Properties

Label 24.21
Level 24
Weight 21
Dimension 138
Nonzero newspaces 3
Newform subspaces 5
Sturm bound 672
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 24 = 2^{3} \cdot 3 \)
Weight: \( k \) = \( 21 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 5 \)
Sturm bound: \(672\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{21}(\Gamma_1(24))\).

Total New Old
Modular forms 332 142 190
Cusp forms 308 138 170
Eisenstein series 24 4 20

Trace form

\( 138 q - 1254 q^{2} + 10604 q^{3} - 3547116 q^{4} - 27420830 q^{6} - 93663628 q^{7} + 1421873100 q^{8} + 51105443114 q^{9} - 2356735692 q^{10} + 29041257408 q^{11} + 48753367840 q^{12} + 181620533288 q^{13}+ \cdots + 50\!\cdots\!52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{21}^{\mathrm{new}}(\Gamma_1(24))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
24.21.b \(\chi_{24}(19, \cdot)\) 24.21.b.a 40 1
24.21.e \(\chi_{24}(17, \cdot)\) 24.21.e.a 20 1
24.21.g \(\chi_{24}(7, \cdot)\) None 0 1
24.21.h \(\chi_{24}(5, \cdot)\) 24.21.h.a 1 1
24.21.h.b 1
24.21.h.c 76

Decomposition of \(S_{21}^{\mathrm{old}}(\Gamma_1(24))\) into lower level spaces

\( S_{21}^{\mathrm{old}}(\Gamma_1(24)) \cong \) \(S_{21}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 2}\)