\(185\) 9649.62 + 20428.6i 0.281947 + 0.596891i
\(186\) 0 0
\(187\) 8975.73 8975.73i 0.256677 0.256677i
\(188\) −3349.63 3349.63i −0.0947722 0.0947722i
\(189\) 0 0
\(190\) 17661.5 8342.55i 0.489237 0.231096i
\(191\) −4369.57 −0.119777 −0.0598883 0.998205i \(-0.519074\pi\)
−0.0598883 + 0.998205i \(0.519074\pi\)
\(192\) 0 0
\(193\) −5475.99 5475.99i −0.147011 0.147011i 0.629771 0.776781i \(-0.283149\pi\)
−0.776781 + 0.629771i \(0.783149\pi\)
\(194\) 10701.3i 0.284337i
\(195\) 0 0
\(196\) 44629.5 1.16174
\(197\) 11188.4 11188.4i 0.288295 0.288295i −0.548111 0.836406i \(-0.684653\pi\)
0.836406 + 0.548111i \(0.184653\pi\)
\(198\) 0 0
\(199\) 17995.1i 0.454409i 0.973847 + 0.227205i \(0.0729586\pi\)
−0.973847 + 0.227205i \(0.927041\pi\)
\(200\) −4165.14 42723.1i −0.104128 1.06808i
\(201\) 0 0
\(202\) 15519.3 15519.3i 0.380337 0.380337i
\(203\) 35424.1 + 35424.1i 0.859620 + 0.859620i
\(204\) 0 0
\(205\) 11180.8 31199.6i 0.266052 0.742406i
\(206\) 19295.3 0.454691
\(207\) 0 0
\(208\) 83.2093 + 83.2093i 0.00192329 + 0.00192329i
\(209\) 14977.1i 0.342875i
\(210\) 0 0
\(211\) −12455.8 −0.279774 −0.139887 0.990167i \(-0.544674\pi\)
−0.139887 + 0.990167i \(0.544674\pi\)
\(212\) −3115.19 + 3115.19i −0.0693128 + 0.0693128i
\(213\) 0 0
\(214\) 36633.9i 0.799937i
\(215\) −714.039 + 337.282i −0.0154470 + 0.00729654i
\(216\) 0 0
\(217\) −46280.0 + 46280.0i −0.982820 + 0.982820i
\(218\) −16604.1 16604.1i −0.349383 0.349383i
\(219\) 0 0
\(220\) −9747.30 3493.09i −0.201390 0.0721712i
\(221\) −313.140 −0.00641141
\(222\) 0 0
\(223\) 26399.5 + 26399.5i 0.530867 + 0.530867i 0.920830 0.389963i \(-0.127512\pi\)
−0.389963 + 0.920830i \(0.627512\pi\)
\(224\) 78271.6i 1.55994i
\(225\) 0 0
\(226\) −7769.92 −0.152125
\(227\) −32267.3 + 32267.3i −0.626197 + 0.626197i −0.947109 0.320912i \(-0.896011\pi\)
0.320912 + 0.947109i \(0.396011\pi\)
\(228\) 0 0
\(229\) 68117.5i 1.29894i −0.760389 0.649468i \(-0.774992\pi\)
0.760389 0.649468i \(-0.225008\pi\)
\(230\) 6507.21 18158.1i 0.123010 0.343253i
\(231\) 0 0
\(232\) −26422.7 + 26422.7i −0.490910 + 0.490910i
\(233\) 65936.0 + 65936.0i 1.21454 + 1.21454i 0.969518 + 0.245019i \(0.0787941\pi\)
0.245019 + 0.969518i \(0.421206\pi\)
\(234\) 0 0
\(235\) 6887.90 + 14581.9i 0.124724 + 0.264045i
\(236\) 25410.7 0.456239
\(237\) 0 0
\(238\) 43114.3 + 43114.3i 0.761144 + 0.761144i
\(239\) 64820.9i 1.13480i −0.823443 0.567400i \(-0.807950\pi\)
0.823443 0.567400i \(-0.192050\pi\)
\(240\) 0 0
\(241\) −59597.9 −1.02612 −0.513058 0.858354i \(-0.671488\pi\)
−0.513058 + 0.858354i \(0.671488\pi\)
\(242\) −23842.0 + 23842.0i −0.407111 + 0.407111i
\(243\) 0 0
\(244\) 36260.8i 0.609056i
\(245\) −143029. 51256.5i −2.38282 0.853919i
\(246\) 0 0
\(247\) −261.256 + 261.256i −0.00428226 + 0.00428226i
\(248\) −34520.1 34520.1i −0.561267 0.561267i
\(249\) 0 0
\(250\) −11236.5 + 44577.5i −0.179784 + 0.713239i
\(251\) 33922.6 0.538445 0.269223 0.963078i \(-0.413233\pi\)
0.269223 + 0.963078i \(0.413233\pi\)
\(252\) 0 0
\(253\) −10458.2 10458.2i −0.163387 0.163387i
\(254\) 13062.9i 0.202475i
\(255\) 0 0
\(256\) −68320.1 −1.04248
\(257\) −26107.3 + 26107.3i −0.395272 + 0.395272i −0.876562 0.481290i \(-0.840168\pi\)
0.481290 + 0.876562i \(0.340168\pi\)
\(258\) 0 0
\(259\) 83213.0i 1.24049i
\(260\) 109.096 + 230.961i 0.00161385 + 0.00341658i
\(261\) 0 0
\(262\) −59743.0 + 59743.0i −0.870330 + 0.870330i
\(263\) −25675.0 25675.0i −0.371192 0.371192i 0.496719 0.867911i \(-0.334538\pi\)
−0.867911 + 0.496719i \(0.834538\pi\)
\(264\) 0 0
\(265\) 13561.4 6405.83i 0.193113 0.0912186i
\(266\) 71941.5 1.01675
\(267\) 0 0
\(268\) −27916.9 27916.9i −0.388684 0.388684i
\(269\) 84488.9i 1.16760i 0.811896 + 0.583801i \(0.198435\pi\)
−0.811896 + 0.583801i \(0.801565\pi\)
\(270\) 0 0
\(271\) 105918. 1.44222 0.721109 0.692821i \(-0.243633\pi\)
0.721109 + 0.692821i \(0.243633\pi\)
\(272\) −13460.0 + 13460.0i −0.181932 + 0.181932i
\(273\) 0 0
\(274\) 106630.i 1.42029i
\(275\) 27226.4 + 22389.3i 0.360019 + 0.296057i
\(276\) 0 0
\(277\) 71448.5 71448.5i 0.931180 0.931180i −0.0665996 0.997780i \(-0.521215\pi\)
0.997780 + 0.0665996i \(0.0212150\pi\)
\(278\) 34336.9 + 34336.9i 0.444295 + 0.444295i
\(279\) 0 0
\(280\) 53336.4 148833.i 0.680311 1.89838i
\(281\) −6316.20 −0.0799914 −0.0399957 0.999200i \(-0.512734\pi\)
−0.0399957 + 0.999200i \(0.512734\pi\)
\(282\) 0 0
\(283\) 51729.2 + 51729.2i 0.645896 + 0.645896i 0.951999 0.306102i \(-0.0990250\pi\)
−0.306102 + 0.951999i \(0.599025\pi\)
\(284\) 58382.2i 0.723841i
\(285\) 0 0
\(286\) −230.878 −0.00282260
\(287\) 86315.4 86315.4i 1.04791 1.04791i
\(288\) 0 0
\(289\) 32867.1i 0.393519i
\(290\) 36185.3 17092.4i 0.430265 0.203240i
\(291\) 0 0
\(292\) 14251.1 14251.1i 0.167141 0.167141i
\(293\) 71710.7 + 71710.7i 0.835312 + 0.835312i 0.988238 0.152926i \(-0.0488696\pi\)
−0.152926 + 0.988238i \(0.548870\pi\)
\(294\) 0 0
\(295\) −81436.3 29183.9i −0.935780 0.335350i
\(296\) −62068.4 −0.708414
\(297\) 0 0
\(298\) −22050.8 22050.8i −0.248308 0.248308i
\(299\) 364.860i 0.00408116i
\(300\) 0 0
\(301\) −2908.54 −0.0321027
\(302\) −63683.0 + 63683.0i −0.698248 + 0.698248i
\(303\) 0 0
\(304\) 22459.8i 0.243029i
\(305\) 41645.1 116209.i 0.447676 1.24922i
\(306\) 0 0
\(307\) 22058.5 22058.5i 0.234045 0.234045i −0.580334 0.814379i \(-0.697078\pi\)
0.814379 + 0.580334i \(0.197078\pi\)
\(308\) −26966.4 26966.4i −0.284264 0.284264i
\(309\) 0 0
\(310\) 22330.5 + 47274.5i 0.232368 + 0.491930i
\(311\) −100432. −1.03837 −0.519184 0.854663i \(-0.673764\pi\)
−0.519184 + 0.854663i \(0.673764\pi\)
\(312\) 0 0
\(313\) 32532.8 + 32532.8i 0.332072 + 0.332072i 0.853373 0.521301i \(-0.174553\pi\)
−0.521301 + 0.853373i \(0.674553\pi\)
\(314\) 72841.4i 0.738787i
\(315\) 0 0
\(316\) −29989.5 −0.300328
\(317\) 72670.5 72670.5i 0.723169 0.723169i −0.246080 0.969249i \(-0.579143\pi\)
0.969249 + 0.246080i \(0.0791428\pi\)
\(318\) 0 0
\(319\) 30685.6i 0.301545i
\(320\) 90707.9 + 32506.5i 0.885820 + 0.317446i
\(321\) 0 0
\(322\) 50235.3 50235.3i 0.484504 0.484504i
\(323\) −42261.2 42261.2i −0.405076 0.405076i
\(324\) 0 0
\(325\) −84.3769 865.481i −0.000798834 0.00819390i
\(326\) −57320.5 −0.539355
\(327\) 0 0
\(328\) 64382.5 + 64382.5i 0.598439 + 0.598439i
\(329\) 59397.4i 0.548751i
\(330\) 0 0
\(331\) 114400. 1.04417 0.522085 0.852893i \(-0.325154\pi\)
0.522085 + 0.852893i \(0.325154\pi\)
\(332\) −66848.5 + 66848.5i −0.606478 + 0.606478i
\(333\) 0 0
\(334\) 91859.5i 0.823439i
\(335\) 57405.9 + 121530.i 0.511525 + 1.08292i
\(336\) 0 0
\(337\) −75745.0 + 75745.0i −0.666952 + 0.666952i −0.957009 0.290058i \(-0.906326\pi\)
0.290058 + 0.957009i \(0.406326\pi\)
\(338\) −59415.6 59415.6i −0.520076 0.520076i
\(339\) 0 0
\(340\) −37360.6 + 17647.6i −0.323188 + 0.152661i
\(341\) 40089.3 0.344763
\(342\) 0 0
\(343\) −239370. 239370.i −2.03461 2.03461i
\(344\) 2169.47i 0.0183332i
\(345\) 0 0
\(346\) −112163. −0.936911
\(347\) −49964.9 + 49964.9i −0.414960 + 0.414960i −0.883462 0.468502i \(-0.844794\pi\)
0.468502 + 0.883462i \(0.344794\pi\)
\(348\) 0 0
\(349\) 74192.9i 0.609132i 0.952491 + 0.304566i \(0.0985115\pi\)
−0.952491 + 0.304566i \(0.901489\pi\)
\(350\) −107545. + 130780.i −0.877921 + 1.06759i
\(351\) 0 0
\(352\) 33900.8 33900.8i 0.273605 0.273605i
\(353\) 15476.1 + 15476.1i 0.124198 + 0.124198i 0.766473 0.642276i \(-0.222010\pi\)
−0.642276 + 0.766473i \(0.722010\pi\)
\(354\) 0 0
\(355\) −67051.2 + 187103.i −0.532047 + 1.48465i
\(356\) 51523.5 0.406542
\(357\) 0 0
\(358\) −90926.4 90926.4i −0.709453 0.709453i
\(359\) 46469.2i 0.360559i −0.983615 0.180279i \(-0.942300\pi\)
0.983615 0.180279i \(-0.0577002\pi\)
\(360\) 0 0
\(361\) 59803.0 0.458890
\(362\) 63213.1 63213.1i 0.482381 0.482381i
\(363\) 0 0
\(364\) 940.787i 0.00710049i
\(365\) −62039.4 + 29304.9i −0.465674 + 0.219965i
\(366\) 0 0
\(367\) 57731.0 57731.0i 0.428624 0.428624i −0.459535 0.888160i \(-0.651984\pi\)
0.888160 + 0.459535i \(0.151984\pi\)
\(368\) 15683.2 + 15683.2i 0.115808 + 0.115808i
\(369\) 0 0
\(370\) 62576.1 + 22425.1i 0.457093 + 0.163806i
\(371\) 55240.3 0.401336
\(372\) 0 0
\(373\) 166181. + 166181.i 1.19444 + 1.19444i 0.975807 + 0.218634i \(0.0701600\pi\)
0.218634 + 0.975807i \(0.429840\pi\)
\(374\) 37347.1i 0.267001i
\(375\) 0 0
\(376\) −44304.4 −0.313380
\(377\) −535.269 + 535.269i −0.00376608 + 0.00376608i
\(378\) 0 0
\(379\) 41316.4i 0.287636i −0.989604 0.143818i \(-0.954062\pi\)
0.989604 0.143818i \(-0.0459380\pi\)
\(380\) −16446.8 + 45894.0i −0.113897 + 0.317825i
\(381\) 0 0
\(382\) −9090.66 + 9090.66i −0.0622972 + 0.0622972i
\(383\) −72155.3 72155.3i −0.491893 0.491893i 0.417009 0.908902i \(-0.363078\pi\)
−0.908902 + 0.417009i \(0.863078\pi\)
\(384\) 0 0
\(385\) 55451.5 + 117393.i 0.374104 + 0.791990i
\(386\) −22785.0 −0.152924
\(387\) 0 0
\(388\) 18886.5 + 18886.5i 0.125455 + 0.125455i
\(389\) 192183.i 1.27004i 0.772497 + 0.635018i \(0.219007\pi\)
−0.772497 + 0.635018i \(0.780993\pi\)
\(390\) 0 0
\(391\) −59020.2 −0.386053
\(392\) 295150. 295150.i 1.92075 1.92075i
\(393\) 0 0
\(394\) 46553.9i 0.299891i
\(395\) 96110.7 + 34442.6i 0.615995 + 0.220751i
\(396\) 0 0
\(397\) −177091. + 177091.i −1.12361 + 1.12361i −0.132416 + 0.991194i \(0.542274\pi\)
−0.991194 + 0.132416i \(0.957726\pi\)
\(398\) 37437.8 + 37437.8i 0.236344 + 0.236344i
\(399\) 0 0
\(400\) −40828.8 33575.1i −0.255180 0.209844i
\(401\) −208300. −1.29539 −0.647694 0.761900i \(-0.724267\pi\)
−0.647694 + 0.761900i \(0.724267\pi\)
\(402\) 0 0
\(403\) −699.305 699.305i −0.00430583 0.00430583i
\(404\) 54779.3i 0.335624i
\(405\) 0 0
\(406\) 147396. 0.894197
\(407\) 36041.0 36041.0i 0.217574 0.217574i
\(408\) 0 0
\(409\) 265733.i 1.58854i −0.607563 0.794271i \(-0.707853\pi\)
0.607563 0.794271i \(-0.292147\pi\)
\(410\) −41648.0 88170.2i −0.247757 0.524511i
\(411\) 0 0
\(412\) −34053.8 + 34053.8i −0.200619 + 0.200619i
\(413\) −225298. 225298.i −1.32086 1.32086i
\(414\) 0 0
\(415\) 291011. 137462.i 1.68971 0.798151i
\(416\) −1182.71 −0.00683426
\(417\) 0 0
\(418\) −31159.1 31159.1i −0.178333 0.178333i
\(419\) 125608.i 0.715467i 0.933824 + 0.357734i \(0.116450\pi\)
−0.933824 + 0.357734i \(0.883550\pi\)
\(420\) 0 0
\(421\) −278634. −1.57206 −0.786031 0.618187i \(-0.787868\pi\)
−0.786031 + 0.618187i \(0.787868\pi\)
\(422\) −25913.7 + 25913.7i −0.145514 + 0.145514i
\(423\) 0 0
\(424\) 41203.6i 0.229194i
\(425\) 140001. 13648.9i 0.775094 0.0755650i
\(426\) 0 0
\(427\) 321498. 321498.i 1.76328 1.76328i
\(428\) 64654.5 + 64654.5i 0.352948 + 0.352948i
\(429\) 0 0
\(430\) −783.821 + 2187.22i −0.00423916 + 0.0118292i
\(431\) −100603. −0.541575 −0.270787 0.962639i \(-0.587284\pi\)
−0.270787 + 0.962639i \(0.587284\pi\)
\(432\) 0 0
\(433\) −116014. 116014.i −0.618777 0.618777i 0.326440 0.945218i \(-0.394151\pi\)
−0.945218 + 0.326440i \(0.894151\pi\)
\(434\) 192566.i 1.02235i
\(435\) 0 0
\(436\) 58608.4 0.308310
\(437\) −49241.3 + 49241.3i −0.257850 + 0.257850i
\(438\) 0 0
\(439\) 163656.i 0.849184i −0.905385 0.424592i \(-0.860418\pi\)
0.905385 0.424592i \(-0.139582\pi\)
\(440\) −87563.0 + 41361.2i −0.452288 + 0.213642i
\(441\) 0 0
\(442\) −651.470 + 651.470i −0.00333465 + 0.00333465i
\(443\) 117313. + 117313.i 0.597775 + 0.597775i 0.939720 0.341945i \(-0.111086\pi\)
−0.341945 + 0.939720i \(0.611086\pi\)
\(444\) 0 0
\(445\) −165123. 59174.2i −0.833849 0.298822i
\(446\) 109845. 0.552220
\(447\) 0 0
\(448\) 250948. + 250948.i 1.25034 + 1.25034i
\(449\) 342550.i 1.69915i −0.527468 0.849575i \(-0.676859\pi\)
0.527468 0.849575i \(-0.323141\pi\)
\(450\) 0 0
\(451\) −74769.4 −0.367596
\(452\) 13713.0 13713.0i 0.0671204 0.0671204i
\(453\) 0 0
\(454\) 134261.i 0.651385i
\(455\) 1080.48 3015.04i 0.00521909 0.0145636i
\(456\) 0 0
\(457\) −162804. + 162804.i −0.779530 + 0.779530i −0.979751 0.200221i \(-0.935834\pi\)
0.200221 + 0.979751i \(0.435834\pi\)
\(458\) −141715. 141715.i −0.675592 0.675592i
\(459\) 0 0
\(460\) 20562.4 + 43531.3i 0.0971757 + 0.205724i
\(461\) 283688. 1.33487 0.667436 0.744667i \(-0.267392\pi\)
0.667436 + 0.744667i \(0.267392\pi\)
\(462\) 0 0
\(463\) −34085.9 34085.9i −0.159006 0.159006i 0.623120 0.782126i \(-0.285865\pi\)
−0.782126 + 0.623120i \(0.785865\pi\)
\(464\) 46016.2i 0.213735i
\(465\) 0 0
\(466\) 274353. 1.26339
\(467\) 124988. 124988.i 0.573107 0.573107i −0.359889 0.932995i \(-0.617185\pi\)
0.932995 + 0.359889i \(0.117185\pi\)
\(468\) 0 0
\(469\) 495037.i 2.25057i
\(470\) 44666.8 + 16007.0i 0.202204 + 0.0724626i
\(471\) 0 0
\(472\) 168049. 168049.i 0.754314 0.754314i
\(473\) 1259.74 + 1259.74i 0.00563064 + 0.00563064i
\(474\) 0 0
\(475\) 105417. 128192.i 0.467224 0.568165i
\(476\) −152183. −0.671665
\(477\) 0 0
\(478\) −134856. 134856.i −0.590222 0.590222i
\(479\) 248368.i 1.08249i −0.840864 0.541247i \(-0.817953\pi\)
0.840864 0.541247i \(-0.182047\pi\)
\(480\) 0 0
\(481\) −1257.37 −0.00543469
\(482\) −123990. + 123990.i −0.533695 + 0.533695i
\(483\) 0 0
\(484\) 84156.7i 0.359251i
\(485\) −38836.6 82218.5i −0.165104 0.349531i
\(486\) 0 0
\(487\) −159374. + 159374.i −0.671983 + 0.671983i −0.958173 0.286190i \(-0.907611\pi\)
0.286190 + 0.958173i \(0.407611\pi\)
\(488\) 239804. + 239804.i 1.00697 + 1.00697i
\(489\) 0 0
\(490\) −404201. + 190928.i −1.68347 + 0.795201i
\(491\) 16577.9 0.0687647 0.0343823 0.999409i \(-0.489054\pi\)
0.0343823 + 0.999409i \(0.489054\pi\)
\(492\) 0 0
\(493\) −86585.9 86585.9i −0.356249 0.356249i
\(494\) 1087.06i 0.00445450i
\(495\) 0 0
\(496\) −60118.1 −0.244367
\(497\) −517632. + 517632.i −2.09560 + 2.09560i
\(498\) 0 0
\(499\) 202437.i 0.812998i 0.913651 + 0.406499i \(0.133250\pi\)
−0.913651 + 0.406499i \(0.866750\pi\)
\(500\) −58842.8 98505.0i −0.235371 0.394020i
\(501\) 0 0
\(502\) 70574.2 70574.2i 0.280052 0.280052i
\(503\) 33478.6 + 33478.6i 0.132322 + 0.132322i 0.770166 0.637844i \(-0.220173\pi\)
−0.637844 + 0.770166i \(0.720173\pi\)
\(504\) 0 0
\(505\) 62913.4 175557.i 0.246695 0.688391i
\(506\) −43515.5 −0.169959
\(507\) 0 0
\(508\) 23054.4 + 23054.4i 0.0893361 + 0.0893361i
\(509\) 57834.5i 0.223229i 0.993752 + 0.111615i \(0.0356022\pi\)
−0.993752 + 0.111615i \(0.964398\pi\)
\(510\) 0 0
\(511\) −252709. −0.967784
\(512\) −116558. + 116558.i −0.444633 + 0.444633i
\(513\) 0 0
\(514\) 108630.i 0.411171i
\(515\) 148246. 70025.4i 0.558945 0.264023i
\(516\) 0 0
\(517\) 25726.0 25726.0i 0.0962481 0.0962481i
\(518\) 173120. + 173120.i 0.645191 + 0.645191i
\(519\) 0 0
\(520\) 2248.91 + 805.930i 0.00831698 + 0.00298051i
\(521\) 56237.4 0.207181 0.103591 0.994620i \(-0.466967\pi\)
0.103591 + 0.994620i \(0.466967\pi\)
\(522\) 0 0
\(523\) 210047. + 210047.i 0.767914 + 0.767914i 0.977739 0.209825i \(-0.0672894\pi\)
−0.209825 + 0.977739i \(0.567289\pi\)
\(524\) 210878.i 0.768015i
\(525\) 0 0
\(526\) −106831. −0.386123
\(527\) 113121. 113121.i 0.407306 0.407306i
\(528\) 0 0
\(529\) 211073.i 0.754259i
\(530\) 14886.7 41540.7i 0.0529964 0.147884i
\(531\) 0 0
\(532\) −126968. + 126968.i −0.448613 + 0.448613i
\(533\) 1304.25 + 1304.25i 0.00459100 + 0.00459100i
\(534\) 0 0
\(535\) −132950. 281460.i −0.464495 0.983352i
\(536\) −369247. −1.28525
\(537\) 0 0
\(538\) 175775. + 175775.i 0.607284 + 0.607284i
\(539\) 342767.i 1.17984i
\(540\) 0 0
\(541\) 263561. 0.900505 0.450252 0.892901i \(-0.351334\pi\)
0.450252 + 0.892901i \(0.351334\pi\)
\(542\) 220357. 220357.i 0.750115 0.750115i
\(543\) 0 0
\(544\) 191317.i 0.646480i
\(545\) −187829. 67311.1i −0.632366 0.226618i
\(546\) 0 0
\(547\) −155327. + 155327.i −0.519125 + 0.519125i −0.917306 0.398182i \(-0.869641\pi\)
0.398182 + 0.917306i \(0.369641\pi\)
\(548\) 188189. + 188189.i 0.626660 + 0.626660i
\(549\) 0 0
\(550\) 103223. 10063.3i 0.341233 0.0332672i
\(551\) −144479. −0.475885
\(552\) 0 0
\(553\) 265895. + 265895.i 0.869482 + 0.869482i
\(554\) 297290.i 0.968635i
\(555\) 0 0
\(556\) −121201. −0.392064
\(557\) −144074. + 144074.i −0.464381 + 0.464381i −0.900088 0.435707i \(-0.856498\pi\)
0.435707 + 0.900088i \(0.356498\pi\)
\(558\) 0 0
\(559\) 43.9489i 0.000140645i
\(560\) −83155.3 176043.i −0.265164 0.561361i
\(561\) 0 0
\(562\) −13140.5 + 13140.5i −0.0416044 + 0.0416044i
\(563\) −348774. 348774.i −1.10034 1.10034i −0.994369 0.105970i \(-0.966205\pi\)
−0.105970 0.994369i \(-0.533795\pi\)
\(564\) 0 0
\(565\) −59696.6 + 28198.2i −0.187005 + 0.0883334i
\(566\) 215240. 0.671876
\(567\) 0 0
\(568\) −386101. 386101.i −1.19675 1.19675i
\(569\) 183209.i 0.565878i −0.959138 0.282939i \(-0.908691\pi\)
0.959138 0.282939i \(-0.0913095\pi\)
\(570\) 0 0
\(571\) 363497. 1.11488 0.557440 0.830217i \(-0.311784\pi\)
0.557440 + 0.830217i \(0.311784\pi\)
\(572\) 407.471 407.471i 0.00124539 0.00124539i
\(573\) 0 0
\(574\) 359149.i 1.09006i
\(575\) −15903.3 163125.i −0.0481006 0.493383i
\(576\) 0 0
\(577\) 168516. 168516.i 0.506161 0.506161i −0.407184 0.913346i \(-0.633489\pi\)
0.913346 + 0.407184i \(0.133489\pi\)
\(578\) 68378.2 + 68378.2i 0.204674 + 0.204674i
\(579\) 0 0
\(580\) −33696.6 + 94028.9i −0.100168 + 0.279515i
\(581\) 1.18539e6 3.51164
\(582\) 0 0
\(583\) −23925.5 23925.5i −0.0703922 0.0703922i
\(584\) 188495.i 0.552680i
\(585\) 0 0
\(586\) 298380. 0.868911
\(587\) 129891. 129891.i 0.376966 0.376966i −0.493040 0.870007i \(-0.664114\pi\)
0.870007 + 0.493040i \(0.164114\pi\)
\(588\) 0 0
\(589\) 188756.i 0.544089i
\(590\) −230139. + 108708.i −0.661130 + 0.312291i
\(591\) 0 0
\(592\) −54047.2 + 54047.2i −0.154216 + 0.154216i
\(593\) 299982. + 299982.i 0.853072 + 0.853072i 0.990510 0.137438i \(-0.0438868\pi\)
−0.137438 + 0.990510i \(0.543887\pi\)
\(594\) 0 0
\(595\) 487717. + 174780.i 1.37763 + 0.493695i
\(596\) 77834.0 0.219117
\(597\) 0 0
\(598\) 759.071 + 759.071i 0.00212266 + 0.00212266i
\(599\) 642365.i 1.79031i 0.445754 + 0.895155i \(0.352935\pi\)
−0.445754 + 0.895155i \(0.647065\pi\)
\(600\) 0 0
\(601\) 624794. 1.72977 0.864884 0.501971i \(-0.167392\pi\)
0.864884 + 0.501971i \(0.167392\pi\)
\(602\) −6051.06 + 6051.06i −0.0166970 + 0.0166970i
\(603\) 0 0
\(604\) 224786.i 0.616163i
\(605\) −96652.9 + 269706.i −0.264061 + 0.736850i
\(606\) 0 0
\(607\) −133169. + 133169.i −0.361431 + 0.361431i −0.864340 0.502909i \(-0.832263\pi\)
0.502909 + 0.864340i \(0.332263\pi\)
\(608\) −159618. 159618.i −0.431792 0.431792i
\(609\) 0 0
\(610\) −155126. 328406.i −0.416892 0.882575i
\(611\) −897.513 −0.00240413
\(612\) 0 0
\(613\) −394586. 394586.i −1.05008 1.05008i −0.998678 0.0513978i \(-0.983632\pi\)
−0.0513978 0.998678i \(-0.516368\pi\)
\(614\) 91783.0i 0.243459i
\(615\) 0 0
\(616\) −356676. −0.939966
\(617\) −246284. + 246284.i −0.646942 + 0.646942i −0.952253 0.305311i \(-0.901240\pi\)
0.305311 + 0.952253i \(0.401240\pi\)
\(618\) 0 0
\(619\) 135789.i 0.354391i 0.984176 + 0.177195i \(0.0567025\pi\)
−0.984176 + 0.177195i \(0.943298\pi\)
\(620\) −122845. 44023.1i −0.319575 0.114524i
\(621\) 0 0
\(622\) −208943. + 208943.i −0.540067 + 0.540067i
\(623\) −456821. 456821.i −1.17698 1.17698i
\(624\) 0 0
\(625\) 75448.0 + 383269.i 0.193147 + 0.981170i
\(626\) 135365. 0.345429
\(627\) 0 0
\(628\) 128556. + 128556.i 0.325968 + 0.325968i
\(629\) 203395.i 0.514089i
\(630\) 0 0
\(631\) −566102. −1.42179 −0.710896 0.703297i \(-0.751710\pi\)
−0.710896 + 0.703297i \(0.751710\pi\)
\(632\) −198331. + 198331.i −0.496542 + 0.496542i
\(633\) 0 0
\(634\) 302374.i 0.752257i
\(635\) −47407.2 100363.i −0.117570 0.248900i
\(636\) 0 0
\(637\) 5979.11 5979.11i 0.0147353 0.0147353i
\(638\) −63839.7 63839.7i −0.156837 0.156837i
\(639\) 0 0
\(640\) −51106.7 + 24140.7i −0.124772 + 0.0589372i
\(641\) −398483. −0.969826 −0.484913 0.874562i \(-0.661149\pi\)
−0.484913 + 0.874562i \(0.661149\pi\)
\(642\) 0 0
\(643\) 270770. + 270770.i 0.654905 + 0.654905i 0.954170 0.299265i \(-0.0967415\pi\)
−0.299265 + 0.954170i \(0.596741\pi\)
\(644\) 177319.i 0.427546i
\(645\) 0 0
\(646\) −175844. −0.421370
\(647\) −22129.0 + 22129.0i −0.0528632 + 0.0528632i −0.733044 0.680181i \(-0.761901\pi\)
0.680181 + 0.733044i \(0.261901\pi\)
\(648\) 0 0
\(649\) 195161.i 0.463344i
\(650\) −1976.13 1625.04i −0.00467723 0.00384626i
\(651\) 0 0
\(652\) 101164. 101164.i 0.237974 0.237974i
\(653\) 168610. + 168610.i 0.395418 + 0.395418i 0.876613 0.481195i \(-0.159797\pi\)
−0.481195 + 0.876613i \(0.659797\pi\)
\(654\) 0 0
\(655\) −242191. + 675824.i −0.564516 + 1.57526i
\(656\) 112125. 0.260551
\(657\) 0 0
\(658\) 123573. + 123573.i 0.285412 + 0.285412i
\(659\) 106032.i 0.244155i −0.992521 0.122078i \(-0.961044\pi\)
0.992521 0.122078i \(-0.0389557\pi\)
\(660\) 0 0
\(661\) −360211. −0.824432 −0.412216 0.911086i \(-0.635245\pi\)
−0.412216 + 0.911086i \(0.635245\pi\)
\(662\) 238004. 238004.i 0.543085 0.543085i
\(663\) 0 0
\(664\) 884182.i 2.00542i
\(665\) 552730. 261087.i 1.24988 0.590394i
\(666\) 0 0
\(667\) −100887. + 100887.i −0.226769 + 0.226769i
\(668\) −162121. 162121.i −0.363318 0.363318i
\(669\) 0 0
\(670\) 372267. + 133407.i 0.829288 + 0.297187i
\(671\) −278492. −0.618541
\(672\) 0 0
\(673\) −174418. 174418.i −0.385090 0.385090i 0.487842 0.872932i \(-0.337784\pi\)
−0.872932 + 0.487842i \(0.837784\pi\)
\(674\) 315167.i 0.693779i
\(675\) 0 0
\(676\) 209723. 0.458937
\(677\) −118882. + 118882.i −0.259382 + 0.259382i −0.824803 0.565421i \(-0.808714\pi\)
0.565421 + 0.824803i \(0.308714\pi\)
\(678\) 0 0
\(679\) 334906.i 0.726412i
\(680\) −130368. + 363787.i −0.281939 + 0.786737i
\(681\) 0 0
\(682\) 83403.7 83403.7i 0.179315 0.179315i
\(683\) 464368. + 464368.i 0.995453 + 0.995453i 0.999990 0.00453640i \(-0.00144399\pi\)
−0.00453640 + 0.999990i \(0.501444\pi\)
\(684\) 0 0
\(685\) −386975. 819240.i −0.824712 1.74594i
\(686\) −995993. −2.11645
\(687\) 0 0
\(688\) −1889.11 1889.11i −0.00399098 0.00399098i
\(689\) 834.698i 0.00175829i
\(690\) 0 0
\(691\) 112733. 0.236099 0.118050 0.993008i \(-0.462336\pi\)
0.118050 + 0.993008i \(0.462336\pi\)
\(692\) 197955. 197955.i 0.413384 0.413384i
\(693\) 0 0
\(694\) 207899.i 0.431651i
\(695\) 388425. + 139198.i 0.804152 + 0.288179i
\(696\) 0 0
\(697\) −210978. + 210978.i −0.434282 + 0.434282i
\(698\) 154354. + 154354.i 0.316817 + 0.316817i
\(699\) 0 0
\(700\) −41006.4 420616.i −0.0836866 0.858400i
\(701\) −540863. −1.10065 −0.550327 0.834949i \(-0.685497\pi\)
−0.550327 + 0.834949i \(0.685497\pi\)
\(702\) 0 0
\(703\) −169695. 169695.i −0.343366 0.343366i
\(704\) 217380.i 0.438606i
\(705\) 0 0
\(706\) 64394.5 0.129193
\(707\) 485688. 485688.i 0.971669 0.971669i
\(708\) 0 0
\(709\) 209535.i 0.416835i 0.978040 + 0.208418i \(0.0668313\pi\)
−0.978040 + 0.208418i \(0.933169\pi\)
\(710\) 249762. + 528755.i 0.495462 + 1.04891i
\(711\) 0 0
\(712\) 340742. 340742.i 0.672150 0.672150i
\(713\) −131804. 131804.i −0.259269 0.259269i
\(714\) 0 0
\(715\) −1773.84 + 837.890i −0.00346979 + 0.00163898i
\(716\) 320948. 0.626050
\(717\) 0 0
\(718\) −96676.7 96676.7i −0.187531 0.187531i
\(719\) 579641.i 1.12125i 0.828071 + 0.560623i \(0.189438\pi\)
−0.828071 + 0.560623i \(0.810562\pi\)
\(720\) 0 0
\(721\) 603861. 1.16163
\(722\) 124417. 124417.i 0.238674 0.238674i
\(723\) 0 0
\(724\) 223127.i 0.425672i
\(725\) 215982. 262644.i 0.410905 0.499680i
\(726\) 0 0
\(727\) 666638. 666638.i 1.26131 1.26131i 0.310848 0.950460i \(-0.399387\pi\)
0.950460 0.310848i \(-0.100613\pi\)
\(728\) 6221.74 + 6221.74i 0.0117395 + 0.0117395i
\(729\) 0 0
\(730\) −68102.5 + 190037.i −0.127796 + 0.356609i
\(731\) 7109.24 0.0133042
\(732\) 0 0
\(733\) 184382. + 184382.i 0.343171 + 0.343171i 0.857558 0.514387i \(-0.171981\pi\)
−0.514387 + 0.857558i \(0.671981\pi\)
\(734\) 240212.i 0.445865i
\(735\) 0 0
\(736\) −222916. −0.411514
\(737\) 214409. 214409.i 0.394737 0.394737i
\(738\) 0 0
\(739\) 175164.i 0.320742i 0.987057 + 0.160371i \(0.0512691\pi\)
−0.987057 + 0.160371i \(0.948731\pi\)
\(740\) −150017. + 70861.8i −0.273953 + 0.129404i
\(741\) 0 0
\(742\) 114924. 114924.i 0.208740 0.208740i
\(743\) −540487. 540487.i −0.979057 0.979057i 0.0207283 0.999785i \(-0.493402\pi\)
−0.999785 + 0.0207283i \(0.993402\pi\)
\(744\) 0 0
\(745\) −249443. 89391.4i −0.449426 0.161058i
\(746\) 691463. 1.24249
\(747\) 0 0
\(748\) 65913.1 + 65913.1i 0.117806 + 0.117806i
\(749\) 1.14649e6i 2.04365i
\(750\) 0 0
\(751\) −588360. −1.04319 −0.521595 0.853193i \(-0.674663\pi\)
−0.521595 + 0.853193i \(0.674663\pi\)
\(752\) −38578.9 + 38578.9i −0.0682204 + 0.0682204i
\(753\) 0 0
\(754\) 2227.20i 0.00391756i
\(755\) −258164. + 720395.i −0.452899 + 1.26380i
\(756\) 0 0
\(757\) 497479. 497479.i 0.868126 0.868126i −0.124139 0.992265i \(-0.539617\pi\)
0.992265 + 0.124139i \(0.0396168\pi\)
\(758\) −85956.5 85956.5i −0.149603 0.149603i
\(759\) 0 0
\(760\) 194744. + 412280.i 0.337161 + 0.713781i
\(761\) −968464. −1.67230 −0.836150 0.548501i \(-0.815199\pi\)
−0.836150 + 0.548501i \(0.815199\pi\)
\(762\) 0 0
\(763\) −519638. 519638.i −0.892589 0.892589i
\(764\) 32087.9i 0.0549736i
\(765\) 0 0
\(766\) −300231. −0.511679
\(767\) 3404.32 3404.32i 0.00578682 0.00578682i
\(768\) 0 0
\(769\) 63796.8i 0.107881i −0.998544 0.0539406i \(-0.982822\pi\)
0.998544 0.0539406i \(-0.0171782\pi\)
\(770\) 359593. + 128865.i 0.606499 + 0.217348i
\(771\) 0 0
\(772\) 40212.9 40212.9i 0.0674731 0.0674731i
\(773\) −142221. 142221.i −0.238015 0.238015i 0.578013 0.816028i \(-0.303828\pi\)
−0.816028 + 0.578013i \(0.803828\pi\)
\(774\) 0 0
\(775\) 343133. + 282171.i 0.571293 + 0.469796i
\(776\) 249805. 0.414838
\(777\) 0 0
\(778\) 399827. + 399827.i 0.660561 + 0.660561i
\(779\) 352043.i 0.580124i
\(780\) 0 0
\(781\) 448391. 0.735114
\(782\) −122788. + 122788.i −0.200791 + 0.200791i
\(783\) 0 0
\(784\) 514015.i 0.836264i
\(785\) −264353. 559644.i −0.428988 0.908181i
\(786\) 0 0
\(787\) −171318. + 171318.i −0.276601 + 0.276601i −0.831751 0.555150i \(-0.812661\pi\)
0.555150 + 0.831751i \(0.312661\pi\)
\(788\) 82162.1 + 82162.1i 0.132318 + 0.132318i
\(789\) 0 0
\(790\) 271609. 128297.i 0.435201 0.205571i
\(791\) −243166. −0.388642
\(792\) 0 0
\(793\) 4857.93 + 4857.93i 0.00772512 + 0.00772512i
\(794\) 736857.i 1.16881i
\(795\) 0 0
\(796\) −132146. −0.208559
\(797\) 396832. 396832.i 0.624727 0.624727i −0.322010 0.946736i \(-0.604358\pi\)
0.946736 + 0.322010i \(0.104358\pi\)
\(798\) 0 0
\(799\) 145183.i 0.227417i
\(800\) 528777. 51551.2i 0.826214 0.0805487i
\(801\) 0 0
\(802\) −433357. + 433357.i −0.673747 + 0.673747i
\(803\) 109453. + 109453.i 0.169744 + 0.169744i
\(804\) 0 0
\(805\) 203648. 568271.i 0.314260 0.876928i
\(806\) −2909.74 −0.00447902
\(807\) 0 0
\(808\) 362274. + 362274.i 0.554899 + 0.554899i
\(809\) 571851.i 0.873748i 0.899523 + 0.436874i \(0.143914\pi\)
−0.899523 + 0.436874i \(0.856086\pi\)
\(810\) 0 0
\(811\) −851039. −1.29392 −0.646960 0.762524i \(-0.723960\pi\)
−0.646960 + 0.762524i \(0.723960\pi\)
\(812\) −260136. + 260136.i −0.394538 + 0.394538i
\(813\) 0 0
\(814\) 149963.i 0.226326i
\(815\) −440396. + 208025.i −0.663023 + 0.313185i
\(816\) 0 0
\(817\) 5931.33 5931.33i 0.00888603 0.00888603i
\(818\) −552843. 552843.i −0.826220 0.826220i
\(819\) 0 0
\(820\) 229114. + 82106.2i 0.340740 + 0.122109i
\(821\) 422213. 0.626391 0.313195 0.949689i \(-0.398601\pi\)
0.313195 + 0.949689i \(0.398601\pi\)
\(822\) 0 0
\(823\) −742417. 742417.i −1.09609 1.09609i −0.994863 0.101231i \(-0.967722\pi\)
−0.101231 0.994863i \(-0.532278\pi\)
\(824\) 450418.i 0.663379i
\(825\) 0 0
\(826\) −937440. −1.37399
\(827\) 422050. 422050.i 0.617097 0.617097i −0.327689 0.944786i \(-0.606270\pi\)
0.944786 + 0.327689i \(0.106270\pi\)
\(828\) 0 0
\(829\) 310239.i 0.451427i 0.974194 + 0.225713i \(0.0724712\pi\)
−0.974194 + 0.225713i \(0.927529\pi\)
\(830\) 319451. 891414.i 0.463712 1.29397i
\(831\) 0 0
\(832\) −3791.91 + 3791.91i −0.00547787 + 0.00547787i
\(833\) 967190. + 967190.i 1.39387 + 1.39387i
\(834\) 0 0
\(835\) 333372. + 705761.i 0.478142 + 1.01224i
\(836\) 109984. 0.157369
\(837\) 0 0
\(838\) 261321. + 261321.i 0.372123 + 0.372123i
\(839\) 1.20455e6i 1.71120i 0.517636 + 0.855601i \(0.326812\pi\)
−0.517636 + 0.855601i \(0.673188\pi\)
\(840\) 0 0
\(841\) 411268. 0.581477
\(842\) −579683. + 579683.i −0.817648 + 0.817648i
\(843\) 0 0
\(844\) 91469.1i 0.128407i
\(845\) −672121. 240864.i −0.941313 0.337333i
\(846\) 0 0
\(847\) −746155. + 746155.i −1.04007 + 1.04007i
\(848\) 35878.8 + 35878.8i 0.0498938 + 0.0498938i
\(849\) 0 0
\(850\) 262870. 319661.i 0.363833 0.442438i
\(851\) −236989. −0.327242
\(852\) 0 0
\(853\) 460012. + 460012.i 0.632224 + 0.632224i 0.948625 0.316402i \(-0.102475\pi\)
−0.316402 + 0.948625i \(0.602475\pi\)
\(854\) 1.33772e6i 1.83421i
\(855\) 0 0
\(856\) 855163. 1.16708
\(857\) 398341. 398341.i 0.542367 0.542367i −0.381855 0.924222i \(-0.624715\pi\)
0.924222 + 0.381855i \(0.124715\pi\)
\(858\) 0 0
\(859\) 323065.i 0.437828i 0.975744 + 0.218914i \(0.0702514\pi\)
−0.975744 + 0.218914i \(0.929749\pi\)
\(860\) −2476.83 5243.53i −0.00334887 0.00708968i
\(861\) 0 0
\(862\) −209300. + 209300.i −0.281679 + 0.281679i
\(863\) −414986. 414986.i −0.557200 0.557200i 0.371309 0.928509i \(-0.378909\pi\)
−0.928509 + 0.371309i \(0.878909\pi\)
\(864\) 0 0
\(865\) −861755. + 407058.i −1.15173 + 0.544031i
\(866\) −482722. −0.643667
\(867\) 0 0
\(868\) −339856. 339856.i −0.451082 0.451082i
\(869\) 230328.i 0.305005i
\(870\) 0 0
\(871\) −7480.16 −0.00985995
\(872\) 387597. 387597.i 0.509738 0.509738i
\(873\) 0 0
\(874\) 204888.i 0.268221i
\(875\) −351655. + 1.39509e6i −0.459304 + 1.82216i
\(876\) 0 0
\(877\) −257142. + 257142.i −0.334328 + 0.334328i −0.854228 0.519899i \(-0.825969\pi\)
0.519899 + 0.854228i \(0.325969\pi\)
\(878\) −340477. 340477.i −0.441671 0.441671i
\(879\) 0 0
\(880\) −40231.1 + 112263.i −0.0519514 + 0.144968i
\(881\) 831152. 1.07085 0.535425 0.844583i \(-0.320152\pi\)
0.535425 + 0.844583i \(0.320152\pi\)
\(882\) 0 0
\(883\) 908952. + 908952.i 1.16579 + 1.16579i 0.983187 + 0.182601i \(0.0584518\pi\)
0.182601 + 0.983187i \(0.441548\pi\)
\(884\) 2299.53i 0.00294263i
\(885\) 0 0
\(886\) 488126. 0.621820
\(887\) 93115.5 93115.5i 0.118352 0.118352i −0.645450 0.763802i \(-0.723330\pi\)
0.763802 + 0.645450i \(0.223330\pi\)
\(888\) 0 0
\(889\) 408814.i 0.517276i
\(890\) −466638. + 220421.i −0.589115 + 0.278274i
\(891\) 0 0
\(892\) −193864. + 193864.i −0.243651 + 0.243651i
\(893\) −121128. 121128.i −0.151894 0.151894i
\(894\) 0 0
\(895\) −1.02858e6 368606.i −1.28408 0.460167i
\(896\) −208176. −0.259307
\(897\) 0 0
\(898\) −712658. 712658.i −0.883748 0.883748i
\(899\) 386728.i 0.478505i
\(900\) 0 0
\(901\) −135022. −0.166324
\(902\) −155554. + 155554.i −0.191191 + 0.191191i
\(903\) 0 0
\(904\) 181377.i 0.221945i
\(905\) 256259. 715079.i 0.312883 0.873086i
\(906\) 0 0
\(907\) −62370.3 + 62370.3i −0.0758164 + 0.0758164i −0.743998 0.668182i \(-0.767073\pi\)
0.668182 + 0.743998i \(0.267073\pi\)
\(908\) −236954. 236954.i −0.287404 0.287404i
\(909\) 0 0
\(910\) −4024.74 8520.52i −0.00486021 0.0102892i
\(911\) 1.18436e6 1.42708 0.713540 0.700615i \(-0.247091\pi\)
0.713540 + 0.700615i \(0.247091\pi\)
\(912\) 0 0
\(913\) −513414. 513414.i −0.615923 0.615923i
\(914\) 677411.i 0.810886i
\(915\) 0 0
\(916\) 500220. 0.596170
\(917\) −1.86970e6 + 1.86970e6i −2.22349 + 2.22349i
\(918\) 0 0
\(919\) 773358.i 0.915692i −0.889031 0.457846i \(-0.848621\pi\)
0.889031 0.457846i \(-0.151379\pi\)
\(920\) 423872. + 151901.i 0.500794 + 0.179467i
\(921\) 0 0
\(922\) 590199. 590199.i 0.694283 0.694283i
\(923\) −7821.58 7821.58i −0.00918103 0.00918103i
\(924\) 0 0
\(925\) 562159. 54805.6i 0.657016 0.0640533i
\(926\) −141828. −0.165401
\(927\) 0 0
\(928\) −327030. 327030.i −0.379744 0.379744i
\(929\) 881163.i 1.02100i −0.859878 0.510499i \(-0.829461\pi\)
0.859878 0.510499i \(-0.170539\pi\)
\(930\) 0 0
\(931\) 1.61388e6 1.86196
\(932\) −484200. + 484200.i −0.557433 + 0.557433i
\(933\) 0 0
\(934\) 520063.i 0.596159i
\(935\) −135538. 286939.i −0.155038 0.328221i
\(936\) 0 0
\(937\) 992967. 992967.i 1.13098 1.13098i 0.140967 0.990014i \(-0.454979\pi\)
0.990014 0.140967i \(-0.0450212\pi\)
\(938\) 1.02990e6 + 1.02990e6i 1.17055 + 1.17055i
\(939\) 0 0
\(940\) −107082. + 50581.1i −0.121188 + 0.0572444i
\(941\) 1.13615e6 1.28309 0.641545 0.767085i \(-0.278294\pi\)
0.641545 + 0.767085i \(0.278294\pi\)
\(942\) 0 0
\(943\) 245824. + 245824.i 0.276440 + 0.276440i
\(944\) 292664.i 0.328417i
\(945\) 0 0
\(946\) 5241.64 0.00585713
\(947\) 208361. 208361.i 0.232336 0.232336i −0.581331 0.813667i \(-0.697468\pi\)
0.813667 + 0.581331i \(0.197468\pi\)
\(948\) 0 0
\(949\) 3818.51i 0.00423996i
\(950\) −47382.0 486013.i −0.0525009 0.538518i
\(951\) 0 0
\(952\) −1.00644e6 + 1.00644e6i −1.11049 + 1.11049i
\(953\) 761064. + 761064.i 0.837983 + 0.837983i 0.988593 0.150610i \(-0.0481237\pi\)
−0.150610 + 0.988593i \(0.548124\pi\)
\(954\) 0 0
\(955\) −36852.6 + 102835.i −0.0404074 + 0.112755i
\(956\) 476011. 0.520836
\(957\) 0 0
\(958\) −516717. 516717.i −0.563018 0.563018i
\(959\) 3.33706e6i 3.62850i
\(960\) 0 0
\(961\) −418277. −0.452916
\(962\) −2615.90 + 2615.90i −0.00282664 + 0.00282664i
\(963\) 0 0
\(964\) 437656.i 0.470954i
\(965\) −175058. + 82690.4i −0.187987 + 0.0887974i
\(966\) 0 0
\(967\) 456976. 456976.i 0.488698 0.488698i −0.419197 0.907895i \(-0.637688\pi\)
0.907895 + 0.419197i \(0.137688\pi\)
\(968\) −556556. 556556.i −0.593961 0.593961i
\(969\) 0 0
\(970\) −251849. 90253.6i −0.267668 0.0959227i
\(971\) −1.23029e6 −1.30488 −0.652439 0.757841i \(-0.726254\pi\)
−0.652439 + 0.757841i \(0.726254\pi\)
\(972\) 0 0
\(973\) 1.07460e6 + 1.07460e6i 1.13507 + 1.13507i
\(974\) 663136.i 0.699012i
\(975\) 0 0
\(976\) 417628. 0.438420
\(977\) −120924. + 120924.i −0.126684 + 0.126684i −0.767606 0.640922i \(-0.778552\pi\)
0.640922 + 0.767606i \(0.278552\pi\)
\(978\) 0 0
\(979\) 395715.i 0.412873i
\(980\) 376401. 1.05033e6i 0.391921 1.09364i
\(981\) 0 0
\(982\) 34489.4 34489.4i 0.0357653 0.0357653i
\(983\) 607621. + 607621.i 0.628819 + 0.628819i 0.947771 0.318952i \(-0.103331\pi\)
−0.318952 + 0.947771i \(0.603331\pi\)
\(984\) 0 0
\(985\) −168951. 357676.i −0.174136 0.368652i
\(986\) −360275. −0.370578
\(987\) 0 0
\(988\) −1918.53 1918.53i −0.00196542 0.00196542i
\(989\) 8283.45i 0.00846873i
\(990\) 0 0
\(991\) −32696.1 −0.0332927 −0.0166464 0.999861i \(-0.505299\pi\)
−0.0166464 + 0.999861i \(0.505299\pi\)
\(992\) 427250. 427250.i 0.434169 0.434169i
\(993\) 0 0
\(994\) 2.15381e6i 2.17989i
\(995\) 423504. + 151769.i 0.427771 + 0.153298i
\(996\) 0 0
\(997\) 196213. 196213.i 0.197395 0.197395i −0.601487 0.798882i \(-0.705425\pi\)
0.798882 + 0.601487i \(0.205425\pi\)
\(998\) 421160. + 421160.i 0.422850 + 0.422850i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 45.5.g.e.28.3 8
3.2 odd 2 15.5.f.a.13.2 yes 8
5.2 odd 4 inner 45.5.g.e.37.3 8
5.3 odd 4 225.5.g.m.82.2 8
5.4 even 2 225.5.g.m.118.2 8
12.11 even 2 240.5.bg.c.193.2 8
15.2 even 4 15.5.f.a.7.2 8
15.8 even 4 75.5.f.e.7.3 8
15.14 odd 2 75.5.f.e.43.3 8
60.47 odd 4 240.5.bg.c.97.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.5.f.a.7.2 8 15.2 even 4
15.5.f.a.13.2 yes 8 3.2 odd 2
45.5.g.e.28.3 8 1.1 even 1 trivial
45.5.g.e.37.3 8 5.2 odd 4 inner
75.5.f.e.7.3 8 15.8 even 4
75.5.f.e.43.3 8 15.14 odd 2
225.5.g.m.82.2 8 5.3 odd 4
225.5.g.m.118.2 8 5.4 even 2
240.5.bg.c.97.2 8 60.47 odd 4
240.5.bg.c.193.2 8 12.11 even 2