Properties

Label 2-24-24.5-c32-0-92
Degree $2$
Conductor $24$
Sign $1$
Analytic cond. $155.679$
Root an. cond. $12.4771$
Motivic weight $32$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6.55e4·2-s + 4.30e7·3-s + 4.29e9·4-s − 3.04e11·5-s + 2.82e12·6-s + 6.55e13·7-s + 2.81e14·8-s + 1.85e15·9-s − 1.99e16·10-s + 2.75e16·11-s + 1.84e17·12-s + 4.29e18·14-s − 1.30e19·15-s + 1.84e19·16-s + 1.21e20·18-s − 1.30e21·20-s + 2.82e21·21-s + 1.80e21·22-s + 1.21e22·24-s + 6.92e22·25-s + 7.97e22·27-s + 2.81e23·28-s − 3.02e23·29-s − 8.58e23·30-s − 6.19e23·31-s + 1.20e24·32-s + 1.18e24·33-s + ⋯
L(s)  = 1  + 2-s + 3-s + 4-s − 1.99·5-s + 6-s + 1.97·7-s + 8-s + 9-s − 1.99·10-s + 0.599·11-s + 12-s + 1.97·14-s − 1.99·15-s + 16-s + 18-s − 1.99·20-s + 1.97·21-s + 0.599·22-s + 24-s + 2.97·25-s + 27-s + 1.97·28-s − 1.20·29-s − 1.99·30-s − 0.851·31-s + 32-s + 0.599·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 24 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(33-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 24 ^{s/2} \, \Gamma_{\C}(s+16) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(24\)    =    \(2^{3} \cdot 3\)
Sign: $1$
Analytic conductor: \(155.679\)
Root analytic conductor: \(12.4771\)
Motivic weight: \(32\)
Rational: yes
Arithmetic: yes
Character: $\chi_{24} (5, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 24,\ (\ :16),\ 1)\)

Particular Values

\(L(\frac{33}{2})\) \(\approx\) \(7.118725297\)
\(L(\frac12)\) \(\approx\) \(7.118725297\)
\(L(17)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{16} T \)
3 \( 1 - p^{16} T \)
good5 \( 1 + 304196466814 T + p^{32} T^{2} \)
7 \( 1 - 65581862265602 T + p^{32} T^{2} \)
11 \( 1 - 27525964704961922 T + p^{32} T^{2} \)
13 \( ( 1 - p^{16} T )( 1 + p^{16} T ) \)
17 \( ( 1 - p^{16} T )( 1 + p^{16} T ) \)
19 \( ( 1 - p^{16} T )( 1 + p^{16} T ) \)
23 \( ( 1 - p^{16} T )( 1 + p^{16} T ) \)
29 \( 1 + \)\(30\!\cdots\!58\)\( T + p^{32} T^{2} \)
31 \( 1 + \)\(61\!\cdots\!38\)\( T + p^{32} T^{2} \)
37 \( ( 1 - p^{16} T )( 1 + p^{16} T ) \)
41 \( ( 1 - p^{16} T )( 1 + p^{16} T ) \)
43 \( ( 1 - p^{16} T )( 1 + p^{16} T ) \)
47 \( ( 1 - p^{16} T )( 1 + p^{16} T ) \)
53 \( 1 - \)\(12\!\cdots\!42\)\( T + p^{32} T^{2} \)
59 \( 1 - \)\(91\!\cdots\!82\)\( T + p^{32} T^{2} \)
61 \( ( 1 - p^{16} T )( 1 + p^{16} T ) \)
67 \( ( 1 - p^{16} T )( 1 + p^{16} T ) \)
71 \( ( 1 - p^{16} T )( 1 + p^{16} T ) \)
73 \( 1 - \)\(10\!\cdots\!22\)\( T + p^{32} T^{2} \)
79 \( 1 - \)\(44\!\cdots\!42\)\( T + p^{32} T^{2} \)
83 \( 1 + \)\(79\!\cdots\!38\)\( T + p^{32} T^{2} \)
89 \( ( 1 - p^{16} T )( 1 + p^{16} T ) \)
97 \( 1 + \)\(12\!\cdots\!58\)\( T + p^{32} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.57429955188929230196793879199, −10.93521226820918686949332341657, −8.623911554896208475819303917478, −7.77806585843255776311173716024, −7.19134334611612509504751562372, −4.98517755288263147288217532216, −4.15642373394782806872863083793, −3.53084070175647313633774804540, −2.09185934629084513476160128340, −1.04074580829954154043944495003, 1.04074580829954154043944495003, 2.09185934629084513476160128340, 3.53084070175647313633774804540, 4.15642373394782806872863083793, 4.98517755288263147288217532216, 7.19134334611612509504751562372, 7.77806585843255776311173716024, 8.623911554896208475819303917478, 10.93521226820918686949332341657, 11.57429955188929230196793879199

Graph of the $Z$-function along the critical line