L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (0.5 + 0.866i)5-s + 7-s − 0.999·8-s + (−0.499 + 0.866i)10-s + 2·11-s + (2.5 − 4.33i)13-s + (0.5 + 0.866i)14-s + (−0.5 − 0.866i)16-s + (−0.5 − 4.33i)19-s − 0.999·20-s + (1 + 1.73i)22-s + (0.5 − 0.866i)23-s + (2 − 3.46i)25-s + 5·26-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (−0.249 + 0.433i)4-s + (0.223 + 0.387i)5-s + 0.377·7-s − 0.353·8-s + (−0.158 + 0.273i)10-s + 0.603·11-s + (0.693 − 1.20i)13-s + (0.133 + 0.231i)14-s + (−0.125 − 0.216i)16-s + (−0.114 − 0.993i)19-s − 0.223·20-s + (0.213 + 0.369i)22-s + (0.104 − 0.180i)23-s + (0.400 − 0.692i)25-s + 0.980·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2394 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.910 - 0.412i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2394 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.910 - 0.412i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.447816345\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.447816345\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 - T \) |
| 19 | \( 1 + (0.5 + 4.33i)T \) |
good | 5 | \( 1 + (-0.5 - 0.866i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 - 2T + 11T^{2} \) |
| 13 | \( 1 + (-2.5 + 4.33i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-3 + 5.19i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 4T + 31T^{2} \) |
| 37 | \( 1 + 4T + 37T^{2} \) |
| 41 | \( 1 + (1 + 1.73i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4 - 6.92i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (1 - 1.73i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (3.5 + 6.06i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.5 + 6.06i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (6 - 10.3i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (7.5 + 12.9i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-7 - 12.1i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-2 - 3.46i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 7T + 83T^{2} \) |
| 89 | \( 1 + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (6 + 10.3i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.766049285255243972653725299581, −8.225152873479505353024397754354, −7.44152417481062794098920154438, −6.51139073944148489943379009259, −6.09295100444871272002744588399, −5.08082397176612269558228985475, −4.35704175546473627047984511318, −3.32077157908290356468073734633, −2.45930340983725361587408871227, −0.859702679339627593443603714311,
1.23805533134719575055397976955, 1.87308658470553931678920740379, 3.23782375523766038743011811500, 4.06467640964997724175119809354, 4.79265747391555046582614016045, 5.68158016670952224657124663370, 6.46720097529748095166023875460, 7.28619362939549886473334309132, 8.481044083804738850281600738480, 8.923366005081995561376678456108