Properties

Label 2380.2.cb.b.781.17
Level $2380$
Weight $2$
Character 2380.781
Analytic conductor $19.004$
Analytic rank $0$
Dimension $92$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2380,2,Mod(781,2380)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2380.781"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2380, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2380 = 2^{2} \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2380.cb (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [92] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.0043956811\)
Analytic rank: \(0\)
Dimension: \(92\)
Relative dimension: \(46\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 781.17
Character \(\chi\) \(=\) 2380.781
Dual form 2380.2.cb.b.1801.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.04428 - 0.602915i) q^{3} +(-0.866025 + 0.500000i) q^{5} +(-2.63869 - 0.193203i) q^{7} +(-0.772986 - 1.33885i) q^{9} +(-4.44707 - 2.56752i) q^{11} +4.07119 q^{13} +1.20583 q^{15} +(-1.20468 - 3.94319i) q^{17} +(-1.73962 - 3.01311i) q^{19} +(2.63904 + 1.79266i) q^{21} +(4.53516 - 2.61837i) q^{23} +(0.500000 - 0.866025i) q^{25} +5.48167i q^{27} -3.81818i q^{29} +(0.00579115 + 0.00334352i) q^{31} +(3.09599 + 5.36241i) q^{33} +(2.38177 - 1.15202i) q^{35} +(2.34387 - 1.35324i) q^{37} +(-4.25146 - 2.45458i) q^{39} +12.1509i q^{41} -6.54181 q^{43} +(1.33885 + 0.772986i) q^{45} +(-2.89492 - 5.01416i) q^{47} +(6.92534 + 1.01961i) q^{49} +(-1.11939 + 4.84411i) q^{51} +(-6.88257 + 11.9210i) q^{53} +5.13503 q^{55} +4.19538i q^{57} +(-3.14237 + 5.44274i) q^{59} +(1.41701 - 0.818110i) q^{61} +(1.78100 + 3.68215i) q^{63} +(-3.52576 + 2.03560i) q^{65} +(2.53109 - 4.38398i) q^{67} -6.31463 q^{69} +6.01442i q^{71} +(-7.77495 - 4.48887i) q^{73} +(-1.04428 + 0.602915i) q^{75} +(11.2384 + 7.63406i) q^{77} +(-5.09285 + 2.94036i) q^{79} +(0.986026 - 1.70785i) q^{81} -6.46133 q^{83} +(3.01488 + 2.81257i) q^{85} +(-2.30204 + 3.98725i) q^{87} +(6.01404 + 10.4166i) q^{89} +(-10.7426 - 0.786568i) q^{91} +(-0.00403172 - 0.00698315i) q^{93} +(3.01311 + 1.73962i) q^{95} -8.99376i q^{97} +7.93862i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 92 q + 56 q^{9} - 24 q^{13} + 12 q^{15} + 4 q^{17} - 24 q^{21} + 46 q^{25} - 24 q^{33} + 14 q^{35} - 64 q^{43} + 16 q^{47} + 38 q^{49} - 22 q^{51} - 8 q^{53} + 18 q^{59} + 16 q^{67} - 36 q^{69} - 12 q^{77}+ \cdots + 44 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2380\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(1191\) \(1261\) \(1361\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.04428 0.602915i −0.602915 0.348093i 0.167272 0.985911i \(-0.446504\pi\)
−0.770188 + 0.637817i \(0.779837\pi\)
\(4\) 0 0
\(5\) −0.866025 + 0.500000i −0.387298 + 0.223607i
\(6\) 0 0
\(7\) −2.63869 0.193203i −0.997330 0.0730240i
\(8\) 0 0
\(9\) −0.772986 1.33885i −0.257662 0.446284i
\(10\) 0 0
\(11\) −4.44707 2.56752i −1.34084 0.774136i −0.353911 0.935279i \(-0.615148\pi\)
−0.986931 + 0.161144i \(0.948482\pi\)
\(12\) 0 0
\(13\) 4.07119 1.12915 0.564573 0.825383i \(-0.309041\pi\)
0.564573 + 0.825383i \(0.309041\pi\)
\(14\) 0 0
\(15\) 1.20583 0.311344
\(16\) 0 0
\(17\) −1.20468 3.94319i −0.292177 0.956364i
\(18\) 0 0
\(19\) −1.73962 3.01311i −0.399097 0.691256i 0.594518 0.804082i \(-0.297343\pi\)
−0.993615 + 0.112827i \(0.964010\pi\)
\(20\) 0 0
\(21\) 2.63904 + 1.79266i 0.575886 + 0.391191i
\(22\) 0 0
\(23\) 4.53516 2.61837i 0.945645 0.545969i 0.0539199 0.998545i \(-0.482828\pi\)
0.891725 + 0.452577i \(0.149495\pi\)
\(24\) 0 0
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) 0 0
\(27\) 5.48167i 1.05495i
\(28\) 0 0
\(29\) 3.81818i 0.709019i −0.935052 0.354509i \(-0.884648\pi\)
0.935052 0.354509i \(-0.115352\pi\)
\(30\) 0 0
\(31\) 0.00579115 + 0.00334352i 0.00104012 + 0.000600515i 0.500520 0.865725i \(-0.333142\pi\)
−0.499480 + 0.866326i \(0.666476\pi\)
\(32\) 0 0
\(33\) 3.09599 + 5.36241i 0.538943 + 0.933476i
\(34\) 0 0
\(35\) 2.38177 1.15202i 0.402593 0.194728i
\(36\) 0 0
\(37\) 2.34387 1.35324i 0.385330 0.222471i −0.294805 0.955558i \(-0.595255\pi\)
0.680135 + 0.733087i \(0.261921\pi\)
\(38\) 0 0
\(39\) −4.25146 2.45458i −0.680779 0.393048i
\(40\) 0 0
\(41\) 12.1509i 1.89764i 0.315810 + 0.948822i \(0.397724\pi\)
−0.315810 + 0.948822i \(0.602276\pi\)
\(42\) 0 0
\(43\) −6.54181 −0.997616 −0.498808 0.866712i \(-0.666229\pi\)
−0.498808 + 0.866712i \(0.666229\pi\)
\(44\) 0 0
\(45\) 1.33885 + 0.772986i 0.199584 + 0.115230i
\(46\) 0 0
\(47\) −2.89492 5.01416i −0.422268 0.731390i 0.573893 0.818930i \(-0.305433\pi\)
−0.996161 + 0.0875405i \(0.972099\pi\)
\(48\) 0 0
\(49\) 6.92534 + 1.01961i 0.989335 + 0.145658i
\(50\) 0 0
\(51\) −1.11939 + 4.84411i −0.156746 + 0.678312i
\(52\) 0 0
\(53\) −6.88257 + 11.9210i −0.945393 + 1.63747i −0.190432 + 0.981700i \(0.560989\pi\)
−0.754961 + 0.655769i \(0.772344\pi\)
\(54\) 0 0
\(55\) 5.13503 0.692408
\(56\) 0 0
\(57\) 4.19538i 0.555692i
\(58\) 0 0
\(59\) −3.14237 + 5.44274i −0.409101 + 0.708585i −0.994789 0.101952i \(-0.967491\pi\)
0.585688 + 0.810537i \(0.300824\pi\)
\(60\) 0 0
\(61\) 1.41701 0.818110i 0.181429 0.104748i −0.406535 0.913635i \(-0.633263\pi\)
0.587964 + 0.808887i \(0.299930\pi\)
\(62\) 0 0
\(63\) 1.78100 + 3.68215i 0.224385 + 0.463908i
\(64\) 0 0
\(65\) −3.52576 + 2.03560i −0.437316 + 0.252485i
\(66\) 0 0
\(67\) 2.53109 4.38398i 0.309222 0.535588i −0.668971 0.743289i \(-0.733265\pi\)
0.978192 + 0.207701i \(0.0665981\pi\)
\(68\) 0 0
\(69\) −6.31463 −0.760192
\(70\) 0 0
\(71\) 6.01442i 0.713780i 0.934146 + 0.356890i \(0.116163\pi\)
−0.934146 + 0.356890i \(0.883837\pi\)
\(72\) 0 0
\(73\) −7.77495 4.48887i −0.909989 0.525382i −0.0295613 0.999563i \(-0.509411\pi\)
−0.880428 + 0.474181i \(0.842744\pi\)
\(74\) 0 0
\(75\) −1.04428 + 0.602915i −0.120583 + 0.0696187i
\(76\) 0 0
\(77\) 11.2384 + 7.63406i 1.28073 + 0.869982i
\(78\) 0 0
\(79\) −5.09285 + 2.94036i −0.572991 + 0.330816i −0.758343 0.651856i \(-0.773991\pi\)
0.185352 + 0.982672i \(0.440657\pi\)
\(80\) 0 0
\(81\) 0.986026 1.70785i 0.109558 0.189761i
\(82\) 0 0
\(83\) −6.46133 −0.709223 −0.354612 0.935014i \(-0.615387\pi\)
−0.354612 + 0.935014i \(0.615387\pi\)
\(84\) 0 0
\(85\) 3.01488 + 2.81257i 0.327009 + 0.305066i
\(86\) 0 0
\(87\) −2.30204 + 3.98725i −0.246805 + 0.427478i
\(88\) 0 0
\(89\) 6.01404 + 10.4166i 0.637487 + 1.10416i 0.985982 + 0.166849i \(0.0533593\pi\)
−0.348496 + 0.937310i \(0.613307\pi\)
\(90\) 0 0
\(91\) −10.7426 0.786568i −1.12613 0.0824547i
\(92\) 0 0
\(93\) −0.00403172 0.00698315i −0.000418070 0.000724119i
\(94\) 0 0
\(95\) 3.01311 + 1.73962i 0.309139 + 0.178481i
\(96\) 0 0
\(97\) 8.99376i 0.913178i −0.889678 0.456589i \(-0.849071\pi\)
0.889678 0.456589i \(-0.150929\pi\)
\(98\) 0 0
\(99\) 7.93862i 0.797861i
\(100\) 0 0
\(101\) 4.18044 7.24074i 0.415969 0.720480i −0.579560 0.814929i \(-0.696776\pi\)
0.995530 + 0.0944492i \(0.0301090\pi\)
\(102\) 0 0
\(103\) 1.54083 + 2.66880i 0.151823 + 0.262965i 0.931898 0.362721i \(-0.118152\pi\)
−0.780075 + 0.625686i \(0.784819\pi\)
\(104\) 0 0
\(105\) −3.18181 0.232971i −0.310513 0.0227356i
\(106\) 0 0
\(107\) −16.1458 + 9.32181i −1.56088 + 0.901173i −0.563709 + 0.825974i \(0.690626\pi\)
−0.997169 + 0.0751993i \(0.976041\pi\)
\(108\) 0 0
\(109\) 3.01624 + 1.74143i 0.288904 + 0.166799i 0.637447 0.770494i \(-0.279990\pi\)
−0.348544 + 0.937293i \(0.613324\pi\)
\(110\) 0 0
\(111\) −3.26355 −0.309762
\(112\) 0 0
\(113\) 2.93517i 0.276118i −0.990424 0.138059i \(-0.955914\pi\)
0.990424 0.138059i \(-0.0440863\pi\)
\(114\) 0 0
\(115\) −2.61837 + 4.53516i −0.244165 + 0.422905i
\(116\) 0 0
\(117\) −3.14698 5.45072i −0.290938 0.503919i
\(118\) 0 0
\(119\) 2.41693 + 10.6376i 0.221559 + 0.975147i
\(120\) 0 0
\(121\) 7.68429 + 13.3096i 0.698572 + 1.20996i
\(122\) 0 0
\(123\) 7.32594 12.6889i 0.660558 1.14412i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) −4.31721 −0.383090 −0.191545 0.981484i \(-0.561350\pi\)
−0.191545 + 0.981484i \(0.561350\pi\)
\(128\) 0 0
\(129\) 6.83148 + 3.94416i 0.601478 + 0.347264i
\(130\) 0 0
\(131\) 16.7631 9.67820i 1.46460 0.845588i 0.465383 0.885109i \(-0.345917\pi\)
0.999219 + 0.0395212i \(0.0125833\pi\)
\(132\) 0 0
\(133\) 4.00818 + 8.28677i 0.347553 + 0.718554i
\(134\) 0 0
\(135\) −2.74084 4.74727i −0.235894 0.408580i
\(136\) 0 0
\(137\) −2.15060 + 3.72495i −0.183738 + 0.318244i −0.943151 0.332365i \(-0.892153\pi\)
0.759412 + 0.650610i \(0.225487\pi\)
\(138\) 0 0
\(139\) 18.1388i 1.53851i 0.638942 + 0.769255i \(0.279372\pi\)
−0.638942 + 0.769255i \(0.720628\pi\)
\(140\) 0 0
\(141\) 6.98158i 0.587955i
\(142\) 0 0
\(143\) −18.1049 10.4529i −1.51401 0.874112i
\(144\) 0 0
\(145\) 1.90909 + 3.30664i 0.158541 + 0.274602i
\(146\) 0 0
\(147\) −6.61726 5.24015i −0.545783 0.432200i
\(148\) 0 0
\(149\) 2.96369 + 5.13326i 0.242795 + 0.420533i 0.961509 0.274772i \(-0.0886025\pi\)
−0.718714 + 0.695305i \(0.755269\pi\)
\(150\) 0 0
\(151\) −3.95007 + 6.84173i −0.321452 + 0.556772i −0.980788 0.195077i \(-0.937504\pi\)
0.659335 + 0.751849i \(0.270838\pi\)
\(152\) 0 0
\(153\) −4.34815 + 4.66091i −0.351527 + 0.376813i
\(154\) 0 0
\(155\) −0.00668705 −0.000537117
\(156\) 0 0
\(157\) 6.91423 11.9758i 0.551815 0.955772i −0.446328 0.894869i \(-0.647269\pi\)
0.998144 0.0609029i \(-0.0193980\pi\)
\(158\) 0 0
\(159\) 14.3747 8.29921i 1.13998 0.658170i
\(160\) 0 0
\(161\) −12.4727 + 6.03286i −0.982989 + 0.475456i
\(162\) 0 0
\(163\) 16.2689 9.39283i 1.27428 0.735703i 0.298486 0.954414i \(-0.403519\pi\)
0.975790 + 0.218711i \(0.0701852\pi\)
\(164\) 0 0
\(165\) −5.36241 3.09599i −0.417463 0.241023i
\(166\) 0 0
\(167\) 22.7775i 1.76258i −0.472576 0.881290i \(-0.656676\pi\)
0.472576 0.881290i \(-0.343324\pi\)
\(168\) 0 0
\(169\) 3.57460 0.274970
\(170\) 0 0
\(171\) −2.68941 + 4.65819i −0.205664 + 0.356221i
\(172\) 0 0
\(173\) −11.6090 + 6.70248i −0.882618 + 0.509580i −0.871521 0.490359i \(-0.836866\pi\)
−0.0110973 + 0.999938i \(0.503532\pi\)
\(174\) 0 0
\(175\) −1.48666 + 2.18857i −0.112381 + 0.165440i
\(176\) 0 0
\(177\) 6.56302 3.78916i 0.493307 0.284811i
\(178\) 0 0
\(179\) −8.11388 + 14.0536i −0.606460 + 1.05042i 0.385359 + 0.922767i \(0.374078\pi\)
−0.991819 + 0.127652i \(0.959256\pi\)
\(180\) 0 0
\(181\) 7.48593i 0.556425i −0.960520 0.278212i \(-0.910258\pi\)
0.960520 0.278212i \(-0.0897419\pi\)
\(182\) 0 0
\(183\) −1.97300 −0.145849
\(184\) 0 0
\(185\) −1.35324 + 2.34387i −0.0994919 + 0.172325i
\(186\) 0 0
\(187\) −4.76693 + 20.6287i −0.348592 + 1.50852i
\(188\) 0 0
\(189\) 1.05908 14.4644i 0.0770366 1.05213i
\(190\) 0 0
\(191\) −0.746997 1.29384i −0.0540508 0.0936187i 0.837734 0.546078i \(-0.183880\pi\)
−0.891785 + 0.452460i \(0.850547\pi\)
\(192\) 0 0
\(193\) 11.6536 + 6.72822i 0.838845 + 0.484308i 0.856872 0.515530i \(-0.172405\pi\)
−0.0180262 + 0.999838i \(0.505738\pi\)
\(194\) 0 0
\(195\) 4.90917 0.351553
\(196\) 0 0
\(197\) 0.424278i 0.0302285i −0.999886 0.0151143i \(-0.995189\pi\)
0.999886 0.0151143i \(-0.00481120\pi\)
\(198\) 0 0
\(199\) 13.9066 + 8.02898i 0.985812 + 0.569159i 0.904020 0.427490i \(-0.140602\pi\)
0.0817924 + 0.996649i \(0.473936\pi\)
\(200\) 0 0
\(201\) −5.28633 + 3.05206i −0.372869 + 0.215276i
\(202\) 0 0
\(203\) −0.737686 + 10.0750i −0.0517754 + 0.707126i
\(204\) 0 0
\(205\) −6.07543 10.5230i −0.424326 0.734955i
\(206\) 0 0
\(207\) −7.01123 4.04793i −0.487314 0.281351i
\(208\) 0 0
\(209\) 17.8660i 1.23582i
\(210\) 0 0
\(211\) 5.29980i 0.364853i 0.983219 + 0.182427i \(0.0583952\pi\)
−0.983219 + 0.182427i \(0.941605\pi\)
\(212\) 0 0
\(213\) 3.62618 6.28073i 0.248462 0.430349i
\(214\) 0 0
\(215\) 5.66537 3.27090i 0.386375 0.223074i
\(216\) 0 0
\(217\) −0.0146351 0.00994138i −0.000993493 0.000674865i
\(218\) 0 0
\(219\) 5.41282 + 9.37527i 0.365764 + 0.633522i
\(220\) 0 0
\(221\) −4.90447 16.0535i −0.329910 1.07987i
\(222\) 0 0
\(223\) 18.0585 1.20929 0.604643 0.796496i \(-0.293316\pi\)
0.604643 + 0.796496i \(0.293316\pi\)
\(224\) 0 0
\(225\) −1.54597 −0.103065
\(226\) 0 0
\(227\) 0.571118 + 0.329735i 0.0379064 + 0.0218853i 0.518833 0.854875i \(-0.326366\pi\)
−0.480927 + 0.876761i \(0.659700\pi\)
\(228\) 0 0
\(229\) 9.45623 + 16.3787i 0.624885 + 1.08233i 0.988563 + 0.150808i \(0.0481875\pi\)
−0.363678 + 0.931525i \(0.618479\pi\)
\(230\) 0 0
\(231\) −7.13332 14.7479i −0.469338 0.970340i
\(232\) 0 0
\(233\) −16.6315 + 9.60220i −1.08957 + 0.629061i −0.933461 0.358679i \(-0.883227\pi\)
−0.156105 + 0.987740i \(0.549894\pi\)
\(234\) 0 0
\(235\) 5.01416 + 2.89492i 0.327088 + 0.188844i
\(236\) 0 0
\(237\) 7.09115 0.460620
\(238\) 0 0
\(239\) 23.3550 1.51071 0.755355 0.655316i \(-0.227464\pi\)
0.755355 + 0.655316i \(0.227464\pi\)
\(240\) 0 0
\(241\) 4.95035 + 2.85809i 0.318880 + 0.184106i 0.650893 0.759169i \(-0.274394\pi\)
−0.332013 + 0.943275i \(0.607728\pi\)
\(242\) 0 0
\(243\) 12.1824 7.03353i 0.781503 0.451201i
\(244\) 0 0
\(245\) −6.50733 + 2.57967i −0.415738 + 0.164809i
\(246\) 0 0
\(247\) −7.08234 12.2670i −0.450638 0.780528i
\(248\) 0 0
\(249\) 6.74744 + 3.89564i 0.427602 + 0.246876i
\(250\) 0 0
\(251\) −16.3377 −1.03122 −0.515612 0.856822i \(-0.672435\pi\)
−0.515612 + 0.856822i \(0.672435\pi\)
\(252\) 0 0
\(253\) −26.8909 −1.69061
\(254\) 0 0
\(255\) −1.45264 4.75482i −0.0909676 0.297758i
\(256\) 0 0
\(257\) 1.04134 + 1.80365i 0.0649569 + 0.112509i 0.896675 0.442690i \(-0.145976\pi\)
−0.831718 + 0.555198i \(0.812642\pi\)
\(258\) 0 0
\(259\) −6.44620 + 3.11792i −0.400547 + 0.193738i
\(260\) 0 0
\(261\) −5.11198 + 2.95140i −0.316424 + 0.182687i
\(262\) 0 0
\(263\) −14.0545 + 24.3431i −0.866638 + 1.50106i −0.00122743 + 0.999999i \(0.500391\pi\)
−0.865411 + 0.501063i \(0.832943\pi\)
\(264\) 0 0
\(265\) 13.7651i 0.845586i
\(266\) 0 0
\(267\) 14.5038i 0.887620i
\(268\) 0 0
\(269\) 14.8622 + 8.58070i 0.906165 + 0.523175i 0.879195 0.476462i \(-0.158081\pi\)
0.0269697 + 0.999636i \(0.491414\pi\)
\(270\) 0 0
\(271\) 5.73299 + 9.92983i 0.348254 + 0.603194i 0.985939 0.167103i \(-0.0534412\pi\)
−0.637685 + 0.770297i \(0.720108\pi\)
\(272\) 0 0
\(273\) 10.7441 + 7.29828i 0.650260 + 0.441712i
\(274\) 0 0
\(275\) −4.44707 + 2.56752i −0.268168 + 0.154827i
\(276\) 0 0
\(277\) 3.29124 + 1.90020i 0.197752 + 0.114172i 0.595606 0.803276i \(-0.296912\pi\)
−0.397855 + 0.917448i \(0.630245\pi\)
\(278\) 0 0
\(279\) 0.0103380i 0.000618919i
\(280\) 0 0
\(281\) 10.3438 0.617062 0.308531 0.951214i \(-0.400163\pi\)
0.308531 + 0.951214i \(0.400163\pi\)
\(282\) 0 0
\(283\) 13.3493 + 7.70723i 0.793535 + 0.458147i 0.841205 0.540716i \(-0.181846\pi\)
−0.0476708 + 0.998863i \(0.515180\pi\)
\(284\) 0 0
\(285\) −2.09769 3.63331i −0.124256 0.215218i
\(286\) 0 0
\(287\) 2.34759 32.0623i 0.138574 1.89258i
\(288\) 0 0
\(289\) −14.0975 + 9.50054i −0.829265 + 0.558855i
\(290\) 0 0
\(291\) −5.42248 + 9.39201i −0.317871 + 0.550569i
\(292\) 0 0
\(293\) 15.4879 0.904814 0.452407 0.891812i \(-0.350566\pi\)
0.452407 + 0.891812i \(0.350566\pi\)
\(294\) 0 0
\(295\) 6.28474i 0.365911i
\(296\) 0 0
\(297\) 14.0743 24.3774i 0.816673 1.41452i
\(298\) 0 0
\(299\) 18.4635 10.6599i 1.06777 0.616478i
\(300\) 0 0
\(301\) 17.2618 + 1.26390i 0.994953 + 0.0728500i
\(302\) 0 0
\(303\) −8.73110 + 5.04090i −0.501589 + 0.289592i
\(304\) 0 0
\(305\) −0.818110 + 1.41701i −0.0468448 + 0.0811376i
\(306\) 0 0
\(307\) −25.3694 −1.44791 −0.723953 0.689849i \(-0.757677\pi\)
−0.723953 + 0.689849i \(0.757677\pi\)
\(308\) 0 0
\(309\) 3.71597i 0.211394i
\(310\) 0 0
\(311\) −9.57589 5.52864i −0.542999 0.313501i 0.203294 0.979118i \(-0.434835\pi\)
−0.746294 + 0.665617i \(0.768168\pi\)
\(312\) 0 0
\(313\) 17.4477 10.0735i 0.986204 0.569385i 0.0820669 0.996627i \(-0.473848\pi\)
0.904138 + 0.427241i \(0.140515\pi\)
\(314\) 0 0
\(315\) −3.38347 2.29834i −0.190637 0.129497i
\(316\) 0 0
\(317\) −16.4187 + 9.47932i −0.922164 + 0.532412i −0.884325 0.466872i \(-0.845381\pi\)
−0.0378394 + 0.999284i \(0.512048\pi\)
\(318\) 0 0
\(319\) −9.80325 + 16.9797i −0.548876 + 0.950682i
\(320\) 0 0
\(321\) 22.4810 1.25477
\(322\) 0 0
\(323\) −9.78560 + 10.4895i −0.544485 + 0.583651i
\(324\) 0 0
\(325\) 2.03560 3.52576i 0.112915 0.195574i
\(326\) 0 0
\(327\) −2.09987 3.63708i −0.116123 0.201131i
\(328\) 0 0
\(329\) 6.67005 + 13.7901i 0.367732 + 0.760273i
\(330\) 0 0
\(331\) −11.0401 19.1220i −0.606819 1.05104i −0.991761 0.128101i \(-0.959112\pi\)
0.384942 0.922941i \(-0.374221\pi\)
\(332\) 0 0
\(333\) −3.62356 2.09207i −0.198570 0.114644i
\(334\) 0 0
\(335\) 5.06218i 0.276576i
\(336\) 0 0
\(337\) 28.4706i 1.55089i 0.631413 + 0.775447i \(0.282475\pi\)
−0.631413 + 0.775447i \(0.717525\pi\)
\(338\) 0 0
\(339\) −1.76966 + 3.06514i −0.0961148 + 0.166476i
\(340\) 0 0
\(341\) −0.0171691 0.0297378i −0.000929759 0.00161039i
\(342\) 0 0
\(343\) −18.0768 4.02842i −0.976057 0.217514i
\(344\) 0 0
\(345\) 5.46863 3.15731i 0.294421 0.169984i
\(346\) 0 0
\(347\) −22.6259 13.0631i −1.21462 0.701263i −0.250860 0.968023i \(-0.580713\pi\)
−0.963763 + 0.266761i \(0.914047\pi\)
\(348\) 0 0
\(349\) −11.1950 −0.599252 −0.299626 0.954057i \(-0.596862\pi\)
−0.299626 + 0.954057i \(0.596862\pi\)
\(350\) 0 0
\(351\) 22.3169i 1.19119i
\(352\) 0 0
\(353\) 9.62215 16.6660i 0.512135 0.887044i −0.487766 0.872975i \(-0.662188\pi\)
0.999901 0.0140697i \(-0.00447868\pi\)
\(354\) 0 0
\(355\) −3.00721 5.20864i −0.159606 0.276446i
\(356\) 0 0
\(357\) 3.88962 12.5658i 0.205861 0.665054i
\(358\) 0 0
\(359\) −17.7299 30.7092i −0.935751 1.62077i −0.773290 0.634053i \(-0.781390\pi\)
−0.162461 0.986715i \(-0.551943\pi\)
\(360\) 0 0
\(361\) 3.44743 5.97112i 0.181444 0.314270i
\(362\) 0 0
\(363\) 18.5319i 0.972672i
\(364\) 0 0
\(365\) 8.97774 0.469916
\(366\) 0 0
\(367\) −6.36087 3.67245i −0.332035 0.191700i 0.324709 0.945814i \(-0.394734\pi\)
−0.656744 + 0.754114i \(0.728067\pi\)
\(368\) 0 0
\(369\) 16.2682 9.39244i 0.846888 0.488951i
\(370\) 0 0
\(371\) 20.4641 30.1259i 1.06244 1.56406i
\(372\) 0 0
\(373\) −6.27993 10.8772i −0.325163 0.563198i 0.656383 0.754428i \(-0.272086\pi\)
−0.981545 + 0.191230i \(0.938752\pi\)
\(374\) 0 0
\(375\) 0.602915 1.04428i 0.0311344 0.0539264i
\(376\) 0 0
\(377\) 15.5446i 0.800585i
\(378\) 0 0
\(379\) 5.32598i 0.273577i 0.990600 + 0.136788i \(0.0436781\pi\)
−0.990600 + 0.136788i \(0.956322\pi\)
\(380\) 0 0
\(381\) 4.50838 + 2.60291i 0.230971 + 0.133351i
\(382\) 0 0
\(383\) −8.92740 15.4627i −0.456169 0.790107i 0.542586 0.840000i \(-0.317445\pi\)
−0.998755 + 0.0498931i \(0.984112\pi\)
\(384\) 0 0
\(385\) −13.5498 0.992106i −0.690559 0.0505624i
\(386\) 0 0
\(387\) 5.05673 + 8.75851i 0.257048 + 0.445220i
\(388\) 0 0
\(389\) −18.4070 + 31.8819i −0.933272 + 1.61647i −0.155585 + 0.987823i \(0.549726\pi\)
−0.777687 + 0.628652i \(0.783607\pi\)
\(390\) 0 0
\(391\) −15.7881 14.7287i −0.798441 0.744862i
\(392\) 0 0
\(393\) −23.3405 −1.17737
\(394\) 0 0
\(395\) 2.94036 5.09285i 0.147946 0.256249i
\(396\) 0 0
\(397\) −5.82107 + 3.36080i −0.292151 + 0.168674i −0.638912 0.769280i \(-0.720615\pi\)
0.346760 + 0.937954i \(0.387282\pi\)
\(398\) 0 0
\(399\) 0.810562 11.0703i 0.0405788 0.554208i
\(400\) 0 0
\(401\) 28.2672 16.3201i 1.41160 0.814986i 0.416058 0.909338i \(-0.363411\pi\)
0.995539 + 0.0943528i \(0.0300782\pi\)
\(402\) 0 0
\(403\) 0.0235769 + 0.0136121i 0.00117445 + 0.000678068i
\(404\) 0 0
\(405\) 1.97205i 0.0979920i
\(406\) 0 0
\(407\) −13.8978 −0.688890
\(408\) 0 0
\(409\) 7.21463 12.4961i 0.356740 0.617893i −0.630674 0.776048i \(-0.717221\pi\)
0.987414 + 0.158155i \(0.0505547\pi\)
\(410\) 0 0
\(411\) 4.49166 2.59326i 0.221557 0.127916i
\(412\) 0 0
\(413\) 9.34328 13.7546i 0.459753 0.676818i
\(414\) 0 0
\(415\) 5.59568 3.23067i 0.274681 0.158587i
\(416\) 0 0
\(417\) 10.9361 18.9419i 0.535545 0.927591i
\(418\) 0 0
\(419\) 24.9214i 1.21749i −0.793365 0.608746i \(-0.791673\pi\)
0.793365 0.608746i \(-0.208327\pi\)
\(420\) 0 0
\(421\) −28.5780 −1.39281 −0.696403 0.717651i \(-0.745217\pi\)
−0.696403 + 0.717651i \(0.745217\pi\)
\(422\) 0 0
\(423\) −4.47547 + 7.75175i −0.217605 + 0.376903i
\(424\) 0 0
\(425\) −4.01724 0.928315i −0.194865 0.0450299i
\(426\) 0 0
\(427\) −3.89710 + 1.88497i −0.188594 + 0.0912199i
\(428\) 0 0
\(429\) 12.6044 + 21.8314i 0.608545 + 1.05403i
\(430\) 0 0
\(431\) 11.3962 + 6.57962i 0.548938 + 0.316929i 0.748693 0.662916i \(-0.230682\pi\)
−0.199756 + 0.979846i \(0.564015\pi\)
\(432\) 0 0
\(433\) −0.394201 −0.0189441 −0.00947204 0.999955i \(-0.503015\pi\)
−0.00947204 + 0.999955i \(0.503015\pi\)
\(434\) 0 0
\(435\) 4.60408i 0.220749i
\(436\) 0 0
\(437\) −15.7789 9.10996i −0.754808 0.435789i
\(438\) 0 0
\(439\) 12.7311 7.35033i 0.607624 0.350812i −0.164411 0.986392i \(-0.552572\pi\)
0.772035 + 0.635580i \(0.219239\pi\)
\(440\) 0 0
\(441\) −3.98809 10.0602i −0.189909 0.479055i
\(442\) 0 0
\(443\) 12.8615 + 22.2769i 0.611071 + 1.05841i 0.991060 + 0.133415i \(0.0425942\pi\)
−0.379990 + 0.924991i \(0.624073\pi\)
\(444\) 0 0
\(445\) −10.4166 6.01404i −0.493795 0.285093i
\(446\) 0 0
\(447\) 7.14741i 0.338061i
\(448\) 0 0
\(449\) 5.14935i 0.243013i 0.992591 + 0.121506i \(0.0387725\pi\)
−0.992591 + 0.121506i \(0.961228\pi\)
\(450\) 0 0
\(451\) 31.1975 54.0357i 1.46903 2.54444i
\(452\) 0 0
\(453\) 8.24997 4.76312i 0.387617 0.223791i
\(454\) 0 0
\(455\) 9.69665 4.69011i 0.454586 0.219876i
\(456\) 0 0
\(457\) 2.99204 + 5.18237i 0.139962 + 0.242421i 0.927482 0.373868i \(-0.121969\pi\)
−0.787520 + 0.616289i \(0.788635\pi\)
\(458\) 0 0
\(459\) 21.6153 6.60364i 1.00892 0.308232i
\(460\) 0 0
\(461\) −23.4084 −1.09024 −0.545118 0.838359i \(-0.683515\pi\)
−0.545118 + 0.838359i \(0.683515\pi\)
\(462\) 0 0
\(463\) −4.89401 −0.227444 −0.113722 0.993513i \(-0.536277\pi\)
−0.113722 + 0.993513i \(0.536277\pi\)
\(464\) 0 0
\(465\) 0.00698315 + 0.00403172i 0.000323836 + 0.000186967i
\(466\) 0 0
\(467\) −0.537681 0.931290i −0.0248809 0.0430950i 0.853317 0.521393i \(-0.174587\pi\)
−0.878198 + 0.478298i \(0.841254\pi\)
\(468\) 0 0
\(469\) −7.52575 + 11.0789i −0.347507 + 0.511577i
\(470\) 0 0
\(471\) −14.4408 + 8.33739i −0.665396 + 0.384166i
\(472\) 0 0
\(473\) 29.0919 + 16.7962i 1.33765 + 0.772290i
\(474\) 0 0
\(475\) −3.47924 −0.159639
\(476\) 0 0
\(477\) 21.2805 0.974368
\(478\) 0 0
\(479\) −12.2793 7.08944i −0.561055 0.323925i 0.192514 0.981294i \(-0.438336\pi\)
−0.753569 + 0.657369i \(0.771669\pi\)
\(480\) 0 0
\(481\) 9.54236 5.50928i 0.435094 0.251202i
\(482\) 0 0
\(483\) 16.6623 + 1.22001i 0.758163 + 0.0555123i
\(484\) 0 0
\(485\) 4.49688 + 7.78883i 0.204193 + 0.353672i
\(486\) 0 0
\(487\) −0.0335976 0.0193976i −0.00152245 0.000878989i 0.499239 0.866465i \(-0.333613\pi\)
−0.500761 + 0.865586i \(0.666946\pi\)
\(488\) 0 0
\(489\) −22.6523 −1.02437
\(490\) 0 0
\(491\) −34.9950 −1.57930 −0.789652 0.613555i \(-0.789739\pi\)
−0.789652 + 0.613555i \(0.789739\pi\)
\(492\) 0 0
\(493\) −15.0558 + 4.59967i −0.678080 + 0.207159i
\(494\) 0 0
\(495\) −3.96931 6.87505i −0.178407 0.309010i
\(496\) 0 0
\(497\) 1.16201 15.8702i 0.0521231 0.711874i
\(498\) 0 0
\(499\) −2.72495 + 1.57325i −0.121986 + 0.0704285i −0.559751 0.828661i \(-0.689103\pi\)
0.437766 + 0.899089i \(0.355770\pi\)
\(500\) 0 0
\(501\) −13.7329 + 23.7861i −0.613542 + 1.06269i
\(502\) 0 0
\(503\) 9.81051i 0.437429i 0.975789 + 0.218715i \(0.0701864\pi\)
−0.975789 + 0.218715i \(0.929814\pi\)
\(504\) 0 0
\(505\) 8.36088i 0.372054i
\(506\) 0 0
\(507\) −3.73289 2.15518i −0.165783 0.0957151i
\(508\) 0 0
\(509\) 7.85529 + 13.6058i 0.348180 + 0.603065i 0.985926 0.167182i \(-0.0534666\pi\)
−0.637747 + 0.770246i \(0.720133\pi\)
\(510\) 0 0
\(511\) 19.6484 + 13.3469i 0.869194 + 0.590431i
\(512\) 0 0
\(513\) 16.5169 9.53604i 0.729239 0.421026i
\(514\) 0 0
\(515\) −2.66880 1.54083i −0.117601 0.0678972i
\(516\) 0 0
\(517\) 29.7311i 1.30757i
\(518\) 0 0
\(519\) 16.1641 0.709525
\(520\) 0 0
\(521\) −10.7931 6.23141i −0.472855 0.273003i 0.244579 0.969629i \(-0.421350\pi\)
−0.717434 + 0.696626i \(0.754684\pi\)
\(522\) 0 0
\(523\) −13.8437 23.9780i −0.605343 1.04848i −0.991997 0.126260i \(-0.959703\pi\)
0.386655 0.922225i \(-0.373631\pi\)
\(524\) 0 0
\(525\) 2.87201 1.38915i 0.125345 0.0606273i
\(526\) 0 0
\(527\) 0.00620769 0.0268635i 0.000270411 0.00117019i
\(528\) 0 0
\(529\) 2.21176 3.83088i 0.0961634 0.166560i
\(530\) 0 0
\(531\) 9.71603 0.421640
\(532\) 0 0
\(533\) 49.4685i 2.14272i
\(534\) 0 0
\(535\) 9.32181 16.1458i 0.403017 0.698046i
\(536\) 0 0
\(537\) 16.9463 9.78396i 0.731288 0.422209i
\(538\) 0 0
\(539\) −28.1796 22.3152i −1.21378 0.961184i
\(540\) 0 0
\(541\) 4.95269 2.85944i 0.212933 0.122937i −0.389741 0.920925i \(-0.627435\pi\)
0.602674 + 0.797988i \(0.294102\pi\)
\(542\) 0 0
\(543\) −4.51338 + 7.81741i −0.193688 + 0.335477i
\(544\) 0 0
\(545\) −3.48286 −0.149189
\(546\) 0 0
\(547\) 19.7092i 0.842704i 0.906897 + 0.421352i \(0.138444\pi\)
−0.906897 + 0.421352i \(0.861556\pi\)
\(548\) 0 0
\(549\) −2.19065 1.26478i −0.0934949 0.0539793i
\(550\) 0 0
\(551\) −11.5046 + 6.64219i −0.490113 + 0.282967i
\(552\) 0 0
\(553\) 14.0065 6.77474i 0.595619 0.288091i
\(554\) 0 0
\(555\) 2.82631 1.63177i 0.119970 0.0692649i
\(556\) 0 0
\(557\) 2.09640 3.63107i 0.0888273 0.153853i −0.818188 0.574950i \(-0.805021\pi\)
0.907016 + 0.421097i \(0.138355\pi\)
\(558\) 0 0
\(559\) −26.6330 −1.12645
\(560\) 0 0
\(561\) 17.4154 18.6681i 0.735277 0.788166i
\(562\) 0 0
\(563\) −21.2651 + 36.8322i −0.896217 + 1.55229i −0.0639266 + 0.997955i \(0.520362\pi\)
−0.832291 + 0.554339i \(0.812971\pi\)
\(564\) 0 0
\(565\) 1.46759 + 2.54193i 0.0617418 + 0.106940i
\(566\) 0 0
\(567\) −2.93178 + 4.31597i −0.123123 + 0.181254i
\(568\) 0 0
\(569\) −19.9970 34.6358i −0.838318 1.45201i −0.891300 0.453414i \(-0.850206\pi\)
0.0529825 0.998595i \(-0.483127\pi\)
\(570\) 0 0
\(571\) 5.28048 + 3.04869i 0.220981 + 0.127584i 0.606405 0.795156i \(-0.292611\pi\)
−0.385423 + 0.922740i \(0.625945\pi\)
\(572\) 0 0
\(573\) 1.80150i 0.0752589i
\(574\) 0 0
\(575\) 5.23675i 0.218387i
\(576\) 0 0
\(577\) 16.5865 28.7287i 0.690506 1.19599i −0.281166 0.959659i \(-0.590721\pi\)
0.971672 0.236333i \(-0.0759456\pi\)
\(578\) 0 0
\(579\) −8.11309 14.0523i −0.337168 0.583993i
\(580\) 0 0
\(581\) 17.0494 + 1.24835i 0.707330 + 0.0517903i
\(582\) 0 0
\(583\) 61.2145 35.3422i 2.53525 1.46373i
\(584\) 0 0
\(585\) 5.45072 + 3.14698i 0.225360 + 0.130111i
\(586\) 0 0
\(587\) 45.2579 1.86799 0.933997 0.357281i \(-0.116296\pi\)
0.933997 + 0.357281i \(0.116296\pi\)
\(588\) 0 0
\(589\) 0.0232659i 0.000958654i
\(590\) 0 0
\(591\) −0.255803 + 0.443065i −0.0105223 + 0.0182252i
\(592\) 0 0
\(593\) 3.76623 + 6.52330i 0.154661 + 0.267880i 0.932935 0.360044i \(-0.117238\pi\)
−0.778275 + 0.627924i \(0.783905\pi\)
\(594\) 0 0
\(595\) −7.41192 8.00397i −0.303859 0.328131i
\(596\) 0 0
\(597\) −9.68158 16.7690i −0.396241 0.686309i
\(598\) 0 0
\(599\) −12.8794 + 22.3079i −0.526240 + 0.911474i 0.473293 + 0.880905i \(0.343065\pi\)
−0.999533 + 0.0305689i \(0.990268\pi\)
\(600\) 0 0
\(601\) 12.9515i 0.528304i 0.964481 + 0.264152i \(0.0850921\pi\)
−0.964481 + 0.264152i \(0.914908\pi\)
\(602\) 0 0
\(603\) −7.82599 −0.318699
\(604\) 0 0
\(605\) −13.3096 7.68429i −0.541111 0.312411i
\(606\) 0 0
\(607\) 12.0957 6.98346i 0.490950 0.283450i −0.234019 0.972232i \(-0.575188\pi\)
0.724968 + 0.688782i \(0.241854\pi\)
\(608\) 0 0
\(609\) 6.84472 10.0763i 0.277362 0.408314i
\(610\) 0 0
\(611\) −11.7858 20.4136i −0.476802 0.825846i
\(612\) 0 0
\(613\) 15.9922 27.6992i 0.645917 1.11876i −0.338172 0.941084i \(-0.609809\pi\)
0.984089 0.177677i \(-0.0568581\pi\)
\(614\) 0 0
\(615\) 14.6519i 0.590821i
\(616\) 0 0
\(617\) 28.8328i 1.16077i −0.814344 0.580383i \(-0.802903\pi\)
0.814344 0.580383i \(-0.197097\pi\)
\(618\) 0 0
\(619\) 1.33580 + 0.771223i 0.0536903 + 0.0309981i 0.526605 0.850110i \(-0.323465\pi\)
−0.472915 + 0.881108i \(0.656798\pi\)
\(620\) 0 0
\(621\) 14.3531 + 24.8602i 0.575969 + 0.997607i
\(622\) 0 0
\(623\) −13.8566 28.6481i −0.555155 1.14776i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 10.7717 18.6571i 0.430181 0.745095i
\(628\) 0 0
\(629\) −8.15968 7.61213i −0.325348 0.303515i
\(630\) 0 0
\(631\) 0.726321 0.0289144 0.0144572 0.999895i \(-0.495398\pi\)
0.0144572 + 0.999895i \(0.495398\pi\)
\(632\) 0 0
\(633\) 3.19533 5.53447i 0.127003 0.219975i
\(634\) 0 0
\(635\) 3.73881 2.15861i 0.148370 0.0856616i
\(636\) 0 0
\(637\) 28.1944 + 4.15102i 1.11710 + 0.164469i
\(638\) 0 0
\(639\) 8.05241 4.64906i 0.318548 0.183914i
\(640\) 0 0
\(641\) −17.6221 10.1741i −0.696032 0.401854i 0.109836 0.993950i \(-0.464967\pi\)
−0.805868 + 0.592096i \(0.798301\pi\)
\(642\) 0 0
\(643\) 37.1266i 1.46413i −0.681236 0.732064i \(-0.738557\pi\)
0.681236 0.732064i \(-0.261443\pi\)
\(644\) 0 0
\(645\) −7.88831 −0.310602
\(646\) 0 0
\(647\) 12.0312 20.8387i 0.472996 0.819253i −0.526527 0.850159i \(-0.676506\pi\)
0.999522 + 0.0309061i \(0.00983927\pi\)
\(648\) 0 0
\(649\) 27.9487 16.1362i 1.09708 0.633400i
\(650\) 0 0
\(651\) 0.00928929 + 0.0192053i 0.000364076 + 0.000752715i
\(652\) 0 0
\(653\) −35.6530 + 20.5843i −1.39521 + 0.805526i −0.993886 0.110410i \(-0.964784\pi\)
−0.401325 + 0.915936i \(0.631450\pi\)
\(654\) 0 0
\(655\) −9.67820 + 16.7631i −0.378159 + 0.654990i
\(656\) 0 0
\(657\) 13.8793i 0.541484i
\(658\) 0 0
\(659\) −35.3771 −1.37809 −0.689047 0.724717i \(-0.741971\pi\)
−0.689047 + 0.724717i \(0.741971\pi\)
\(660\) 0 0
\(661\) −15.1954 + 26.3193i −0.591034 + 1.02370i 0.403059 + 0.915174i \(0.367947\pi\)
−0.994093 + 0.108528i \(0.965386\pi\)
\(662\) 0 0
\(663\) −4.55726 + 19.7213i −0.176989 + 0.765912i
\(664\) 0 0
\(665\) −7.61457 5.17246i −0.295280 0.200580i
\(666\) 0 0
\(667\) −9.99743 17.3161i −0.387102 0.670480i
\(668\) 0 0
\(669\) −18.8581 10.8877i −0.729097 0.420945i
\(670\) 0 0
\(671\) −8.40204 −0.324357
\(672\) 0 0
\(673\) 14.4200i 0.555850i 0.960603 + 0.277925i \(0.0896466\pi\)
−0.960603 + 0.277925i \(0.910353\pi\)
\(674\) 0 0
\(675\) 4.74727 + 2.74084i 0.182722 + 0.105495i
\(676\) 0 0
\(677\) 10.8797 6.28138i 0.418140 0.241413i −0.276141 0.961117i \(-0.589056\pi\)
0.694281 + 0.719704i \(0.255722\pi\)
\(678\) 0 0
\(679\) −1.73763 + 23.7317i −0.0666840 + 0.910740i
\(680\) 0 0
\(681\) −0.397605 0.688672i −0.0152362 0.0263900i
\(682\) 0 0
\(683\) 12.7368 + 7.35358i 0.487359 + 0.281377i 0.723478 0.690347i \(-0.242542\pi\)
−0.236119 + 0.971724i \(0.575876\pi\)
\(684\) 0 0
\(685\) 4.30121i 0.164341i
\(686\) 0 0
\(687\) 22.8052i 0.870073i
\(688\) 0 0
\(689\) −28.0203 + 48.5325i −1.06749 + 1.84894i
\(690\) 0 0
\(691\) −5.65962 + 3.26758i −0.215302 + 0.124305i −0.603773 0.797156i \(-0.706337\pi\)
0.388471 + 0.921461i \(0.373003\pi\)
\(692\) 0 0
\(693\) 1.53377 20.9475i 0.0582631 0.795731i
\(694\) 0 0
\(695\) −9.06938 15.7086i −0.344021 0.595862i
\(696\) 0 0
\(697\) 47.9131 14.6378i 1.81484 0.554448i
\(698\) 0 0
\(699\) 23.1573 0.875888
\(700\) 0 0
\(701\) −23.7522 −0.897107 −0.448554 0.893756i \(-0.648061\pi\)
−0.448554 + 0.893756i \(0.648061\pi\)
\(702\) 0 0
\(703\) −8.15491 4.70824i −0.307568 0.177575i
\(704\) 0 0
\(705\) −3.49079 6.04622i −0.131471 0.227714i
\(706\) 0 0
\(707\) −12.4298 + 18.2984i −0.467471 + 0.688181i
\(708\) 0 0
\(709\) 25.5170 14.7323i 0.958312 0.553282i 0.0626590 0.998035i \(-0.480042\pi\)
0.895653 + 0.444753i \(0.146709\pi\)
\(710\) 0 0
\(711\) 7.87341 + 4.54572i 0.295276 + 0.170478i
\(712\) 0 0
\(713\) 0.0350184 0.00131145
\(714\) 0 0
\(715\) 20.9057 0.781829
\(716\) 0 0
\(717\) −24.3892 14.0811i −0.910830 0.525868i
\(718\) 0 0
\(719\) 19.4819 11.2479i 0.726552 0.419475i −0.0906077 0.995887i \(-0.528881\pi\)
0.817159 + 0.576412i \(0.195548\pi\)
\(720\) 0 0
\(721\) −3.55016 7.33983i −0.132215 0.273350i
\(722\) 0 0
\(723\) −3.44637 5.96929i −0.128172 0.222000i
\(724\) 0 0
\(725\) −3.30664 1.90909i −0.122806 0.0709019i
\(726\) 0 0
\(727\) −39.7897 −1.47572 −0.737859 0.674955i \(-0.764163\pi\)
−0.737859 + 0.674955i \(0.764163\pi\)
\(728\) 0 0
\(729\) −22.8786 −0.847357
\(730\) 0 0
\(731\) 7.88076 + 25.7956i 0.291480 + 0.954085i
\(732\) 0 0
\(733\) 2.70061 + 4.67759i 0.0997491 + 0.172771i 0.911581 0.411121i \(-0.134863\pi\)
−0.811832 + 0.583892i \(0.801529\pi\)
\(734\) 0 0
\(735\) 8.35079 + 1.22947i 0.308024 + 0.0453498i
\(736\) 0 0
\(737\) −22.5119 + 12.9972i −0.829235 + 0.478759i
\(738\) 0 0
\(739\) −10.8471 + 18.7877i −0.399016 + 0.691116i −0.993605 0.112914i \(-0.963982\pi\)
0.594589 + 0.804030i \(0.297315\pi\)
\(740\) 0 0
\(741\) 17.0802i 0.627457i
\(742\) 0 0
\(743\) 17.5597i 0.644201i 0.946705 + 0.322101i \(0.104389\pi\)
−0.946705 + 0.322101i \(0.895611\pi\)
\(744\) 0 0
\(745\) −5.13326 2.96369i −0.188068 0.108581i
\(746\) 0 0
\(747\) 4.99452 + 8.65077i 0.182740 + 0.316515i
\(748\) 0 0
\(749\) 44.4048 21.4779i 1.62252 0.784785i
\(750\) 0 0
\(751\) 2.84809 1.64435i 0.103928 0.0600031i −0.447135 0.894467i \(-0.647556\pi\)
0.551063 + 0.834463i \(0.314222\pi\)
\(752\) 0 0
\(753\) 17.0611 + 9.85022i 0.621741 + 0.358962i
\(754\) 0 0
\(755\) 7.90015i 0.287516i
\(756\) 0 0
\(757\) −10.0519 −0.365342 −0.182671 0.983174i \(-0.558474\pi\)
−0.182671 + 0.983174i \(0.558474\pi\)
\(758\) 0 0
\(759\) 28.0816 + 16.2129i 1.01930 + 0.588492i
\(760\) 0 0
\(761\) 16.3621 + 28.3400i 0.593125 + 1.02732i 0.993808 + 0.111107i \(0.0354395\pi\)
−0.400683 + 0.916217i \(0.631227\pi\)
\(762\) 0 0
\(763\) −7.62248 5.17784i −0.275952 0.187450i
\(764\) 0 0
\(765\) 1.43515 6.21055i 0.0518879 0.224543i
\(766\) 0 0
\(767\) −12.7932 + 22.1584i −0.461935 + 0.800095i
\(768\) 0 0
\(769\) −24.4696 −0.882396 −0.441198 0.897410i \(-0.645446\pi\)
−0.441198 + 0.897410i \(0.645446\pi\)
\(770\) 0 0
\(771\) 2.51136i 0.0904443i
\(772\) 0 0
\(773\) −7.11250 + 12.3192i −0.255819 + 0.443091i −0.965118 0.261817i \(-0.915678\pi\)
0.709299 + 0.704908i \(0.249012\pi\)
\(774\) 0 0
\(775\) 0.00579115 0.00334352i 0.000208024 0.000120103i
\(776\) 0 0
\(777\) 8.61148 + 0.630528i 0.308935 + 0.0226201i
\(778\) 0 0
\(779\) 36.6119 21.1379i 1.31176 0.757344i
\(780\) 0 0
\(781\) 15.4421 26.7465i 0.552562 0.957066i
\(782\) 0 0
\(783\) 20.9300 0.747978
\(784\) 0 0
\(785\) 13.8285i 0.493559i
\(786\) 0 0
\(787\) −7.82186 4.51596i −0.278819 0.160976i 0.354069 0.935219i \(-0.384798\pi\)
−0.632889 + 0.774243i \(0.718131\pi\)
\(788\) 0 0
\(789\) 29.3537 16.9474i 1.04502 0.603342i
\(790\) 0 0
\(791\) −0.567086 + 7.74501i −0.0201632 + 0.275381i
\(792\) 0 0
\(793\) 5.76891 3.33068i 0.204860 0.118276i
\(794\) 0 0
\(795\) −8.29921 + 14.3747i −0.294343 + 0.509817i
\(796\) 0 0
\(797\) −49.2978 −1.74622 −0.873109 0.487526i \(-0.837899\pi\)
−0.873109 + 0.487526i \(0.837899\pi\)
\(798\) 0 0
\(799\) −16.2843 + 17.4557i −0.576098 + 0.617537i
\(800\) 0 0
\(801\) 9.29754 16.1038i 0.328512 0.569000i
\(802\) 0 0
\(803\) 23.0505 + 39.9246i 0.813434 + 1.40891i
\(804\) 0 0
\(805\) 7.78528 11.4610i 0.274395 0.403947i
\(806\) 0 0
\(807\) −10.3469 17.9213i −0.364227 0.630860i
\(808\) 0 0
\(809\) 46.0777 + 26.6030i 1.62001 + 0.935311i 0.986917 + 0.161232i \(0.0515468\pi\)
0.633089 + 0.774079i \(0.281787\pi\)
\(810\) 0 0
\(811\) 41.7704i 1.46676i 0.679821 + 0.733378i \(0.262057\pi\)
−0.679821 + 0.733378i \(0.737943\pi\)
\(812\) 0 0
\(813\) 13.8260i 0.484900i
\(814\) 0 0
\(815\) −9.39283 + 16.2689i −0.329016 + 0.569873i
\(816\) 0 0
\(817\) 11.3803 + 19.7112i 0.398145 + 0.689608i
\(818\) 0 0
\(819\) 7.25079 + 14.9908i 0.253363 + 0.523819i
\(820\) 0 0
\(821\) −34.3634 + 19.8397i −1.19929 + 0.692412i −0.960397 0.278634i \(-0.910118\pi\)
−0.238895 + 0.971046i \(0.576785\pi\)
\(822\) 0 0
\(823\) 28.4177 + 16.4070i 0.990579 + 0.571911i 0.905447 0.424458i \(-0.139536\pi\)
0.0851319 + 0.996370i \(0.472869\pi\)
\(824\) 0 0
\(825\) 6.19198 0.215577
\(826\) 0 0
\(827\) 4.22679i 0.146980i 0.997296 + 0.0734899i \(0.0234137\pi\)
−0.997296 + 0.0734899i \(0.976586\pi\)
\(828\) 0 0
\(829\) −22.0876 + 38.2569i −0.767135 + 1.32872i 0.171976 + 0.985101i \(0.444985\pi\)
−0.939110 + 0.343615i \(0.888348\pi\)
\(830\) 0 0
\(831\) −2.29132 3.96868i −0.0794850 0.137672i
\(832\) 0 0
\(833\) −4.32229 28.5363i −0.149759 0.988723i
\(834\) 0 0
\(835\) 11.3888 + 19.7259i 0.394125 + 0.682644i
\(836\) 0 0
\(837\) −0.0183281 + 0.0317452i −0.000633512 + 0.00109727i
\(838\) 0 0
\(839\) 17.5893i 0.607249i 0.952792 + 0.303624i \(0.0981968\pi\)
−0.952792 + 0.303624i \(0.901803\pi\)
\(840\) 0 0
\(841\) 14.4215 0.497293
\(842\) 0 0
\(843\) −10.8019 6.23646i −0.372036 0.214795i
\(844\) 0 0
\(845\) −3.09570 + 1.78730i −0.106495 + 0.0614851i
\(846\) 0 0
\(847\) −17.7050 36.6044i −0.608350 1.25774i
\(848\) 0 0
\(849\) −9.29362 16.0970i −0.318956 0.552448i
\(850\) 0 0
\(851\) 7.08655 12.2743i 0.242924 0.420757i
\(852\) 0 0
\(853\) 33.8296i 1.15830i 0.815219 + 0.579152i \(0.196616\pi\)
−0.815219 + 0.579152i \(0.803384\pi\)
\(854\) 0 0
\(855\) 5.37882i 0.183952i
\(856\) 0 0
\(857\) −31.6736 18.2868i −1.08195 0.624664i −0.150528 0.988606i \(-0.548097\pi\)
−0.931422 + 0.363942i \(0.881431\pi\)
\(858\) 0 0
\(859\) 14.9858 + 25.9561i 0.511308 + 0.885611i 0.999914 + 0.0131068i \(0.00417214\pi\)
−0.488606 + 0.872504i \(0.662495\pi\)
\(860\) 0 0
\(861\) −21.7824 + 32.0666i −0.742342 + 1.09283i
\(862\) 0 0
\(863\) 9.69410 + 16.7907i 0.329991 + 0.571561i 0.982510 0.186212i \(-0.0596210\pi\)
−0.652519 + 0.757773i \(0.726288\pi\)
\(864\) 0 0
\(865\) 6.70248 11.6090i 0.227891 0.394719i
\(866\) 0 0
\(867\) 20.4498 1.42162i 0.694510 0.0482806i
\(868\) 0 0
\(869\) 30.1977 1.02439
\(870\) 0 0
\(871\) 10.3046 17.8480i 0.349156 0.604757i
\(872\) 0 0
\(873\) −12.0413 + 6.95206i −0.407537 + 0.235291i
\(874\) 0 0
\(875\) 0.193203 2.63869i 0.00653147 0.0892039i
\(876\) 0 0
\(877\) 11.0936 6.40491i 0.374605 0.216279i −0.300863 0.953667i \(-0.597275\pi\)
0.675469 + 0.737389i \(0.263941\pi\)
\(878\) 0 0
\(879\) −16.1737 9.33790i −0.545526 0.314960i
\(880\) 0 0
\(881\) 29.9050i 1.00752i 0.863842 + 0.503762i \(0.168051\pi\)
−0.863842 + 0.503762i \(0.831949\pi\)
\(882\) 0 0
\(883\) 4.29501 0.144538 0.0722692 0.997385i \(-0.476976\pi\)
0.0722692 + 0.997385i \(0.476976\pi\)
\(884\) 0 0
\(885\) −3.78916 + 6.56302i −0.127371 + 0.220614i
\(886\) 0 0
\(887\) 8.55747 4.94066i 0.287332 0.165891i −0.349406 0.936971i \(-0.613617\pi\)
0.636738 + 0.771080i \(0.280283\pi\)
\(888\) 0 0
\(889\) 11.3918 + 0.834100i 0.382068 + 0.0279748i
\(890\) 0 0
\(891\) −8.76985 + 5.06328i −0.293801 + 0.169626i
\(892\) 0 0
\(893\) −10.0722 + 17.4455i −0.337052 + 0.583791i
\(894\) 0 0
\(895\) 16.2278i 0.542434i
\(896\) 0 0
\(897\) −25.7081 −0.858367
\(898\) 0 0
\(899\) 0.0127662 0.0221117i 0.000425776 0.000737466i
\(900\) 0 0
\(901\) 55.2979 + 12.7784i 1.84224 + 0.425710i
\(902\) 0 0
\(903\) −17.2641 11.7273i −0.574514 0.390259i
\(904\) 0 0
\(905\) 3.74296 + 6.48301i 0.124420 + 0.215502i
\(906\) 0 0
\(907\) −47.8008 27.5978i −1.58720 0.916370i −0.993766 0.111487i \(-0.964439\pi\)
−0.593433 0.804883i \(-0.702228\pi\)
\(908\) 0 0
\(909\) −12.9257 −0.428718
\(910\) 0 0
\(911\) 24.1925i 0.801533i −0.916180 0.400767i \(-0.868744\pi\)
0.916180 0.400767i \(-0.131256\pi\)
\(912\) 0 0
\(913\) 28.7340 + 16.5896i 0.950957 + 0.549035i
\(914\) 0 0
\(915\) 1.70867 0.986502i 0.0564869 0.0326127i
\(916\) 0 0
\(917\) −46.1025 + 22.2991i −1.52244 + 0.736380i
\(918\) 0 0
\(919\) 21.2620 + 36.8269i 0.701370 + 1.21481i 0.967986 + 0.251005i \(0.0807611\pi\)
−0.266616 + 0.963803i \(0.585906\pi\)
\(920\) 0 0
\(921\) 26.4927 + 15.2956i 0.872965 + 0.504007i
\(922\) 0 0
\(923\) 24.4858i 0.805961i
\(924\) 0 0
\(925\) 2.70647i 0.0889882i
\(926\) 0 0
\(927\) 2.38209 4.12589i 0.0782380 0.135512i
\(928\) 0 0
\(929\) −38.8284 + 22.4176i −1.27392 + 0.735497i −0.975723 0.219007i \(-0.929718\pi\)
−0.298196 + 0.954505i \(0.596385\pi\)
\(930\) 0 0
\(931\) −8.97529 22.6406i −0.294153 0.742015i
\(932\) 0 0
\(933\) 6.66661 + 11.5469i 0.218255 + 0.378029i
\(934\) 0 0
\(935\) −6.18605 20.2484i −0.202306 0.662194i
\(936\) 0 0
\(937\) −17.2285 −0.562829 −0.281415 0.959586i \(-0.590804\pi\)
−0.281415 + 0.959586i \(0.590804\pi\)
\(938\) 0 0
\(939\) −24.2938 −0.792797
\(940\) 0 0
\(941\) −27.4327 15.8383i −0.894281 0.516314i −0.0189408 0.999821i \(-0.506029\pi\)
−0.875340 + 0.483507i \(0.839363\pi\)
\(942\) 0 0
\(943\) 31.8155 + 55.1060i 1.03605 + 1.79450i
\(944\) 0 0
\(945\) 6.31502 + 13.0561i 0.205428 + 0.424715i
\(946\) 0 0
\(947\) −10.4797 + 6.05046i −0.340545 + 0.196614i −0.660513 0.750815i \(-0.729661\pi\)
0.319968 + 0.947428i \(0.396328\pi\)
\(948\) 0 0
\(949\) −31.6533 18.2750i −1.02751 0.593233i
\(950\) 0 0
\(951\) 22.8609 0.741316
\(952\) 0 0
\(953\) −15.9775 −0.517562 −0.258781 0.965936i \(-0.583321\pi\)
−0.258781 + 0.965936i \(0.583321\pi\)
\(954\) 0 0
\(955\) 1.29384 + 0.746997i 0.0418676 + 0.0241722i
\(956\) 0 0
\(957\) 20.4747 11.8211i 0.661852 0.382120i
\(958\) 0 0
\(959\) 6.39444 9.41349i 0.206487 0.303977i
\(960\) 0 0
\(961\) −15.5000 26.8467i −0.499999 0.866024i
\(962\) 0 0
\(963\) 24.9610 + 14.4113i 0.804358 + 0.464396i
\(964\) 0 0
\(965\) −13.4564 −0.433178
\(966\) 0 0
\(967\) 17.9459 0.577101 0.288550 0.957465i \(-0.406827\pi\)
0.288550 + 0.957465i \(0.406827\pi\)
\(968\) 0 0
\(969\) 16.5432 5.05407i 0.531444 0.162360i
\(970\) 0 0
\(971\) −8.64970 14.9817i −0.277582 0.480786i 0.693201 0.720744i \(-0.256200\pi\)
−0.970783 + 0.239958i \(0.922866\pi\)
\(972\) 0 0
\(973\) 3.50447 47.8625i 0.112348 1.53440i
\(974\) 0 0
\(975\) −4.25146 + 2.45458i −0.136156 + 0.0786096i
\(976\) 0 0
\(977\) 10.9734 19.0064i 0.351069 0.608070i −0.635368 0.772210i \(-0.719152\pi\)
0.986437 + 0.164140i \(0.0524849\pi\)
\(978\) 0 0
\(979\) 61.7646i 1.97400i
\(980\) 0 0
\(981\) 5.38440i 0.171911i
\(982\) 0 0
\(983\) −37.4822 21.6404i −1.19550 0.690221i −0.235950 0.971765i \(-0.575820\pi\)
−0.959548 + 0.281544i \(0.909153\pi\)
\(984\) 0 0
\(985\) 0.212139 + 0.367435i 0.00675930 + 0.0117075i
\(986\) 0 0
\(987\) 1.34886 18.4222i 0.0429348 0.586385i
\(988\) 0 0
\(989\) −29.6681 + 17.1289i −0.943391 + 0.544667i
\(990\) 0 0
\(991\) 36.8006 + 21.2469i 1.16901 + 0.674929i 0.953447 0.301561i \(-0.0975078\pi\)
0.215564 + 0.976490i \(0.430841\pi\)
\(992\) 0 0
\(993\) 26.6250i 0.844918i
\(994\) 0 0
\(995\) −16.0580 −0.509071
\(996\) 0 0
\(997\) −52.6484 30.3966i −1.66739 0.962669i −0.969037 0.246917i \(-0.920583\pi\)
−0.698355 0.715752i \(-0.746084\pi\)
\(998\) 0 0
\(999\) 7.41800 + 12.8483i 0.234695 + 0.406504i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2380.2.cb.b.781.17 92
7.2 even 3 inner 2380.2.cb.b.1801.30 yes 92
17.16 even 2 inner 2380.2.cb.b.781.30 yes 92
119.16 even 6 inner 2380.2.cb.b.1801.17 yes 92
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2380.2.cb.b.781.17 92 1.1 even 1 trivial
2380.2.cb.b.781.30 yes 92 17.16 even 2 inner
2380.2.cb.b.1801.17 yes 92 119.16 even 6 inner
2380.2.cb.b.1801.30 yes 92 7.2 even 3 inner