Properties

Label 24.21.h.a.5.1
Level $24$
Weight $21$
Character 24.5
Self dual yes
Analytic conductor $60.843$
Analytic rank $0$
Dimension $1$
CM discriminant -24
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [24,21,Mod(5,24)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("24.5"); S:= CuspForms(chi, 21); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(24, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 21, names="a")
 
Level: \( N \) \(=\) \( 24 = 2^{3} \cdot 3 \)
Weight: \( k \) \(=\) \( 21 \)
Character orbit: \([\chi]\) \(=\) 24.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-1024] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.8433036246\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 5.1
Character \(\chi\) \(=\) 24.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1024.00 q^{2} -59049.0 q^{3} +1.04858e6 q^{4} -8.36827e6 q^{5} +6.04662e7 q^{6} +5.75520e7 q^{7} -1.07374e9 q^{8} +3.48678e9 q^{9} +8.56911e9 q^{10} +3.23147e8 q^{11} -6.19174e10 q^{12} -5.89333e10 q^{14} +4.94138e11 q^{15} +1.09951e12 q^{16} -3.57047e12 q^{18} -8.77477e12 q^{20} -3.39839e12 q^{21} -3.30902e11 q^{22} +6.34034e13 q^{24} -2.53394e13 q^{25} -2.05891e14 q^{27} +6.03476e13 q^{28} -4.76620e14 q^{29} -5.05998e14 q^{30} -1.55905e15 q^{31} -1.12590e15 q^{32} -1.90815e13 q^{33} -4.81611e14 q^{35} +3.65616e15 q^{36} +8.98537e15 q^{40} +3.47995e15 q^{42} +3.38844e14 q^{44} -2.91784e16 q^{45} -6.49251e16 q^{48} -7.64800e16 q^{49} +2.59476e16 q^{50} -3.21317e16 q^{53} +2.10833e17 q^{54} -2.70418e15 q^{55} -6.17960e16 q^{56} +4.88059e17 q^{58} +6.75827e17 q^{59} +5.18141e17 q^{60} +1.59647e18 q^{62} +2.00671e17 q^{63} +1.15292e18 q^{64} +1.95394e16 q^{66} +4.93170e17 q^{70} -3.74391e18 q^{72} +8.06286e18 q^{73} +1.49627e18 q^{75} +1.85977e16 q^{77} +1.54430e19 q^{79} -9.20101e18 q^{80} +1.21577e19 q^{81} -3.10178e19 q^{83} -3.56347e18 q^{84} +2.81440e19 q^{87} -3.46976e17 q^{88} +2.98786e19 q^{90} +9.20604e19 q^{93} +6.64833e19 q^{96} -6.59247e19 q^{97} +7.83156e19 q^{98} +1.12674e18 q^{99} +O(q^{100})\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/24\mathbb{Z}\right)^\times\).

\(n\) \(7\) \(13\) \(17\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1024.00 −1.00000
\(3\) −59049.0 −1.00000
\(4\) 1.04858e6 1.00000
\(5\) −8.36827e6 −0.856911 −0.428456 0.903563i \(-0.640942\pi\)
−0.428456 + 0.903563i \(0.640942\pi\)
\(6\) 6.04662e7 1.00000
\(7\) 5.75520e7 0.203742 0.101871 0.994798i \(-0.467517\pi\)
0.101871 + 0.994798i \(0.467517\pi\)
\(8\) −1.07374e9 −1.00000
\(9\) 3.48678e9 1.00000
\(10\) 8.56911e9 0.856911
\(11\) 3.23147e8 0.0124587 0.00622935 0.999981i \(-0.498017\pi\)
0.00622935 + 0.999981i \(0.498017\pi\)
\(12\) −6.19174e10 −1.00000
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) −5.89333e10 −0.203742
\(15\) 4.94138e11 0.856911
\(16\) 1.09951e12 1.00000
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) −3.57047e12 −1.00000
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) −8.77477e12 −0.856911
\(21\) −3.39839e12 −0.203742
\(22\) −3.30902e11 −0.0124587
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 6.34034e13 1.00000
\(25\) −2.53394e13 −0.265703
\(26\) 0 0
\(27\) −2.05891e14 −1.00000
\(28\) 6.03476e13 0.203742
\(29\) −4.76620e14 −1.13290 −0.566451 0.824095i \(-0.691684\pi\)
−0.566451 + 0.824095i \(0.691684\pi\)
\(30\) −5.05998e14 −0.856911
\(31\) −1.55905e15 −1.90214 −0.951071 0.308971i \(-0.900015\pi\)
−0.951071 + 0.308971i \(0.900015\pi\)
\(32\) −1.12590e15 −1.00000
\(33\) −1.90815e13 −0.0124587
\(34\) 0 0
\(35\) −4.81611e14 −0.174589
\(36\) 3.65616e15 1.00000
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 8.98537e15 0.856911
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 3.47995e15 0.203742
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 3.38844e14 0.0124587
\(45\) −2.91784e16 −0.856911
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) −6.49251e16 −1.00000
\(49\) −7.64800e16 −0.958489
\(50\) 2.59476e16 0.265703
\(51\) 0 0
\(52\) 0 0
\(53\) −3.21317e16 −0.183728 −0.0918640 0.995772i \(-0.529283\pi\)
−0.0918640 + 0.995772i \(0.529283\pi\)
\(54\) 2.10833e17 1.00000
\(55\) −2.70418e15 −0.0106760
\(56\) −6.17960e16 −0.203742
\(57\) 0 0
\(58\) 4.88059e17 1.13290
\(59\) 6.75827e17 1.32226 0.661128 0.750273i \(-0.270078\pi\)
0.661128 + 0.750273i \(0.270078\pi\)
\(60\) 5.18141e17 0.856911
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 1.59647e18 1.90214
\(63\) 2.00671e17 0.203742
\(64\) 1.15292e18 1.00000
\(65\) 0 0
\(66\) 1.95394e16 0.0124587
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 4.93170e17 0.174589
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −3.74391e18 −1.00000
\(73\) 8.06286e18 1.87612 0.938060 0.346473i \(-0.112621\pi\)
0.938060 + 0.346473i \(0.112621\pi\)
\(74\) 0 0
\(75\) 1.49627e18 0.265703
\(76\) 0 0
\(77\) 1.85977e16 0.00253836
\(78\) 0 0
\(79\) 1.54430e19 1.63103 0.815514 0.578737i \(-0.196454\pi\)
0.815514 + 0.578737i \(0.196454\pi\)
\(80\) −9.20101e18 −0.856911
\(81\) 1.21577e19 1.00000
\(82\) 0 0
\(83\) −3.10178e19 −1.99908 −0.999539 0.0303526i \(-0.990337\pi\)
−0.999539 + 0.0303526i \(0.990337\pi\)
\(84\) −3.56347e18 −0.203742
\(85\) 0 0
\(86\) 0 0
\(87\) 2.81440e19 1.13290
\(88\) −3.46976e17 −0.0124587
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 2.98786e19 0.856911
\(91\) 0 0
\(92\) 0 0
\(93\) 9.20604e19 1.90214
\(94\) 0 0
\(95\) 0 0
\(96\) 6.64833e19 1.00000
\(97\) −6.59247e19 −0.893987 −0.446993 0.894537i \(-0.647505\pi\)
−0.446993 + 0.894537i \(0.647505\pi\)
\(98\) 7.83156e19 0.958489
\(99\) 1.12674e18 0.0124587
\(100\) −2.65703e19 −0.265703
\(101\) 2.09527e20 1.89682 0.948410 0.317046i \(-0.102691\pi\)
0.948410 + 0.317046i \(0.102691\pi\)
\(102\) 0 0
\(103\) −2.37707e20 −1.76876 −0.884382 0.466764i \(-0.845420\pi\)
−0.884382 + 0.466764i \(0.845420\pi\)
\(104\) 0 0
\(105\) 2.84386e19 0.174589
\(106\) 3.29029e19 0.183728
\(107\) −2.14561e20 −1.09072 −0.545359 0.838203i \(-0.683607\pi\)
−0.545359 + 0.838203i \(0.683607\pi\)
\(108\) −2.15892e20 −1.00000
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 2.76908e18 0.0106760
\(111\) 0 0
\(112\) 6.32791e19 0.203742
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −4.99773e20 −1.13290
\(117\) 0 0
\(118\) −6.92047e20 −1.32226
\(119\) 0 0
\(120\) −5.30577e20 −0.856911
\(121\) −6.72646e20 −0.999845
\(122\) 0 0
\(123\) 0 0
\(124\) −1.63478e21 −1.90214
\(125\) 1.01011e21 1.08460
\(126\) −2.05488e20 −0.203742
\(127\) −7.07964e20 −0.648596 −0.324298 0.945955i \(-0.605128\pi\)
−0.324298 + 0.945955i \(0.605128\pi\)
\(128\) −1.18059e21 −1.00000
\(129\) 0 0
\(130\) 0 0
\(131\) 2.96088e21 1.98933 0.994667 0.103137i \(-0.0328879\pi\)
0.994667 + 0.103137i \(0.0328879\pi\)
\(132\) −2.00084e19 −0.0124587
\(133\) 0 0
\(134\) 0 0
\(135\) 1.72295e21 0.856911
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) −5.05006e20 −0.174589
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 3.83376e21 1.00000
\(145\) 3.98849e21 0.970797
\(146\) −8.25637e21 −1.87612
\(147\) 4.51607e21 0.958489
\(148\) 0 0
\(149\) 7.36498e21 1.36555 0.682777 0.730627i \(-0.260772\pi\)
0.682777 + 0.730627i \(0.260772\pi\)
\(150\) −1.53218e21 −0.265703
\(151\) −7.21636e20 −0.117098 −0.0585489 0.998285i \(-0.518647\pi\)
−0.0585489 + 0.998285i \(0.518647\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −1.90441e19 −0.00253836
\(155\) 1.30466e22 1.62997
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) −1.58137e22 −1.63103
\(159\) 1.89735e21 0.183728
\(160\) 9.42184e21 0.856911
\(161\) 0 0
\(162\) −1.24494e22 −1.00000
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 1.59679e20 0.0106760
\(166\) 3.17622e22 1.99908
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 3.64899e21 0.203742
\(169\) 1.90050e22 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.12935e22 0.470292 0.235146 0.971960i \(-0.424443\pi\)
0.235146 + 0.971960i \(0.424443\pi\)
\(174\) −2.88194e22 −1.13290
\(175\) −1.45833e21 −0.0541348
\(176\) 3.55304e20 0.0124587
\(177\) −3.99069e22 −1.32226
\(178\) 0 0
\(179\) 5.19248e22 1.53760 0.768802 0.639487i \(-0.220853\pi\)
0.768802 + 0.639487i \(0.220853\pi\)
\(180\) −3.05957e22 −0.856911
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) −9.42698e22 −1.90214
\(187\) 0 0
\(188\) 0 0
\(189\) −1.18494e22 −0.203742
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) −6.80789e22 −1.00000
\(193\) 8.63651e22 1.20439 0.602193 0.798351i \(-0.294294\pi\)
0.602193 + 0.798351i \(0.294294\pi\)
\(194\) 6.75069e22 0.893987
\(195\) 0 0
\(196\) −8.01951e22 −0.958489
\(197\) 7.43423e22 0.844450 0.422225 0.906491i \(-0.361249\pi\)
0.422225 + 0.906491i \(0.361249\pi\)
\(198\) −1.15378e21 −0.0124587
\(199\) −1.11724e23 −1.14714 −0.573570 0.819157i \(-0.694442\pi\)
−0.573570 + 0.819157i \(0.694442\pi\)
\(200\) 2.72080e22 0.265703
\(201\) 0 0
\(202\) −2.14556e23 −1.89682
\(203\) −2.74305e22 −0.230820
\(204\) 0 0
\(205\) 0 0
\(206\) 2.43412e23 1.76876
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) −2.91212e22 −0.174589
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) −3.36926e22 −0.183728
\(213\) 0 0
\(214\) 2.19710e23 1.09072
\(215\) 0 0
\(216\) 2.21074e23 1.00000
\(217\) −8.97265e22 −0.387546
\(218\) 0 0
\(219\) −4.76104e23 −1.87612
\(220\) −2.83554e21 −0.0106760
\(221\) 0 0
\(222\) 0 0
\(223\) −3.94533e23 −1.29728 −0.648642 0.761094i \(-0.724663\pi\)
−0.648642 + 0.761094i \(0.724663\pi\)
\(224\) −6.47978e22 −0.203742
\(225\) −8.83531e22 −0.265703
\(226\) 0 0
\(227\) −5.27133e23 −1.45098 −0.725491 0.688232i \(-0.758387\pi\)
−0.725491 + 0.688232i \(0.758387\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) −1.09818e21 −0.00253836
\(232\) 5.11767e23 1.13290
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 7.08656e23 1.32226
\(237\) −9.11895e23 −1.63103
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 5.43311e23 0.856911
\(241\) 1.27213e24 1.92469 0.962345 0.271830i \(-0.0876288\pi\)
0.962345 + 0.271830i \(0.0876288\pi\)
\(242\) 6.88789e23 0.999845
\(243\) −7.17898e23 −1.00000
\(244\) 0 0
\(245\) 6.40006e23 0.821340
\(246\) 0 0
\(247\) 0 0
\(248\) 1.67402e24 1.90214
\(249\) 1.83157e24 1.99908
\(250\) −1.03435e24 −1.08460
\(251\) 1.78894e24 1.80243 0.901217 0.433368i \(-0.142675\pi\)
0.901217 + 0.433368i \(0.142675\pi\)
\(252\) 2.10419e23 0.203742
\(253\) 0 0
\(254\) 7.24955e23 0.648596
\(255\) 0 0
\(256\) 1.20893e24 1.00000
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −1.66187e24 −1.13290
\(262\) −3.03194e24 −1.98933
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 2.04886e22 0.0124587
\(265\) 2.68887e23 0.157439
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −3.91445e24 −1.97310 −0.986548 0.163470i \(-0.947731\pi\)
−0.986548 + 0.163470i \(0.947731\pi\)
\(270\) −1.76430e24 −0.856911
\(271\) −2.04341e24 −0.956450 −0.478225 0.878237i \(-0.658720\pi\)
−0.478225 + 0.878237i \(0.658720\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −8.18835e21 −0.00331032
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) −5.43607e24 −1.90214
\(280\) 5.17126e23 0.174589
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −3.92577e24 −1.00000
\(289\) 4.06423e24 1.00000
\(290\) −4.08421e24 −0.970797
\(291\) 3.89279e24 0.893987
\(292\) 8.45452e24 1.87612
\(293\) 5.74047e24 1.23104 0.615519 0.788122i \(-0.288946\pi\)
0.615519 + 0.788122i \(0.288946\pi\)
\(294\) −4.62446e24 −0.958489
\(295\) −5.65551e24 −1.13306
\(296\) 0 0
\(297\) −6.65330e22 −0.0124587
\(298\) −7.54174e24 −1.36555
\(299\) 0 0
\(300\) 1.56895e24 0.265703
\(301\) 0 0
\(302\) 7.38955e23 0.117098
\(303\) −1.23724e25 −1.89682
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 1.95011e22 0.00253836
\(309\) 1.40364e25 1.76876
\(310\) −1.33597e25 −1.62997
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 1.41286e25 1.56551 0.782754 0.622331i \(-0.213814\pi\)
0.782754 + 0.622331i \(0.213814\pi\)
\(314\) 0 0
\(315\) −1.67927e24 −0.174589
\(316\) 1.61932e25 1.63103
\(317\) 1.52069e25 1.48405 0.742027 0.670371i \(-0.233865\pi\)
0.742027 + 0.670371i \(0.233865\pi\)
\(318\) −1.94288e24 −0.183728
\(319\) −1.54018e23 −0.0141145
\(320\) −9.64796e24 −0.856911
\(321\) 1.26696e25 1.09072
\(322\) 0 0
\(323\) 0 0
\(324\) 1.27482e25 1.00000
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) −1.63511e23 −0.0106760
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) −3.25245e25 −1.99908
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) −3.73657e24 −0.203742
\(337\) 3.62737e25 1.91996 0.959981 0.280067i \(-0.0903565\pi\)
0.959981 + 0.280067i \(0.0903565\pi\)
\(338\) −1.94611e25 −1.00000
\(339\) 0 0
\(340\) 0 0
\(341\) −5.03802e23 −0.0236982
\(342\) 0 0
\(343\) −8.99378e24 −0.399026
\(344\) 0 0
\(345\) 0 0
\(346\) −1.15645e25 −0.470292
\(347\) 1.89361e24 0.0748164 0.0374082 0.999300i \(-0.488090\pi\)
0.0374082 + 0.999300i \(0.488090\pi\)
\(348\) 2.95111e25 1.13290
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 1.49333e24 0.0541348
\(351\) 0 0
\(352\) −3.63831e23 −0.0124587
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 4.08647e25 1.32226
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −5.31710e25 −1.53760
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 3.13300e25 0.856911
\(361\) 3.75900e25 1.00000
\(362\) 0 0
\(363\) 3.97190e25 0.999845
\(364\) 0 0
\(365\) −6.74722e25 −1.60767
\(366\) 0 0
\(367\) −7.42841e25 −1.67585 −0.837925 0.545786i \(-0.816231\pi\)
−0.837925 + 0.545786i \(0.816231\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1.84925e24 −0.0374331
\(372\) 9.65323e25 1.90214
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) −5.96459e25 −1.08460
\(376\) 0 0
\(377\) 0 0
\(378\) 1.21338e25 0.203742
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 4.18046e25 0.648596
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 6.97128e25 1.00000
\(385\) −1.55631e23 −0.00217515
\(386\) −8.84379e25 −1.20439
\(387\) 0 0
\(388\) −6.91271e25 −0.893987
\(389\) −1.23935e26 −1.56206 −0.781031 0.624493i \(-0.785306\pi\)
−0.781031 + 0.624493i \(0.785306\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 8.21198e25 0.958489
\(393\) −1.74837e26 −1.98933
\(394\) −7.61265e25 −0.844450
\(395\) −1.29231e26 −1.39765
\(396\) 1.18148e24 0.0124587
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 1.14406e26 1.14714
\(399\) 0 0
\(400\) −2.78610e25 −0.265703
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 2.19705e26 1.89682
\(405\) −1.01739e26 −0.856911
\(406\) 2.80888e25 0.230820
\(407\) 0 0
\(408\) 0 0
\(409\) 7.34316e25 0.560596 0.280298 0.959913i \(-0.409567\pi\)
0.280298 + 0.959913i \(0.409567\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −2.49254e26 −1.76876
\(413\) 3.88952e25 0.269399
\(414\) 0 0
\(415\) 2.59565e26 1.71303
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −1.36241e26 −0.816899 −0.408449 0.912781i \(-0.633930\pi\)
−0.408449 + 0.912781i \(0.633930\pi\)
\(420\) 2.98201e25 0.174589
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 3.45012e25 0.183728
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −2.24983e26 −1.09072
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) −2.26380e26 −1.00000
\(433\) 3.87927e26 1.67444 0.837222 0.546863i \(-0.184178\pi\)
0.837222 + 0.546863i \(0.184178\pi\)
\(434\) 9.18799e25 0.387546
\(435\) −2.35516e26 −0.970797
\(436\) 0 0
\(437\) 0 0
\(438\) 4.87530e26 1.87612
\(439\) 5.30004e26 1.99358 0.996791 0.0800537i \(-0.0255092\pi\)
0.996791 + 0.0800537i \(0.0255092\pi\)
\(440\) 2.90359e24 0.0106760
\(441\) −2.66669e26 −0.958489
\(442\) 0 0
\(443\) 3.28063e26 1.12699 0.563496 0.826119i \(-0.309456\pi\)
0.563496 + 0.826119i \(0.309456\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 4.04002e26 1.29728
\(447\) −4.34895e26 −1.36555
\(448\) 6.63529e25 0.203742
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 9.04736e25 0.265703
\(451\) 0 0
\(452\) 0 0
\(453\) 4.26119e25 0.117098
\(454\) 5.39784e26 1.45098
\(455\) 0 0
\(456\) 0 0
\(457\) −7.90904e26 −1.99050 −0.995250 0.0973555i \(-0.968962\pi\)
−0.995250 + 0.0973555i \(0.968962\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 8.56085e26 1.97473 0.987365 0.158461i \(-0.0506533\pi\)
0.987365 + 0.158461i \(0.0506533\pi\)
\(462\) 1.12453e24 0.00253836
\(463\) 8.31121e26 1.83592 0.917961 0.396670i \(-0.129834\pi\)
0.917961 + 0.396670i \(0.129834\pi\)
\(464\) −5.24050e26 −1.13290
\(465\) −7.70386e26 −1.62997
\(466\) 0 0
\(467\) 3.77604e26 0.765364 0.382682 0.923880i \(-0.375000\pi\)
0.382682 + 0.923880i \(0.375000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) −7.25664e26 −1.32226
\(473\) 0 0
\(474\) 9.33781e26 1.63103
\(475\) 0 0
\(476\) 0 0
\(477\) −1.12036e26 −0.183728
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) −5.56350e26 −0.856911
\(481\) 0 0
\(482\) −1.30266e27 −1.92469
\(483\) 0 0
\(484\) −7.05320e26 −0.999845
\(485\) 5.51676e26 0.766067
\(486\) 7.35128e26 1.00000
\(487\) 9.25130e26 1.23286 0.616429 0.787411i \(-0.288579\pi\)
0.616429 + 0.787411i \(0.288579\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −6.55366e26 −0.821340
\(491\) 4.47565e26 0.549593 0.274797 0.961502i \(-0.411389\pi\)
0.274797 + 0.961502i \(0.411389\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −9.42889e24 −0.0106760
\(496\) −1.71419e27 −1.90214
\(497\) 0 0
\(498\) −1.87553e27 −1.99908
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 1.05918e27 1.08460
\(501\) 0 0
\(502\) −1.83188e27 −1.80243
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) −2.15469e26 −0.203742
\(505\) −1.75338e27 −1.62541
\(506\) 0 0
\(507\) −1.12222e27 −1.00000
\(508\) −7.42354e26 −0.648596
\(509\) −7.26165e26 −0.622096 −0.311048 0.950394i \(-0.600680\pi\)
−0.311048 + 0.950394i \(0.600680\pi\)
\(510\) 0 0
\(511\) 4.64034e26 0.382244
\(512\) −1.23794e27 −1.00000
\(513\) 0 0
\(514\) 0 0
\(515\) 1.98920e27 1.51567
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −6.66870e26 −0.470292
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 1.70176e27 1.13290
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 3.10471e27 1.98933
\(525\) 8.61132e25 0.0541348
\(526\) 0 0
\(527\) 0 0
\(528\) −2.09803e25 −0.0124587
\(529\) 1.71616e27 1.00000
\(530\) −2.75340e26 −0.157439
\(531\) 2.35646e27 1.32226
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 1.79550e27 0.934648
\(536\) 0 0
\(537\) −3.06611e27 −1.53760
\(538\) 4.00840e27 1.97310
\(539\) −2.47143e25 −0.0119415
\(540\) 1.80665e27 0.856911
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 2.09245e27 0.956450
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 8.38487e24 0.00331032
\(551\) 0 0
\(552\) 0 0
\(553\) 8.88777e26 0.332309
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −5.63711e27 −1.96112 −0.980562 0.196211i \(-0.937136\pi\)
−0.980562 + 0.196211i \(0.937136\pi\)
\(558\) 5.56654e27 1.90214
\(559\) 0 0
\(560\) −5.29537e26 −0.174589
\(561\) 0 0
\(562\) 0 0
\(563\) −6.26590e27 −1.95839 −0.979196 0.202916i \(-0.934958\pi\)
−0.979196 + 0.202916i \(0.934958\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 6.99698e26 0.203742
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 4.01999e27 1.00000
\(577\) 6.74548e27 1.64913 0.824565 0.565767i \(-0.191420\pi\)
0.824565 + 0.565767i \(0.191420\pi\)
\(578\) −4.16177e27 −1.00000
\(579\) −5.09977e27 −1.20439
\(580\) 4.18224e27 0.970797
\(581\) −1.78514e27 −0.407296
\(582\) −3.98622e27 −0.893987
\(583\) −1.03833e25 −0.00228901
\(584\) −8.65743e27 −1.87612
\(585\) 0 0
\(586\) −5.87824e27 −1.23104
\(587\) −5.02215e27 −1.03397 −0.516986 0.855994i \(-0.672946\pi\)
−0.516986 + 0.855994i \(0.672946\pi\)
\(588\) 4.73544e27 0.958489
\(589\) 0 0
\(590\) 5.79124e27 1.13306
\(591\) −4.38984e27 −0.844450
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 6.81298e25 0.0124587
\(595\) 0 0
\(596\) 7.72274e27 1.36555
\(597\) 6.59720e27 1.14714
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) −1.60661e27 −0.265703
\(601\) 8.42431e27 1.37022 0.685109 0.728441i \(-0.259755\pi\)
0.685109 + 0.728441i \(0.259755\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −7.56690e26 −0.117098
\(605\) 5.62888e27 0.856778
\(606\) 1.26693e28 1.89682
\(607\) −1.33886e28 −1.97174 −0.985869 0.167517i \(-0.946425\pi\)
−0.985869 + 0.167517i \(0.946425\pi\)
\(608\) 0 0
\(609\) 1.61974e27 0.230820
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) −1.99692e25 −0.00253836
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) −1.43732e28 −1.76876
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 1.36803e28 1.62997
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −6.03631e27 −0.663699
\(626\) −1.44677e28 −1.56551
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 1.71958e27 0.174589
\(631\) −7.47099e27 −0.746594 −0.373297 0.927712i \(-0.621773\pi\)
−0.373297 + 0.927712i \(0.621773\pi\)
\(632\) −1.65818e28 −1.63103
\(633\) 0 0
\(634\) −1.55719e28 −1.48405
\(635\) 5.92444e27 0.555789
\(636\) 1.98951e27 0.183728
\(637\) 0 0
\(638\) 1.57715e26 0.0141145
\(639\) 0 0
\(640\) 9.87951e27 0.856911
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) −1.29737e28 −1.09072
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) −1.30542e28 −1.00000
\(649\) 2.18391e26 0.0164736
\(650\) 0 0
\(651\) 5.29826e27 0.387546
\(652\) 0 0
\(653\) −2.27518e28 −1.61393 −0.806963 0.590602i \(-0.798890\pi\)
−0.806963 + 0.590602i \(0.798890\pi\)
\(654\) 0 0
\(655\) −2.47775e28 −1.70468
\(656\) 0 0
\(657\) 2.81135e28 1.87612
\(658\) 0 0
\(659\) 2.82954e28 1.83173 0.915865 0.401487i \(-0.131506\pi\)
0.915865 + 0.401487i \(0.131506\pi\)
\(660\) 1.67436e26 0.0106760
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 3.33051e28 1.99908
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 2.32968e28 1.29728
\(670\) 0 0
\(671\) 0 0
\(672\) 3.82624e27 0.203742
\(673\) −5.86561e27 −0.307725 −0.153862 0.988092i \(-0.549171\pi\)
−0.153862 + 0.988092i \(0.549171\pi\)
\(674\) −3.71442e28 −1.91996
\(675\) 5.21716e27 0.265703
\(676\) 1.99281e28 1.00000
\(677\) −1.87939e28 −0.929244 −0.464622 0.885509i \(-0.653810\pi\)
−0.464622 + 0.885509i \(0.653810\pi\)
\(678\) 0 0
\(679\) −3.79410e27 −0.182142
\(680\) 0 0
\(681\) 3.11267e28 1.45098
\(682\) 5.15893e26 0.0236982
\(683\) 2.48731e28 1.12596 0.562980 0.826471i \(-0.309655\pi\)
0.562980 + 0.826471i \(0.309655\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 9.20963e27 0.399026
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 1.18421e28 0.470292
\(693\) 6.48463e25 0.00253836
\(694\) −1.93906e27 −0.0748164
\(695\) 0 0
\(696\) −3.02193e28 −1.13290
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −1.52917e27 −0.0541348
\(701\) 5.36999e28 1.87410 0.937051 0.349192i \(-0.113544\pi\)
0.937051 + 0.349192i \(0.113544\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 3.72563e26 0.0124587
\(705\) 0 0
\(706\) 0 0
\(707\) 1.20587e28 0.386461
\(708\) −4.18454e28 −1.32226
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 5.38465e28 1.63103
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 5.44471e28 1.53760
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) −3.20820e28 −0.856911
\(721\) −1.36805e28 −0.360371
\(722\) −3.84921e28 −1.00000
\(723\) −7.51180e28 −1.92469
\(724\) 0 0
\(725\) 1.20773e28 0.301016
\(726\) −4.06723e28 −0.999845
\(727\) 6.08050e28 1.47433 0.737166 0.675711i \(-0.236163\pi\)
0.737166 + 0.675711i \(0.236163\pi\)
\(728\) 0 0
\(729\) 4.23912e28 1.00000
\(730\) 6.90916e28 1.60767
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 7.60669e28 1.67585
\(735\) −3.77917e28 −0.821340
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 1.89363e27 0.0374331
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) −9.88491e28 −1.90214
\(745\) −6.16322e28 −1.17016
\(746\) 0 0
\(747\) −1.08152e29 −1.99908
\(748\) 0 0
\(749\) −1.23484e28 −0.222225
\(750\) 6.10774e28 1.08460
\(751\) −9.85933e28 −1.72762 −0.863809 0.503819i \(-0.831928\pi\)
−0.863809 + 0.503819i \(0.831928\pi\)
\(752\) 0 0
\(753\) −1.05635e29 −1.80243
\(754\) 0 0
\(755\) 6.03885e27 0.100342
\(756\) −1.24250e28 −0.203742
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) −4.28079e28 −0.648596
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −7.13859e28 −1.00000
\(769\) −1.36664e29 −1.88969 −0.944845 0.327518i \(-0.893788\pi\)
−0.944845 + 0.327518i \(0.893788\pi\)
\(770\) 1.59366e26 0.00217515
\(771\) 0 0
\(772\) 9.05604e28 1.20439
\(773\) −8.25961e28 −1.08434 −0.542169 0.840269i \(-0.682397\pi\)
−0.542169 + 0.840269i \(0.682397\pi\)
\(774\) 0 0
\(775\) 3.95054e28 0.505405
\(776\) 7.07862e28 0.893987
\(777\) 0 0
\(778\) 1.26909e29 1.56206
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 9.81319e28 1.13290
\(784\) −8.40907e28 −0.958489
\(785\) 0 0
\(786\) 1.79033e29 1.98933
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 7.79536e28 0.844450
\(789\) 0 0
\(790\) 1.32333e29 1.39765
\(791\) 0 0
\(792\) −1.20983e27 −0.0124587
\(793\) 0 0
\(794\) 0 0
\(795\) −1.58775e28 −0.157439
\(796\) −1.17151e29 −1.14714
\(797\) −2.06598e29 −1.99775 −0.998877 0.0473862i \(-0.984911\pi\)
−0.998877 + 0.0473862i \(0.984911\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 2.85297e28 0.265703
\(801\) 0 0
\(802\) 0 0
\(803\) 2.60549e27 0.0233740
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 2.31145e29 1.97310
\(808\) −2.24978e29 −1.89682
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 1.04180e29 0.856911
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) −2.87629e28 −0.230820
\(813\) 1.20661e29 0.956450
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −7.51940e28 −0.560596
\(819\) 0 0
\(820\) 0 0
\(821\) −1.35683e29 −0.975200 −0.487600 0.873067i \(-0.662127\pi\)
−0.487600 + 0.873067i \(0.662127\pi\)
\(822\) 0 0
\(823\) 2.76545e29 1.93984 0.969922 0.243417i \(-0.0782682\pi\)
0.969922 + 0.243417i \(0.0782682\pi\)
\(824\) 2.55236e29 1.76876
\(825\) 4.83514e26 0.00331032
\(826\) −3.98287e28 −0.269399
\(827\) 2.63769e29 1.76266 0.881331 0.472499i \(-0.156648\pi\)
0.881331 + 0.472499i \(0.156648\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) −2.65795e29 −1.71303
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 3.20995e29 1.90214
\(838\) 1.39511e29 0.816899
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) −3.05358e28 −0.174589
\(841\) 5.01724e28 0.283469
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1.59039e29 −0.856911
\(846\) 0 0
\(847\) −3.87121e28 −0.203710
\(848\) −3.53292e28 −0.183728
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 2.30383e29 1.09072
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 2.31813e29 1.00000
\(865\) −9.45071e28 −0.402998
\(866\) −3.97237e29 −1.67444
\(867\) −2.39989e29 −1.00000
\(868\) −9.40850e28 −0.387546
\(869\) 4.99036e27 0.0203205
\(870\) 2.41169e29 0.970797
\(871\) 0 0
\(872\) 0 0
\(873\) −2.29865e29 −0.893987
\(874\) 0 0
\(875\) 5.81337e28 0.220977
\(876\) −4.99231e29 −1.87612
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) −5.42724e29 −1.99358
\(879\) −3.38969e29 −1.23104
\(880\) −2.97328e27 −0.0106760
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 2.73069e29 0.958489
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 3.33952e29 1.13306
\(886\) −3.35937e29 −1.12699
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) −4.07447e28 −0.132146
\(890\) 0 0
\(891\) 3.92871e27 0.0124587
\(892\) −4.13698e29 −1.29728
\(893\) 0 0
\(894\) 4.45332e29 1.36555
\(895\) −4.34521e29 −1.31759
\(896\) −6.79454e28 −0.203742
\(897\) 0 0
\(898\) 0 0
\(899\) 7.43075e29 2.15494
\(900\) −9.26449e28 −0.265703
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) −4.36346e28 −0.117098
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) −5.52739e29 −1.45098
\(909\) 7.30575e29 1.89682
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) −1.00233e28 −0.0249059
\(914\) 8.09886e29 1.99050
\(915\) 0 0
\(916\) 0 0
\(917\) 1.70405e29 0.405310
\(918\) 0 0
\(919\) 7.35790e29 1.71237 0.856187 0.516666i \(-0.172827\pi\)
0.856187 + 0.516666i \(0.172827\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −8.76631e29 −1.97473
\(923\) 0 0
\(924\) −1.15152e27 −0.00253836
\(925\) 0 0
\(926\) −8.51068e29 −1.83592
\(927\) −8.28833e29 −1.76876
\(928\) 5.36627e29 1.13290
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 7.88876e29 1.62997
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) −3.86667e29 −0.765364
\(935\) 0 0
\(936\) 0 0
\(937\) 1.01510e30 1.94586 0.972930 0.231098i \(-0.0742320\pi\)
0.972930 + 0.231098i \(0.0742320\pi\)
\(938\) 0 0
\(939\) −8.34279e29 −1.56551
\(940\) 0 0
\(941\) −7.29588e29 −1.34024 −0.670118 0.742254i \(-0.733757\pi\)
−0.670118 + 0.742254i \(0.733757\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 7.43080e29 1.32226
\(945\) 9.91594e28 0.174589
\(946\) 0 0
\(947\) 2.81820e29 0.485816 0.242908 0.970049i \(-0.421899\pi\)
0.242908 + 0.970049i \(0.421899\pi\)
\(948\) −9.56192e29 −1.63103
\(949\) 0 0
\(950\) 0 0
\(951\) −8.97955e29 −1.48405
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 1.14725e29 0.183728
\(955\) 0 0
\(956\) 0 0
\(957\) 9.09463e27 0.0141145
\(958\) 0 0
\(959\) 0 0
\(960\) 5.69703e29 0.856911
\(961\) 1.75885e30 2.61815
\(962\) 0 0
\(963\) −7.48127e29 −1.09072
\(964\) 1.33392e30 1.92469
\(965\) −7.22727e29 −1.03205
\(966\) 0 0
\(967\) −8.92659e27 −0.0124859 −0.00624296 0.999981i \(-0.501987\pi\)
−0.00624296 + 0.999981i \(0.501987\pi\)
\(968\) 7.22248e29 0.999845
\(969\) 0 0
\(970\) −5.64917e29 −0.766067
\(971\) −6.59587e29 −0.885279 −0.442639 0.896700i \(-0.645958\pi\)
−0.442639 + 0.896700i \(0.645958\pi\)
\(972\) −7.52771e29 −1.00000
\(973\) 0 0
\(974\) −9.47333e29 −1.23286
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 6.71095e29 0.821340
\(981\) 0 0
\(982\) −4.58307e29 −0.549593
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) −6.22117e29 −0.723619
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 9.65519e27 0.0106760
\(991\) −2.51499e29 −0.275296 −0.137648 0.990481i \(-0.543954\pi\)
−0.137648 + 0.990481i \(0.543954\pi\)
\(992\) 1.75533e30 1.90214
\(993\) 0 0
\(994\) 0 0
\(995\) 9.34939e29 0.982997
\(996\) 1.92054e30 1.99908
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 24.21.h.a.5.1 1
3.2 odd 2 24.21.h.b.5.1 yes 1
8.5 even 2 24.21.h.b.5.1 yes 1
24.5 odd 2 CM 24.21.h.a.5.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
24.21.h.a.5.1 1 1.1 even 1 trivial
24.21.h.a.5.1 1 24.5 odd 2 CM
24.21.h.b.5.1 yes 1 3.2 odd 2
24.21.h.b.5.1 yes 1 8.5 even 2