Properties

Label 2394.2.o.i
Level $2394$
Weight $2$
Character orbit 2394.o
Analytic conductor $19.116$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2394,2,Mod(505,2394)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2394.505"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2394, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2394 = 2 \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2394.o (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1,0,-1,1,0,2,-2,0,-1,4,0,5,1,0,-1,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.1161862439\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 266)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{6} + 1) q^{2} - \zeta_{6} q^{4} + ( - \zeta_{6} + 1) q^{5} + q^{7} - q^{8} - \zeta_{6} q^{10} + 2 q^{11} + 5 \zeta_{6} q^{13} + ( - \zeta_{6} + 1) q^{14} + (\zeta_{6} - 1) q^{16} + (5 \zeta_{6} - 3) q^{19} + \cdots + ( - \zeta_{6} + 1) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{4} + q^{5} + 2 q^{7} - 2 q^{8} - q^{10} + 4 q^{11} + 5 q^{13} + q^{14} - q^{16} - q^{19} - 2 q^{20} + 2 q^{22} + q^{23} + 4 q^{25} + 10 q^{26} - q^{28} + 6 q^{29} + 8 q^{31} + q^{32}+ \cdots + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2394\mathbb{Z}\right)^\times\).

\(n\) \(533\) \(1009\) \(1711\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
505.1
0.500000 + 0.866025i
0.500000 0.866025i
0.500000 0.866025i 0 −0.500000 0.866025i 0.500000 0.866025i 0 1.00000 −1.00000 0 −0.500000 0.866025i
1261.1 0.500000 + 0.866025i 0 −0.500000 + 0.866025i 0.500000 + 0.866025i 0 1.00000 −1.00000 0 −0.500000 + 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2394.2.o.i 2
3.b odd 2 1 266.2.f.a 2
19.c even 3 1 inner 2394.2.o.i 2
57.f even 6 1 5054.2.a.a 1
57.h odd 6 1 266.2.f.a 2
57.h odd 6 1 5054.2.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
266.2.f.a 2 3.b odd 2 1
266.2.f.a 2 57.h odd 6 1
2394.2.o.i 2 1.a even 1 1 trivial
2394.2.o.i 2 19.c even 3 1 inner
5054.2.a.a 1 57.f even 6 1
5054.2.a.b 1 57.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2394, [\chi])\):

\( T_{5}^{2} - T_{5} + 1 \) Copy content Toggle raw display
\( T_{11} - 2 \) Copy content Toggle raw display
\( T_{13}^{2} - 5T_{13} + 25 \) Copy content Toggle raw display
\( T_{17} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$7$ \( (T - 1)^{2} \) Copy content Toggle raw display
$11$ \( (T - 2)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + T + 19 \) Copy content Toggle raw display
$23$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$29$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$31$ \( (T - 4)^{2} \) Copy content Toggle raw display
$37$ \( (T + 4)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$43$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$59$ \( T^{2} + 7T + 49 \) Copy content Toggle raw display
$61$ \( T^{2} - 7T + 49 \) Copy content Toggle raw display
$67$ \( T^{2} + 12T + 144 \) Copy content Toggle raw display
$71$ \( T^{2} + 15T + 225 \) Copy content Toggle raw display
$73$ \( T^{2} - 14T + 196 \) Copy content Toggle raw display
$79$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$83$ \( (T - 7)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 12T + 144 \) Copy content Toggle raw display
show more
show less