Properties

Label 24.33.h.b.5.1
Level $24$
Weight $33$
Character 24.5
Self dual yes
Analytic conductor $155.680$
Analytic rank $0$
Dimension $1$
CM discriminant -24
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [24,33,Mod(5,24)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("24.5"); S:= CuspForms(chi, 33); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(24, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 33, names="a")
 
Level: \( N \) \(=\) \( 24 = 2^{3} \cdot 3 \)
Weight: \( k \) \(=\) \( 33 \)
Character orbit: \([\chi]\) \(=\) 24.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,65536] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(155.679972341\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 5.1
Character \(\chi\) \(=\) 24.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+65536.0 q^{2} +4.30467e7 q^{3} +4.29497e9 q^{4} -3.04196e11 q^{5} +2.82111e12 q^{6} +6.55819e13 q^{7} +2.81475e14 q^{8} +1.85302e15 q^{9} -1.99358e16 q^{10} +2.75260e16 q^{11} +1.84884e17 q^{12} +4.29797e18 q^{14} -1.30947e19 q^{15} +1.84467e19 q^{16} +1.21440e20 q^{18} -1.30651e21 q^{20} +2.82308e21 q^{21} +1.80394e21 q^{22} +1.21166e22 q^{24} +6.92524e22 q^{25} +7.97664e22 q^{27} +2.81672e23 q^{28} -3.02633e23 q^{29} -8.58172e23 q^{30} -6.19545e23 q^{31} +1.20893e24 q^{32} +1.18490e24 q^{33} -1.99498e25 q^{35} +7.95866e24 q^{36} -8.56237e25 q^{40} +1.85014e26 q^{42} +1.18223e26 q^{44} -5.63682e26 q^{45} +7.94072e26 q^{48} +3.19655e27 q^{49} +4.53853e27 q^{50} +1.28843e27 q^{53} +5.22757e27 q^{54} -8.37330e27 q^{55} +1.84597e28 q^{56} -1.98333e28 q^{58} +9.12486e27 q^{59} -5.62411e28 q^{60} -4.06025e28 q^{62} +1.21525e29 q^{63} +7.92282e28 q^{64} +7.76538e28 q^{66} -1.30743e30 q^{70} +5.21579e29 q^{72} +1.00275e30 q^{73} +2.98109e30 q^{75} +1.80520e30 q^{77} +4.43751e30 q^{79} -5.61143e30 q^{80} +3.43368e30 q^{81} -7.90877e30 q^{83} +1.21251e31 q^{84} -1.30273e31 q^{87} +7.74787e30 q^{88} -3.69415e31 q^{90} -2.66694e31 q^{93} +5.20403e31 q^{96} -1.22066e32 q^{97} +2.09489e32 q^{98} +5.10062e31 q^{99} +O(q^{100})\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/24\mathbb{Z}\right)^\times\).

\(n\) \(7\) \(13\) \(17\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 65536.0 1.00000
\(3\) 4.30467e7 1.00000
\(4\) 4.29497e9 1.00000
\(5\) −3.04196e11 −1.99358 −0.996791 0.0800483i \(-0.974493\pi\)
−0.996791 + 0.0800483i \(0.974493\pi\)
\(6\) 2.82111e12 1.00000
\(7\) 6.55819e13 1.97340 0.986700 0.162552i \(-0.0519726\pi\)
0.986700 + 0.162552i \(0.0519726\pi\)
\(8\) 2.81475e14 1.00000
\(9\) 1.85302e15 1.00000
\(10\) −1.99358e16 −1.99358
\(11\) 2.75260e16 0.599045 0.299523 0.954089i \(-0.403173\pi\)
0.299523 + 0.954089i \(0.403173\pi\)
\(12\) 1.84884e17 1.00000
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 4.29797e18 1.97340
\(15\) −1.30947e19 −1.99358
\(16\) 1.84467e19 1.00000
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 1.21440e20 1.00000
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) −1.30651e21 −1.99358
\(21\) 2.82308e21 1.97340
\(22\) 1.80394e21 0.599045
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 1.21166e22 1.00000
\(25\) 6.92524e22 2.97437
\(26\) 0 0
\(27\) 7.97664e22 1.00000
\(28\) 2.81672e23 1.97340
\(29\) −3.02633e23 −1.20934 −0.604669 0.796477i \(-0.706695\pi\)
−0.604669 + 0.796477i \(0.706695\pi\)
\(30\) −8.58172e23 −1.99358
\(31\) −6.19545e23 −0.851699 −0.425849 0.904794i \(-0.640025\pi\)
−0.425849 + 0.904794i \(0.640025\pi\)
\(32\) 1.20893e24 1.00000
\(33\) 1.18490e24 0.599045
\(34\) 0 0
\(35\) −1.99498e25 −3.93413
\(36\) 7.95866e24 1.00000
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −8.56237e25 −1.99358
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 1.85014e26 1.97340
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 1.18223e26 0.599045
\(45\) −5.63682e26 −1.99358
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 7.94072e26 1.00000
\(49\) 3.19655e27 2.89431
\(50\) 4.53853e27 2.97437
\(51\) 0 0
\(52\) 0 0
\(53\) 1.28843e27 0.332389 0.166195 0.986093i \(-0.446852\pi\)
0.166195 + 0.986093i \(0.446852\pi\)
\(54\) 5.22757e27 1.00000
\(55\) −8.37330e27 −1.19425
\(56\) 1.84597e28 1.97340
\(57\) 0 0
\(58\) −1.98333e28 −1.20934
\(59\) 9.12486e27 0.423247 0.211624 0.977351i \(-0.432125\pi\)
0.211624 + 0.977351i \(0.432125\pi\)
\(60\) −5.62411e28 −1.99358
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) −4.06025e28 −0.851699
\(63\) 1.21525e29 1.97340
\(64\) 7.92282e28 1.00000
\(65\) 0 0
\(66\) 7.76538e28 0.599045
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −1.30743e30 −3.93413
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 5.21579e29 1.00000
\(73\) 1.00275e30 1.54180 0.770900 0.636956i \(-0.219807\pi\)
0.770900 + 0.636956i \(0.219807\pi\)
\(74\) 0 0
\(75\) 2.98109e30 2.97437
\(76\) 0 0
\(77\) 1.80520e30 1.18216
\(78\) 0 0
\(79\) 4.43751e30 1.92799 0.963997 0.265913i \(-0.0856733\pi\)
0.963997 + 0.265913i \(0.0856733\pi\)
\(80\) −5.61143e30 −1.99358
\(81\) 3.43368e30 1.00000
\(82\) 0 0
\(83\) −7.90877e30 −1.55905 −0.779524 0.626372i \(-0.784539\pi\)
−0.779524 + 0.626372i \(0.784539\pi\)
\(84\) 1.21251e31 1.97340
\(85\) 0 0
\(86\) 0 0
\(87\) −1.30273e31 −1.20934
\(88\) 7.74787e30 0.599045
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) −3.69415e31 −1.99358
\(91\) 0 0
\(92\) 0 0
\(93\) −2.66694e31 −0.851699
\(94\) 0 0
\(95\) 0 0
\(96\) 5.20403e31 1.00000
\(97\) −1.22066e32 −1.98722 −0.993608 0.112883i \(-0.963992\pi\)
−0.993608 + 0.112883i \(0.963992\pi\)
\(98\) 2.09489e32 2.89431
\(99\) 5.10062e31 0.599045
\(100\) 2.97437e32 2.97437
\(101\) 1.73110e32 1.47632 0.738161 0.674624i \(-0.235694\pi\)
0.738161 + 0.674624i \(0.235694\pi\)
\(102\) 0 0
\(103\) 2.28837e32 1.42603 0.713017 0.701147i \(-0.247328\pi\)
0.713017 + 0.701147i \(0.247328\pi\)
\(104\) 0 0
\(105\) −8.58772e32 −3.93413
\(106\) 8.44385e31 0.332389
\(107\) 5.57857e32 1.88965 0.944827 0.327569i \(-0.106229\pi\)
0.944827 + 0.327569i \(0.106229\pi\)
\(108\) 3.42594e32 1.00000
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) −5.48753e32 −1.19425
\(111\) 0 0
\(112\) 1.20977e33 1.97340
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1.29980e33 −1.20934
\(117\) 0 0
\(118\) 5.98007e32 0.423247
\(119\) 0 0
\(120\) −3.68582e33 −1.99358
\(121\) −1.35370e33 −0.641145
\(122\) 0 0
\(123\) 0 0
\(124\) −2.66093e33 −0.851699
\(125\) −1.39837e34 −3.93607
\(126\) 7.96423e33 1.97340
\(127\) 6.83665e33 1.49274 0.746369 0.665532i \(-0.231795\pi\)
0.746369 + 0.665532i \(0.231795\pi\)
\(128\) 5.19230e33 1.00000
\(129\) 0 0
\(130\) 0 0
\(131\) 2.23103e33 0.296595 0.148298 0.988943i \(-0.452621\pi\)
0.148298 + 0.988943i \(0.452621\pi\)
\(132\) 5.08912e33 0.599045
\(133\) 0 0
\(134\) 0 0
\(135\) −2.42647e34 −1.99358
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) −8.56836e34 −3.93413
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 3.41822e34 1.00000
\(145\) 9.20598e34 2.41091
\(146\) 6.57164e34 1.54180
\(147\) 1.37601e35 2.89431
\(148\) 0 0
\(149\) −9.91070e34 −1.67928 −0.839642 0.543140i \(-0.817235\pi\)
−0.839642 + 0.543140i \(0.817235\pi\)
\(150\) 1.95369e35 2.97437
\(151\) −1.25719e35 −1.72096 −0.860479 0.509485i \(-0.829836\pi\)
−0.860479 + 0.509485i \(0.829836\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 1.18306e35 1.18216
\(155\) 1.88464e35 1.69793
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 2.90817e35 1.92799
\(159\) 5.54627e34 0.332389
\(160\) −3.67751e35 −1.99358
\(161\) 0 0
\(162\) 2.25030e35 1.00000
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) −3.60443e35 −1.19425
\(166\) −5.18309e35 −1.55905
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 7.94628e35 1.97340
\(169\) 4.42779e35 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −6.86864e35 −1.06692 −0.533462 0.845824i \(-0.679109\pi\)
−0.533462 + 0.845824i \(0.679109\pi\)
\(174\) −8.53760e35 −1.20934
\(175\) 4.54170e36 5.86962
\(176\) 5.07764e35 0.599045
\(177\) 3.92795e35 0.423247
\(178\) 0 0
\(179\) 3.70724e35 0.333735 0.166868 0.985979i \(-0.446635\pi\)
0.166868 + 0.985979i \(0.446635\pi\)
\(180\) −2.42100e36 −1.99358
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) −1.74781e36 −0.851699
\(187\) 0 0
\(188\) 0 0
\(189\) 5.23123e36 1.97340
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 3.41051e36 1.00000
\(193\) 3.79055e36 1.02279 0.511393 0.859347i \(-0.329130\pi\)
0.511393 + 0.859347i \(0.329130\pi\)
\(194\) −7.99969e36 −1.98722
\(195\) 0 0
\(196\) 1.37291e37 2.89431
\(197\) −3.84873e36 −0.747925 −0.373963 0.927444i \(-0.622001\pi\)
−0.373963 + 0.927444i \(0.622001\pi\)
\(198\) 3.34274e36 0.599045
\(199\) −7.44756e36 −1.23130 −0.615652 0.788018i \(-0.711107\pi\)
−0.615652 + 0.788018i \(0.711107\pi\)
\(200\) 1.94928e37 2.97437
\(201\) 0 0
\(202\) 1.13450e37 1.47632
\(203\) −1.98472e37 −2.38651
\(204\) 0 0
\(205\) 0 0
\(206\) 1.49970e37 1.42603
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) −5.62805e37 −3.93413
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 5.53376e36 0.332389
\(213\) 0 0
\(214\) 3.65597e37 1.88965
\(215\) 0 0
\(216\) 2.24523e37 1.00000
\(217\) −4.06309e37 −1.68074
\(218\) 0 0
\(219\) 4.31652e37 1.54180
\(220\) −3.59631e37 −1.19425
\(221\) 0 0
\(222\) 0 0
\(223\) −5.44407e37 −1.45561 −0.727806 0.685783i \(-0.759460\pi\)
−0.727806 + 0.685783i \(0.759460\pi\)
\(224\) 7.92836e37 1.97340
\(225\) 1.28326e38 2.97437
\(226\) 0 0
\(227\) 2.67083e37 0.537319 0.268660 0.963235i \(-0.413419\pi\)
0.268660 + 0.963235i \(0.413419\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 7.77081e37 1.18216
\(232\) −8.51835e37 −1.20934
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 3.91910e37 0.423247
\(237\) 1.91020e38 1.92799
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) −2.41554e38 −1.99358
\(241\) −1.24628e38 −0.962373 −0.481186 0.876618i \(-0.659794\pi\)
−0.481186 + 0.876618i \(0.659794\pi\)
\(242\) −8.87160e37 −0.641145
\(243\) 1.47809e38 1.00000
\(244\) 0 0
\(245\) −9.72380e38 −5.77004
\(246\) 0 0
\(247\) 0 0
\(248\) −1.74387e38 −0.851699
\(249\) −3.40447e38 −1.55905
\(250\) −9.16437e38 −3.93607
\(251\) 4.25879e38 1.71596 0.857979 0.513685i \(-0.171720\pi\)
0.857979 + 0.513685i \(0.171720\pi\)
\(252\) 5.21944e38 1.97340
\(253\) 0 0
\(254\) 4.48047e38 1.49274
\(255\) 0 0
\(256\) 3.40282e38 1.00000
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −5.60784e38 −1.20934
\(262\) 1.46213e38 0.296595
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 3.33520e38 0.599045
\(265\) −3.91936e38 −0.662645
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −9.45013e38 −1.25719 −0.628596 0.777732i \(-0.716370\pi\)
−0.628596 + 0.777732i \(0.716370\pi\)
\(270\) −1.59021e39 −1.99358
\(271\) −2.43999e38 −0.288323 −0.144161 0.989554i \(-0.546048\pi\)
−0.144161 + 0.989554i \(0.546048\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.90624e39 1.78178
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) −1.14803e39 −0.851699
\(280\) −5.61536e39 −3.93413
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 2.24016e39 1.00000
\(289\) 2.36791e39 1.00000
\(290\) 6.03323e39 2.41091
\(291\) −5.25452e39 −1.98722
\(292\) 4.30679e39 1.54180
\(293\) 2.88026e39 0.976225 0.488112 0.872781i \(-0.337686\pi\)
0.488112 + 0.872781i \(0.337686\pi\)
\(294\) 9.01783e39 2.89431
\(295\) −2.77575e39 −0.843778
\(296\) 0 0
\(297\) 2.19565e39 0.599045
\(298\) −6.49508e39 −1.67928
\(299\) 0 0
\(300\) 1.28037e40 2.97437
\(301\) 0 0
\(302\) −8.23913e39 −1.72096
\(303\) 7.45184e39 1.47632
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 7.75329e39 1.18216
\(309\) 9.85067e39 1.42603
\(310\) 1.23511e40 1.69793
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) −1.53089e40 −1.80399 −0.901995 0.431747i \(-0.857897\pi\)
−0.901995 + 0.431747i \(0.857897\pi\)
\(314\) 0 0
\(315\) −3.69673e40 −3.93413
\(316\) 1.90590e40 1.92799
\(317\) −1.77592e40 −1.70795 −0.853977 0.520310i \(-0.825816\pi\)
−0.853977 + 0.520310i \(0.825816\pi\)
\(318\) 3.63480e39 0.332389
\(319\) −8.33025e39 −0.724448
\(320\) −2.41009e40 −1.99358
\(321\) 2.40139e40 1.88965
\(322\) 0 0
\(323\) 0 0
\(324\) 1.47476e40 1.00000
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) −2.36220e40 −1.19425
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) −3.39679e40 −1.55905
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 5.20767e40 1.97340
\(337\) −7.72477e39 −0.279130 −0.139565 0.990213i \(-0.544570\pi\)
−0.139565 + 0.990213i \(0.544570\pi\)
\(338\) 2.90180e40 1.00000
\(339\) 0 0
\(340\) 0 0
\(341\) −1.70536e40 −0.510206
\(342\) 0 0
\(343\) 1.37205e41 3.73823
\(344\) 0 0
\(345\) 0 0
\(346\) −4.50143e40 −1.06692
\(347\) −6.82564e40 −1.54480 −0.772400 0.635137i \(-0.780944\pi\)
−0.772400 + 0.635137i \(0.780944\pi\)
\(348\) −5.59520e40 −1.20934
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 2.97645e41 5.86962
\(351\) 0 0
\(352\) 3.32768e40 0.599045
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 2.57422e40 0.423247
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 2.42958e40 0.333735
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) −1.58662e41 −1.99358
\(361\) 8.31984e40 1.00000
\(362\) 0 0
\(363\) −5.82723e40 −0.641145
\(364\) 0 0
\(365\) −3.05034e41 −3.07370
\(366\) 0 0
\(367\) −1.24014e41 −1.14502 −0.572509 0.819898i \(-0.694030\pi\)
−0.572509 + 0.819898i \(0.694030\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 8.44976e40 0.655937
\(372\) −1.14544e41 −0.851699
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) −6.01953e41 −3.93607
\(376\) 0 0
\(377\) 0 0
\(378\) 3.42834e41 1.97340
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 2.94295e41 1.49274
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 2.23511e41 1.00000
\(385\) −5.49137e41 −2.35672
\(386\) 2.48417e41 1.02279
\(387\) 0 0
\(388\) −5.24267e41 −1.98722
\(389\) −3.80778e41 −1.38509 −0.692546 0.721374i \(-0.743511\pi\)
−0.692546 + 0.721374i \(0.743511\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 8.99750e41 2.89431
\(393\) 9.60384e40 0.296595
\(394\) −2.52231e41 −0.747925
\(395\) −1.34987e42 −3.84361
\(396\) 2.19070e41 0.599045
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) −4.88084e41 −1.23130
\(399\) 0 0
\(400\) 1.27748e42 2.97437
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 7.43504e41 1.47632
\(405\) −1.04451e42 −1.99358
\(406\) −1.30071e42 −2.38651
\(407\) 0 0
\(408\) 0 0
\(409\) −1.71620e41 −0.279895 −0.139947 0.990159i \(-0.544693\pi\)
−0.139947 + 0.990159i \(0.544693\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 9.82846e41 1.42603
\(413\) 5.98425e41 0.835236
\(414\) 0 0
\(415\) 2.40582e42 3.10809
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −6.34214e41 −0.702767 −0.351383 0.936232i \(-0.614289\pi\)
−0.351383 + 0.936232i \(0.614289\pi\)
\(420\) −3.68840e42 −3.93413
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 3.62661e41 0.332389
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 2.39598e42 1.88965
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 1.47143e42 1.00000
\(433\) −5.09860e40 −0.0333921 −0.0166961 0.999861i \(-0.505315\pi\)
−0.0166961 + 0.999861i \(0.505315\pi\)
\(434\) −2.66279e42 −1.68074
\(435\) 3.96287e42 2.41091
\(436\) 0 0
\(437\) 0 0
\(438\) 2.82887e42 1.54180
\(439\) 1.62930e42 0.856187 0.428094 0.903734i \(-0.359185\pi\)
0.428094 + 0.903734i \(0.359185\pi\)
\(440\) −2.35687e42 −1.19425
\(441\) 5.92328e42 2.89431
\(442\) 0 0
\(443\) 6.73222e40 0.0305984 0.0152992 0.999883i \(-0.495130\pi\)
0.0152992 + 0.999883i \(0.495130\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −3.56783e42 −1.45561
\(447\) −4.26623e42 −1.67928
\(448\) 5.19593e42 1.97340
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 8.40998e42 2.97437
\(451\) 0 0
\(452\) 0 0
\(453\) −5.41180e42 −1.72096
\(454\) 1.75036e42 0.537319
\(455\) 0 0
\(456\) 0 0
\(457\) −6.44665e42 −1.78105 −0.890523 0.454938i \(-0.849661\pi\)
−0.890523 + 0.454938i \(0.849661\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −7.74792e42 −1.86196 −0.930980 0.365069i \(-0.881045\pi\)
−0.930980 + 0.365069i \(0.881045\pi\)
\(462\) 5.09268e42 1.18216
\(463\) −2.96148e42 −0.664069 −0.332034 0.943267i \(-0.607735\pi\)
−0.332034 + 0.943267i \(0.607735\pi\)
\(464\) −5.58259e42 −1.20934
\(465\) 8.11274e42 1.69793
\(466\) 0 0
\(467\) 8.28054e42 1.61804 0.809018 0.587783i \(-0.199999\pi\)
0.809018 + 0.587783i \(0.199999\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 2.56842e42 0.423247
\(473\) 0 0
\(474\) 1.25187e43 1.92799
\(475\) 0 0
\(476\) 0 0
\(477\) 2.38749e42 0.332389
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) −1.58305e43 −1.99358
\(481\) 0 0
\(482\) −8.16763e42 −0.962373
\(483\) 0 0
\(484\) −5.81409e42 −0.641145
\(485\) 3.71319e43 3.96168
\(486\) 9.68680e42 1.00000
\(487\) 2.40159e42 0.239903 0.119952 0.992780i \(-0.461726\pi\)
0.119952 + 0.992780i \(0.461726\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −6.37259e43 −5.77004
\(491\) −2.98656e42 −0.261739 −0.130869 0.991400i \(-0.541777\pi\)
−0.130869 + 0.991400i \(0.541777\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −1.55159e43 −1.19425
\(496\) −1.14286e43 −0.851699
\(497\) 0 0
\(498\) −2.23115e43 −1.55905
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) −6.00596e43 −3.93607
\(501\) 0 0
\(502\) 2.79104e43 1.71596
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 3.42061e43 1.97340
\(505\) −5.26596e43 −2.94317
\(506\) 0 0
\(507\) 1.90602e43 1.00000
\(508\) 2.93632e43 1.49274
\(509\) −1.71605e43 −0.845368 −0.422684 0.906277i \(-0.638912\pi\)
−0.422684 + 0.906277i \(0.638912\pi\)
\(510\) 0 0
\(511\) 6.57624e43 3.04259
\(512\) 2.23007e43 1.00000
\(513\) 0 0
\(514\) 0 0
\(515\) −6.96113e43 −2.84292
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −2.95673e43 −1.06692
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) −3.67516e43 −1.20934
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 9.58219e42 0.296595
\(525\) 1.95505e44 5.86962
\(526\) 0 0
\(527\) 0 0
\(528\) 2.18576e43 0.599045
\(529\) 3.76089e43 1.00000
\(530\) −2.56859e43 −0.662645
\(531\) 1.69085e43 0.423247
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −1.69698e44 −3.76718
\(536\) 0 0
\(537\) 1.59584e43 0.333735
\(538\) −6.19324e43 −1.25719
\(539\) 8.79882e43 1.73382
\(540\) −1.04216e44 −1.99358
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) −1.59907e43 −0.288323
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 1.24927e44 1.78178
\(551\) 0 0
\(552\) 0 0
\(553\) 2.91020e44 3.80470
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −1.63372e44 −1.90324 −0.951620 0.307277i \(-0.900582\pi\)
−0.951620 + 0.307277i \(0.900582\pi\)
\(558\) −7.52373e43 −0.851699
\(559\) 0 0
\(560\) −3.68008e44 −3.93413
\(561\) 0 0
\(562\) 0 0
\(563\) −2.60358e42 −0.0255527 −0.0127763 0.999918i \(-0.504067\pi\)
−0.0127763 + 0.999918i \(0.504067\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 2.25187e44 1.97340
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 1.46811e44 1.00000
\(577\) −1.82222e44 −1.20722 −0.603610 0.797279i \(-0.706272\pi\)
−0.603610 + 0.797279i \(0.706272\pi\)
\(578\) 1.55183e44 1.00000
\(579\) 1.63171e44 1.02279
\(580\) 3.95394e44 2.41091
\(581\) −5.18672e44 −3.07663
\(582\) −3.44360e44 −1.98722
\(583\) 3.54653e43 0.199116
\(584\) 2.82250e44 1.54180
\(585\) 0 0
\(586\) 1.88761e44 0.976225
\(587\) 2.56467e44 1.29069 0.645345 0.763891i \(-0.276714\pi\)
0.645345 + 0.763891i \(0.276714\pi\)
\(588\) 5.90992e44 2.89431
\(589\) 0 0
\(590\) −1.81912e44 −0.843778
\(591\) −1.65675e44 −0.747925
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 1.43894e44 0.599045
\(595\) 0 0
\(596\) −4.25662e44 −1.67928
\(597\) −3.20593e44 −1.23130
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 8.39102e44 2.97437
\(601\) 1.51836e44 0.524063 0.262032 0.965059i \(-0.415608\pi\)
0.262032 + 0.965059i \(0.415608\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −5.39960e44 −1.72096
\(605\) 4.11790e44 1.27817
\(606\) 4.88364e44 1.47632
\(607\) −4.23515e44 −1.24695 −0.623476 0.781842i \(-0.714280\pi\)
−0.623476 + 0.781842i \(0.714280\pi\)
\(608\) 0 0
\(609\) −8.54357e44 −2.38651
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 5.08120e44 1.18216
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 6.45573e44 1.42603
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 8.09445e44 1.69793
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 2.64139e45 4.87250
\(626\) −1.00328e45 −1.80399
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) −2.42269e45 −3.93413
\(631\) −1.26311e45 −1.99974 −0.999868 0.0162208i \(-0.994837\pi\)
−0.999868 + 0.0162208i \(0.994837\pi\)
\(632\) 1.24905e45 1.92799
\(633\) 0 0
\(634\) −1.16387e45 −1.70795
\(635\) −2.07969e45 −2.97590
\(636\) 2.38210e44 0.332389
\(637\) 0 0
\(638\) −5.45931e44 −0.724448
\(639\) 0 0
\(640\) −1.57948e45 −1.99358
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 1.57378e45 1.88965
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 9.66496e44 1.00000
\(649\) 2.51171e44 0.253544
\(650\) 0 0
\(651\) −1.74903e45 −1.68074
\(652\) 0 0
\(653\) 1.49425e44 0.136713 0.0683567 0.997661i \(-0.478224\pi\)
0.0683567 + 0.997661i \(0.478224\pi\)
\(654\) 0 0
\(655\) −6.78670e44 −0.591287
\(656\) 0 0
\(657\) 1.85812e45 1.54180
\(658\) 0 0
\(659\) −2.52909e45 −1.99893 −0.999465 0.0326991i \(-0.989590\pi\)
−0.999465 + 0.0326991i \(0.989590\pi\)
\(660\) −1.54809e45 −1.19425
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) −2.22612e45 −1.55905
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −2.34349e45 −1.45561
\(670\) 0 0
\(671\) 0 0
\(672\) 3.41290e45 1.97340
\(673\) −2.26922e45 −1.28126 −0.640628 0.767851i \(-0.721326\pi\)
−0.640628 + 0.767851i \(0.721326\pi\)
\(674\) −5.06250e44 −0.279130
\(675\) 5.52402e45 2.97437
\(676\) 1.90172e45 1.00000
\(677\) −6.56365e44 −0.337075 −0.168537 0.985695i \(-0.553904\pi\)
−0.168537 + 0.985695i \(0.553904\pi\)
\(678\) 0 0
\(679\) −8.00528e45 −3.92157
\(680\) 0 0
\(681\) 1.14970e45 0.537319
\(682\) −1.11762e45 −0.510206
\(683\) −4.24522e45 −1.89308 −0.946540 0.322586i \(-0.895448\pi\)
−0.946540 + 0.322586i \(0.895448\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 8.99190e45 3.73823
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) −2.95006e45 −1.06692
\(693\) 3.34508e45 1.18216
\(694\) −4.47325e45 −1.54480
\(695\) 0 0
\(696\) −3.66687e45 −1.20934
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 1.95065e46 5.86962
\(701\) 5.72235e45 1.68301 0.841504 0.540250i \(-0.181670\pi\)
0.841504 + 0.540250i \(0.181670\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 2.18083e45 0.599045
\(705\) 0 0
\(706\) 0 0
\(707\) 1.13529e46 2.91337
\(708\) 1.68704e45 0.423247
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 8.22279e45 1.92799
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 1.59225e45 0.333735
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) −1.03981e46 −1.99358
\(721\) 1.50075e46 2.81414
\(722\) 5.45249e45 1.00000
\(723\) −5.36483e45 −0.962373
\(724\) 0 0
\(725\) −2.09580e46 −3.59702
\(726\) −3.81893e45 −0.641145
\(727\) 4.55904e45 0.748726 0.374363 0.927282i \(-0.377861\pi\)
0.374363 + 0.927282i \(0.377861\pi\)
\(728\) 0 0
\(729\) 6.36269e45 1.00000
\(730\) −1.99907e46 −3.07370
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) −8.12736e45 −1.14502
\(735\) −4.18578e46 −5.77004
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 5.53764e45 0.655937
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) −7.50677e45 −0.851699
\(745\) 3.01480e46 3.34779
\(746\) 0 0
\(747\) −1.46551e46 −1.55905
\(748\) 0 0
\(749\) 3.65853e46 3.72904
\(750\) −3.94496e46 −3.93607
\(751\) 1.87652e46 1.83279 0.916396 0.400273i \(-0.131085\pi\)
0.916396 + 0.400273i \(0.131085\pi\)
\(752\) 0 0
\(753\) 1.83327e46 1.71596
\(754\) 0 0
\(755\) 3.82433e46 3.43087
\(756\) 2.24680e46 1.97340
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 1.92869e46 1.49274
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 1.46480e46 1.00000
\(769\) −2.97791e46 −1.99109 −0.995544 0.0942971i \(-0.969940\pi\)
−0.995544 + 0.0942971i \(0.969940\pi\)
\(770\) −3.59882e46 −2.35672
\(771\) 0 0
\(772\) 1.62803e46 1.02279
\(773\) 1.97720e46 1.21668 0.608342 0.793675i \(-0.291835\pi\)
0.608342 + 0.793675i \(0.291835\pi\)
\(774\) 0 0
\(775\) −4.29050e46 −2.53327
\(776\) −3.43584e46 −1.98722
\(777\) 0 0
\(778\) −2.49547e46 −1.38509
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −2.41399e46 −1.20934
\(784\) 5.89660e46 2.89431
\(785\) 0 0
\(786\) 6.29397e45 0.296595
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) −1.65302e46 −0.747925
\(789\) 0 0
\(790\) −8.84654e46 −3.84361
\(791\) 0 0
\(792\) 1.43570e46 0.599045
\(793\) 0 0
\(794\) 0 0
\(795\) −1.68715e46 −0.662645
\(796\) −3.19870e46 −1.23130
\(797\) −4.51242e46 −1.70246 −0.851230 0.524793i \(-0.824143\pi\)
−0.851230 + 0.524793i \(0.824143\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 8.37210e46 2.97437
\(801\) 0 0
\(802\) 0 0
\(803\) 2.76017e46 0.923608
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −4.06797e46 −1.25719
\(808\) 4.87263e46 1.47632
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) −6.84533e46 −1.99358
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) −8.52431e46 −2.38651
\(813\) −1.05034e46 −0.288323
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −1.12473e46 −0.279895
\(819\) 0 0
\(820\) 0 0
\(821\) 7.70376e46 1.80806 0.904028 0.427473i \(-0.140596\pi\)
0.904028 + 0.427473i \(0.140596\pi\)
\(822\) 0 0
\(823\) −7.01496e45 −0.158354 −0.0791768 0.996861i \(-0.525229\pi\)
−0.0791768 + 0.996861i \(0.525229\pi\)
\(824\) 6.44118e46 1.42603
\(825\) 8.20574e46 1.78178
\(826\) 3.92184e46 0.835236
\(827\) 8.53966e46 1.78383 0.891913 0.452207i \(-0.149363\pi\)
0.891913 + 0.452207i \(0.149363\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 1.57668e47 3.10809
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −4.94189e46 −0.851699
\(838\) −4.15638e46 −0.702767
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) −2.41723e47 −3.93413
\(841\) 2.89632e46 0.462498
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1.34692e47 −1.99358
\(846\) 0 0
\(847\) −8.87781e46 −1.26524
\(848\) 2.37673e46 0.332389
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 1.57023e47 1.88965
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 9.64317e46 1.00000
\(865\) 2.08942e47 2.12700
\(866\) −3.34142e45 −0.0333921
\(867\) 1.01931e47 1.00000
\(868\) −1.74509e47 −1.68074
\(869\) 1.22147e47 1.15496
\(870\) 2.59711e47 2.41091
\(871\) 0 0
\(872\) 0 0
\(873\) −2.26190e47 −1.98722
\(874\) 0 0
\(875\) −9.17078e47 −7.76743
\(876\) 1.85393e47 1.54180
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 1.06778e47 0.856187
\(879\) 1.23986e47 0.976225
\(880\) −1.54460e47 −1.19425
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 3.88188e47 2.89431
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) −1.19487e47 −0.843778
\(886\) 4.41203e45 0.0305984
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 4.48360e47 2.94577
\(890\) 0 0
\(891\) 9.45155e46 0.599045
\(892\) −2.33821e47 −1.45561
\(893\) 0 0
\(894\) −2.79592e47 −1.67928
\(895\) −1.12773e47 −0.665328
\(896\) 3.40520e47 1.97340
\(897\) 0 0
\(898\) 0 0
\(899\) 1.87495e47 1.02999
\(900\) 5.51157e47 2.97437
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) −3.54668e47 −1.72096
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 1.14711e47 0.537319
\(909\) 3.20777e47 1.47632
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) −2.17697e47 −0.933941
\(914\) −4.22488e47 −1.78105
\(915\) 0 0
\(916\) 0 0
\(917\) 1.46315e47 0.585301
\(918\) 0 0
\(919\) 4.79235e47 1.85140 0.925700 0.378257i \(-0.123477\pi\)
0.925700 + 0.378257i \(0.123477\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −5.07768e47 −1.86196
\(923\) 0 0
\(924\) 3.33754e47 1.18216
\(925\) 0 0
\(926\) −1.94084e47 −0.664069
\(927\) 4.24039e47 1.42603
\(928\) −3.65860e47 −1.20934
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 5.31676e47 1.69793
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 5.42673e47 1.61804
\(935\) 0 0
\(936\) 0 0
\(937\) −3.80644e47 −1.07816 −0.539082 0.842253i \(-0.681229\pi\)
−0.539082 + 0.842253i \(0.681229\pi\)
\(938\) 0 0
\(939\) −6.58997e47 −1.80399
\(940\) 0 0
\(941\) −6.45735e47 −1.70852 −0.854260 0.519846i \(-0.825989\pi\)
−0.854260 + 0.519846i \(0.825989\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 1.68324e47 0.423247
\(945\) −1.59132e48 −3.93413
\(946\) 0 0
\(947\) 7.73155e47 1.84785 0.923925 0.382573i \(-0.124962\pi\)
0.923925 + 0.382573i \(0.124962\pi\)
\(948\) 8.20425e47 1.92799
\(949\) 0 0
\(950\) 0 0
\(951\) −7.64477e47 −1.70795
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 1.56466e47 0.332389
\(955\) 0 0
\(956\) 0 0
\(957\) −3.58590e47 −0.724448
\(958\) 0 0
\(959\) 0 0
\(960\) −1.03747e48 −1.99358
\(961\) −1.45308e47 −0.274609
\(962\) 0 0
\(963\) 1.03372e48 1.88965
\(964\) −5.35274e47 −0.962373
\(965\) −1.15307e48 −2.03901
\(966\) 0 0
\(967\) −9.52643e47 −1.62970 −0.814848 0.579675i \(-0.803180\pi\)
−0.814848 + 0.579675i \(0.803180\pi\)
\(968\) −3.81032e47 −0.641145
\(969\) 0 0
\(970\) 2.43348e48 3.96168
\(971\) −2.58902e47 −0.414599 −0.207300 0.978277i \(-0.566468\pi\)
−0.207300 + 0.978277i \(0.566468\pi\)
\(972\) 6.34834e47 1.00000
\(973\) 0 0
\(974\) 1.57391e47 0.239903
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −4.17634e48 −5.77004
\(981\) 0 0
\(982\) −1.95727e47 −0.261739
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 1.17077e48 1.49105
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) −1.01685e48 −1.19425
\(991\) 1.68858e48 1.95138 0.975692 0.219145i \(-0.0703269\pi\)
0.975692 + 0.219145i \(0.0703269\pi\)
\(992\) −7.48984e47 −0.851699
\(993\) 0 0
\(994\) 0 0
\(995\) 2.26552e48 2.45470
\(996\) −1.46221e48 −1.55905
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 24.33.h.b.5.1 yes 1
3.2 odd 2 24.33.h.a.5.1 1
8.5 even 2 24.33.h.a.5.1 1
24.5 odd 2 CM 24.33.h.b.5.1 yes 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
24.33.h.a.5.1 1 3.2 odd 2
24.33.h.a.5.1 1 8.5 even 2
24.33.h.b.5.1 yes 1 1.1 even 1 trivial
24.33.h.b.5.1 yes 1 24.5 odd 2 CM