Properties

Label 2380.2.cb.b.781.13
Level $2380$
Weight $2$
Character 2380.781
Analytic conductor $19.004$
Analytic rank $0$
Dimension $92$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2380,2,Mod(781,2380)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2380.781"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2380, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2380 = 2^{2} \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2380.cb (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [92] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.0043956811\)
Analytic rank: \(0\)
Dimension: \(92\)
Relative dimension: \(46\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 781.13
Character \(\chi\) \(=\) 2380.781
Dual form 2380.2.cb.b.1801.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.43555 - 0.828817i) q^{3} +(-0.866025 + 0.500000i) q^{5} +(-0.635268 + 2.56835i) q^{7} +(-0.126124 - 0.218454i) q^{9} +(-1.98492 - 1.14599i) q^{11} +1.85101 q^{13} +1.65763 q^{15} +(-3.96367 + 1.13549i) q^{17} +(2.04691 + 3.54536i) q^{19} +(3.04066 - 3.16049i) q^{21} +(2.98157 - 1.72141i) q^{23} +(0.500000 - 0.866025i) q^{25} +5.39104i q^{27} +3.58666i q^{29} +(-1.09474 - 0.632048i) q^{31} +(1.89964 + 3.29027i) q^{33} +(-0.734018 - 2.54189i) q^{35} +(-6.78481 + 3.91721i) q^{37} +(-2.65723 - 1.53415i) q^{39} -10.2832i q^{41} -1.10738 q^{43} +(0.218454 + 0.126124i) q^{45} +(3.34245 + 5.78929i) q^{47} +(-6.19287 - 3.26318i) q^{49} +(6.63117 + 1.65511i) q^{51} +(3.96203 - 6.86243i) q^{53} +2.29198 q^{55} -6.78607i q^{57} +(7.35612 - 12.7412i) q^{59} +(-4.03071 + 2.32713i) q^{61} +(0.641189 - 0.185155i) q^{63} +(-1.60303 + 0.925507i) q^{65} +(7.06075 - 12.2296i) q^{67} -5.70694 q^{69} +3.28416i q^{71} +(4.89356 + 2.82530i) q^{73} +(-1.43555 + 0.828817i) q^{75} +(4.20427 - 4.36996i) q^{77} +(-2.93011 + 1.69170i) q^{79} +(4.08981 - 7.08376i) q^{81} -2.06606 q^{83} +(2.86489 - 2.96519i) q^{85} +(2.97268 - 5.14884i) q^{87} +(0.339195 + 0.587503i) q^{89} +(-1.17589 + 4.75406i) q^{91} +(1.04771 + 1.81468i) q^{93} +(-3.54536 - 2.04691i) q^{95} +6.57359i q^{97} +0.578150i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 92 q + 56 q^{9} - 24 q^{13} + 12 q^{15} + 4 q^{17} - 24 q^{21} + 46 q^{25} - 24 q^{33} + 14 q^{35} - 64 q^{43} + 16 q^{47} + 38 q^{49} - 22 q^{51} - 8 q^{53} + 18 q^{59} + 16 q^{67} - 36 q^{69} - 12 q^{77}+ \cdots + 44 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2380\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(1191\) \(1261\) \(1361\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.43555 0.828817i −0.828817 0.478518i 0.0246304 0.999697i \(-0.492159\pi\)
−0.853447 + 0.521179i \(0.825492\pi\)
\(4\) 0 0
\(5\) −0.866025 + 0.500000i −0.387298 + 0.223607i
\(6\) 0 0
\(7\) −0.635268 + 2.56835i −0.240109 + 0.970746i
\(8\) 0 0
\(9\) −0.126124 0.218454i −0.0420415 0.0728180i
\(10\) 0 0
\(11\) −1.98492 1.14599i −0.598475 0.345530i 0.169966 0.985450i \(-0.445634\pi\)
−0.768441 + 0.639920i \(0.778967\pi\)
\(12\) 0 0
\(13\) 1.85101 0.513379 0.256690 0.966494i \(-0.417368\pi\)
0.256690 + 0.966494i \(0.417368\pi\)
\(14\) 0 0
\(15\) 1.65763 0.427999
\(16\) 0 0
\(17\) −3.96367 + 1.13549i −0.961331 + 0.275396i
\(18\) 0 0
\(19\) 2.04691 + 3.54536i 0.469594 + 0.813361i 0.999396 0.0347606i \(-0.0110669\pi\)
−0.529801 + 0.848122i \(0.677734\pi\)
\(20\) 0 0
\(21\) 3.04066 3.16049i 0.663525 0.689675i
\(22\) 0 0
\(23\) 2.98157 1.72141i 0.621701 0.358939i −0.155830 0.987784i \(-0.549805\pi\)
0.777531 + 0.628845i \(0.216472\pi\)
\(24\) 0 0
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) 0 0
\(27\) 5.39104i 1.03751i
\(28\) 0 0
\(29\) 3.58666i 0.666025i 0.942922 + 0.333013i \(0.108065\pi\)
−0.942922 + 0.333013i \(0.891935\pi\)
\(30\) 0 0
\(31\) −1.09474 0.632048i −0.196621 0.113519i 0.398457 0.917187i \(-0.369546\pi\)
−0.595078 + 0.803668i \(0.702879\pi\)
\(32\) 0 0
\(33\) 1.89964 + 3.29027i 0.330684 + 0.572762i
\(34\) 0 0
\(35\) −0.734018 2.54189i −0.124072 0.429658i
\(36\) 0 0
\(37\) −6.78481 + 3.91721i −1.11542 + 0.643986i −0.940227 0.340549i \(-0.889387\pi\)
−0.175190 + 0.984535i \(0.556054\pi\)
\(38\) 0 0
\(39\) −2.65723 1.53415i −0.425497 0.245661i
\(40\) 0 0
\(41\) 10.2832i 1.60597i −0.596002 0.802983i \(-0.703245\pi\)
0.596002 0.802983i \(-0.296755\pi\)
\(42\) 0 0
\(43\) −1.10738 −0.168874 −0.0844372 0.996429i \(-0.526909\pi\)
−0.0844372 + 0.996429i \(0.526909\pi\)
\(44\) 0 0
\(45\) 0.218454 + 0.126124i 0.0325652 + 0.0188015i
\(46\) 0 0
\(47\) 3.34245 + 5.78929i 0.487546 + 0.844455i 0.999897 0.0143210i \(-0.00455868\pi\)
−0.512351 + 0.858776i \(0.671225\pi\)
\(48\) 0 0
\(49\) −6.19287 3.26318i −0.884696 0.466169i
\(50\) 0 0
\(51\) 6.63117 + 1.65511i 0.928549 + 0.231761i
\(52\) 0 0
\(53\) 3.96203 6.86243i 0.544226 0.942628i −0.454429 0.890783i \(-0.650157\pi\)
0.998655 0.0518447i \(-0.0165101\pi\)
\(54\) 0 0
\(55\) 2.29198 0.309051
\(56\) 0 0
\(57\) 6.78607i 0.898837i
\(58\) 0 0
\(59\) 7.35612 12.7412i 0.957685 1.65876i 0.229584 0.973289i \(-0.426263\pi\)
0.728101 0.685470i \(-0.240403\pi\)
\(60\) 0 0
\(61\) −4.03071 + 2.32713i −0.516079 + 0.297958i −0.735329 0.677710i \(-0.762972\pi\)
0.219250 + 0.975669i \(0.429639\pi\)
\(62\) 0 0
\(63\) 0.641189 0.185155i 0.0807823 0.0233274i
\(64\) 0 0
\(65\) −1.60303 + 0.925507i −0.198831 + 0.114795i
\(66\) 0 0
\(67\) 7.06075 12.2296i 0.862607 1.49408i −0.00679605 0.999977i \(-0.502163\pi\)
0.869403 0.494103i \(-0.164503\pi\)
\(68\) 0 0
\(69\) −5.70694 −0.687035
\(70\) 0 0
\(71\) 3.28416i 0.389758i 0.980827 + 0.194879i \(0.0624314\pi\)
−0.980827 + 0.194879i \(0.937569\pi\)
\(72\) 0 0
\(73\) 4.89356 + 2.82530i 0.572747 + 0.330676i 0.758246 0.651969i \(-0.226057\pi\)
−0.185499 + 0.982645i \(0.559390\pi\)
\(74\) 0 0
\(75\) −1.43555 + 0.828817i −0.165763 + 0.0957036i
\(76\) 0 0
\(77\) 4.20427 4.36996i 0.479121 0.498003i
\(78\) 0 0
\(79\) −2.93011 + 1.69170i −0.329663 + 0.190331i −0.655692 0.755029i \(-0.727623\pi\)
0.326028 + 0.945360i \(0.394289\pi\)
\(80\) 0 0
\(81\) 4.08981 7.08376i 0.454424 0.787085i
\(82\) 0 0
\(83\) −2.06606 −0.226780 −0.113390 0.993551i \(-0.536171\pi\)
−0.113390 + 0.993551i \(0.536171\pi\)
\(84\) 0 0
\(85\) 2.86489 2.96519i 0.310741 0.321620i
\(86\) 0 0
\(87\) 2.97268 5.14884i 0.318705 0.552013i
\(88\) 0 0
\(89\) 0.339195 + 0.587503i 0.0359546 + 0.0622752i 0.883443 0.468539i \(-0.155219\pi\)
−0.847488 + 0.530814i \(0.821886\pi\)
\(90\) 0 0
\(91\) −1.17589 + 4.75406i −0.123267 + 0.498361i
\(92\) 0 0
\(93\) 1.04771 + 1.81468i 0.108642 + 0.188173i
\(94\) 0 0
\(95\) −3.54536 2.04691i −0.363746 0.210009i
\(96\) 0 0
\(97\) 6.57359i 0.667447i 0.942671 + 0.333723i \(0.108305\pi\)
−0.942671 + 0.333723i \(0.891695\pi\)
\(98\) 0 0
\(99\) 0.578150i 0.0581063i
\(100\) 0 0
\(101\) −0.754844 + 1.30743i −0.0751098 + 0.130094i −0.901134 0.433541i \(-0.857264\pi\)
0.826024 + 0.563635i \(0.190597\pi\)
\(102\) 0 0
\(103\) −0.303984 0.526516i −0.0299524 0.0518791i 0.850661 0.525715i \(-0.176202\pi\)
−0.880613 + 0.473836i \(0.842869\pi\)
\(104\) 0 0
\(105\) −1.05304 + 4.25739i −0.102766 + 0.415479i
\(106\) 0 0
\(107\) 8.10796 4.68113i 0.783826 0.452542i −0.0539585 0.998543i \(-0.517184\pi\)
0.837785 + 0.546001i \(0.183851\pi\)
\(108\) 0 0
\(109\) −13.6321 7.87051i −1.30572 0.753858i −0.324341 0.945940i \(-0.605143\pi\)
−0.981379 + 0.192082i \(0.938476\pi\)
\(110\) 0 0
\(111\) 12.9866 1.23263
\(112\) 0 0
\(113\) 19.5449i 1.83863i −0.393528 0.919313i \(-0.628746\pi\)
0.393528 0.919313i \(-0.371254\pi\)
\(114\) 0 0
\(115\) −1.72141 + 2.98157i −0.160522 + 0.278033i
\(116\) 0 0
\(117\) −0.233458 0.404361i −0.0215832 0.0373832i
\(118\) 0 0
\(119\) −0.398338 10.9014i −0.0365156 0.999333i
\(120\) 0 0
\(121\) −2.87340 4.97688i −0.261218 0.452444i
\(122\) 0 0
\(123\) −8.52289 + 14.7621i −0.768484 + 1.33105i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) −6.24771 −0.554394 −0.277197 0.960813i \(-0.589406\pi\)
−0.277197 + 0.960813i \(0.589406\pi\)
\(128\) 0 0
\(129\) 1.58971 + 0.917818i 0.139966 + 0.0808094i
\(130\) 0 0
\(131\) 15.6383 9.02875i 1.36632 0.788846i 0.375865 0.926674i \(-0.377346\pi\)
0.990456 + 0.137829i \(0.0440123\pi\)
\(132\) 0 0
\(133\) −10.4061 + 3.00494i −0.902321 + 0.260562i
\(134\) 0 0
\(135\) −2.69552 4.66878i −0.231993 0.401824i
\(136\) 0 0
\(137\) 0.617232 1.06908i 0.0527337 0.0913374i −0.838454 0.544973i \(-0.816540\pi\)
0.891187 + 0.453636i \(0.149873\pi\)
\(138\) 0 0
\(139\) 22.1090i 1.87526i −0.347636 0.937630i \(-0.613015\pi\)
0.347636 0.937630i \(-0.386985\pi\)
\(140\) 0 0
\(141\) 11.0811i 0.933198i
\(142\) 0 0
\(143\) −3.67411 2.12125i −0.307245 0.177388i
\(144\) 0 0
\(145\) −1.79333 3.10614i −0.148928 0.257951i
\(146\) 0 0
\(147\) 6.18561 + 9.81723i 0.510181 + 0.809711i
\(148\) 0 0
\(149\) −10.2472 17.7487i −0.839485 1.45403i −0.890325 0.455325i \(-0.849523\pi\)
0.0508401 0.998707i \(-0.483810\pi\)
\(150\) 0 0
\(151\) −0.132394 + 0.229313i −0.0107741 + 0.0186612i −0.871362 0.490640i \(-0.836763\pi\)
0.860588 + 0.509302i \(0.170096\pi\)
\(152\) 0 0
\(153\) 0.747967 + 0.722666i 0.0604695 + 0.0584241i
\(154\) 0 0
\(155\) 1.26410 0.101535
\(156\) 0 0
\(157\) −2.62348 + 4.54400i −0.209376 + 0.362651i −0.951518 0.307592i \(-0.900477\pi\)
0.742142 + 0.670243i \(0.233810\pi\)
\(158\) 0 0
\(159\) −11.3754 + 6.56759i −0.902128 + 0.520844i
\(160\) 0 0
\(161\) 2.52710 + 8.75129i 0.199163 + 0.689698i
\(162\) 0 0
\(163\) 11.3096 6.52958i 0.885834 0.511437i 0.0132565 0.999912i \(-0.495780\pi\)
0.872578 + 0.488476i \(0.162447\pi\)
\(164\) 0 0
\(165\) −3.29027 1.89964i −0.256147 0.147886i
\(166\) 0 0
\(167\) 5.07341i 0.392593i −0.980545 0.196296i \(-0.937109\pi\)
0.980545 0.196296i \(-0.0628914\pi\)
\(168\) 0 0
\(169\) −9.57375 −0.736442
\(170\) 0 0
\(171\) 0.516332 0.894313i 0.0394849 0.0683898i
\(172\) 0 0
\(173\) 10.4176 6.01459i 0.792034 0.457281i −0.0486442 0.998816i \(-0.515490\pi\)
0.840678 + 0.541535i \(0.182157\pi\)
\(174\) 0 0
\(175\) 1.90662 + 1.83433i 0.144127 + 0.138663i
\(176\) 0 0
\(177\) −21.1202 + 12.1938i −1.58749 + 0.916539i
\(178\) 0 0
\(179\) 0.955505 1.65498i 0.0714178 0.123699i −0.828105 0.560573i \(-0.810581\pi\)
0.899523 + 0.436874i \(0.143914\pi\)
\(180\) 0 0
\(181\) 10.5375i 0.783244i −0.920126 0.391622i \(-0.871914\pi\)
0.920126 0.391622i \(-0.128086\pi\)
\(182\) 0 0
\(183\) 7.71506 0.570313
\(184\) 0 0
\(185\) 3.91721 6.78481i 0.287999 0.498829i
\(186\) 0 0
\(187\) 9.16881 + 2.28849i 0.670490 + 0.167351i
\(188\) 0 0
\(189\) −13.8461 3.42475i −1.00715 0.249114i
\(190\) 0 0
\(191\) 4.14907 + 7.18640i 0.300216 + 0.519990i 0.976185 0.216941i \(-0.0696078\pi\)
−0.675969 + 0.736930i \(0.736275\pi\)
\(192\) 0 0
\(193\) −10.9536 6.32407i −0.788458 0.455217i 0.0509613 0.998701i \(-0.483771\pi\)
−0.839419 + 0.543484i \(0.817105\pi\)
\(194\) 0 0
\(195\) 3.06830 0.219726
\(196\) 0 0
\(197\) 9.76831i 0.695963i 0.937501 + 0.347982i \(0.113133\pi\)
−0.937501 + 0.347982i \(0.886867\pi\)
\(198\) 0 0
\(199\) 6.33846 + 3.65951i 0.449321 + 0.259416i 0.707543 0.706670i \(-0.249803\pi\)
−0.258222 + 0.966086i \(0.583137\pi\)
\(200\) 0 0
\(201\) −20.2722 + 11.7041i −1.42989 + 0.825546i
\(202\) 0 0
\(203\) −9.21180 2.27849i −0.646541 0.159918i
\(204\) 0 0
\(205\) 5.14160 + 8.90552i 0.359105 + 0.621988i
\(206\) 0 0
\(207\) −0.752098 0.434224i −0.0522744 0.0301807i
\(208\) 0 0
\(209\) 9.38299i 0.649035i
\(210\) 0 0
\(211\) 10.5952i 0.729405i −0.931124 0.364702i \(-0.881171\pi\)
0.931124 0.364702i \(-0.118829\pi\)
\(212\) 0 0
\(213\) 2.72197 4.71459i 0.186506 0.323038i
\(214\) 0 0
\(215\) 0.959022 0.553692i 0.0654048 0.0377615i
\(216\) 0 0
\(217\) 2.31878 2.41016i 0.157409 0.163612i
\(218\) 0 0
\(219\) −4.68331 8.11173i −0.316469 0.548140i
\(220\) 0 0
\(221\) −7.33681 + 2.10180i −0.493527 + 0.141382i
\(222\) 0 0
\(223\) 1.26330 0.0845968 0.0422984 0.999105i \(-0.486532\pi\)
0.0422984 + 0.999105i \(0.486532\pi\)
\(224\) 0 0
\(225\) −0.252249 −0.0168166
\(226\) 0 0
\(227\) −3.72983 2.15342i −0.247558 0.142927i 0.371088 0.928598i \(-0.378985\pi\)
−0.618645 + 0.785670i \(0.712318\pi\)
\(228\) 0 0
\(229\) −0.273482 0.473684i −0.0180722 0.0313019i 0.856848 0.515569i \(-0.172420\pi\)
−0.874920 + 0.484267i \(0.839086\pi\)
\(230\) 0 0
\(231\) −9.65734 + 2.78874i −0.635406 + 0.183485i
\(232\) 0 0
\(233\) −0.153735 + 0.0887591i −0.0100715 + 0.00581480i −0.505027 0.863103i \(-0.668518\pi\)
0.494956 + 0.868918i \(0.335184\pi\)
\(234\) 0 0
\(235\) −5.78929 3.34245i −0.377652 0.218037i
\(236\) 0 0
\(237\) 5.60844 0.364307
\(238\) 0 0
\(239\) −16.8293 −1.08859 −0.544297 0.838892i \(-0.683204\pi\)
−0.544297 + 0.838892i \(0.683204\pi\)
\(240\) 0 0
\(241\) 9.53024 + 5.50229i 0.613897 + 0.354434i 0.774489 0.632587i \(-0.218007\pi\)
−0.160592 + 0.987021i \(0.551340\pi\)
\(242\) 0 0
\(243\) 2.26404 1.30715i 0.145238 0.0838534i
\(244\) 0 0
\(245\) 6.99477 0.270436i 0.446880 0.0172775i
\(246\) 0 0
\(247\) 3.78887 + 6.56251i 0.241080 + 0.417563i
\(248\) 0 0
\(249\) 2.96594 + 1.71239i 0.187959 + 0.108518i
\(250\) 0 0
\(251\) −28.1247 −1.77521 −0.887607 0.460602i \(-0.847634\pi\)
−0.887607 + 0.460602i \(0.847634\pi\)
\(252\) 0 0
\(253\) −7.89090 −0.496097
\(254\) 0 0
\(255\) −6.57031 + 1.88222i −0.411449 + 0.117869i
\(256\) 0 0
\(257\) 4.36925 + 7.56776i 0.272546 + 0.472064i 0.969513 0.245039i \(-0.0788009\pi\)
−0.696967 + 0.717103i \(0.745468\pi\)
\(258\) 0 0
\(259\) −5.75061 19.9143i −0.357326 1.23741i
\(260\) 0 0
\(261\) 0.783519 0.452365i 0.0484986 0.0280007i
\(262\) 0 0
\(263\) −7.63300 + 13.2207i −0.470671 + 0.815226i −0.999437 0.0335417i \(-0.989321\pi\)
0.528767 + 0.848767i \(0.322655\pi\)
\(264\) 0 0
\(265\) 7.92406i 0.486771i
\(266\) 0 0
\(267\) 1.12452i 0.0688197i
\(268\) 0 0
\(269\) −13.2646 7.65830i −0.808755 0.466935i 0.0377684 0.999287i \(-0.487975\pi\)
−0.846523 + 0.532352i \(0.821308\pi\)
\(270\) 0 0
\(271\) 8.12650 + 14.0755i 0.493650 + 0.855026i 0.999973 0.00731742i \(-0.00232923\pi\)
−0.506324 + 0.862344i \(0.668996\pi\)
\(272\) 0 0
\(273\) 5.62830 5.85011i 0.340640 0.354065i
\(274\) 0 0
\(275\) −1.98492 + 1.14599i −0.119695 + 0.0691059i
\(276\) 0 0
\(277\) 0.658799 + 0.380358i 0.0395834 + 0.0228535i 0.519661 0.854372i \(-0.326058\pi\)
−0.480078 + 0.877226i \(0.659392\pi\)
\(278\) 0 0
\(279\) 0.318867i 0.0190901i
\(280\) 0 0
\(281\) −1.94519 −0.116040 −0.0580202 0.998315i \(-0.518479\pi\)
−0.0580202 + 0.998315i \(0.518479\pi\)
\(282\) 0 0
\(283\) 22.5131 + 12.9979i 1.33826 + 0.772648i 0.986550 0.163460i \(-0.0522653\pi\)
0.351715 + 0.936107i \(0.385599\pi\)
\(284\) 0 0
\(285\) 3.39303 + 5.87691i 0.200986 + 0.348118i
\(286\) 0 0
\(287\) 26.4109 + 6.53259i 1.55899 + 0.385606i
\(288\) 0 0
\(289\) 14.4213 9.00138i 0.848314 0.529493i
\(290\) 0 0
\(291\) 5.44830 9.43674i 0.319385 0.553191i
\(292\) 0 0
\(293\) 27.6570 1.61574 0.807870 0.589361i \(-0.200620\pi\)
0.807870 + 0.589361i \(0.200620\pi\)
\(294\) 0 0
\(295\) 14.7122i 0.856579i
\(296\) 0 0
\(297\) 6.17809 10.7008i 0.358489 0.620921i
\(298\) 0 0
\(299\) 5.51893 3.18636i 0.319168 0.184272i
\(300\) 0 0
\(301\) 0.703485 2.84415i 0.0405482 0.163934i
\(302\) 0 0
\(303\) 2.16724 1.25126i 0.124505 0.0718827i
\(304\) 0 0
\(305\) 2.32713 4.03071i 0.133251 0.230798i
\(306\) 0 0
\(307\) 31.5992 1.80346 0.901731 0.432298i \(-0.142297\pi\)
0.901731 + 0.432298i \(0.142297\pi\)
\(308\) 0 0
\(309\) 1.00779i 0.0573311i
\(310\) 0 0
\(311\) 27.9958 + 16.1634i 1.58750 + 0.916542i 0.993718 + 0.111915i \(0.0356983\pi\)
0.593780 + 0.804628i \(0.297635\pi\)
\(312\) 0 0
\(313\) −11.1297 + 6.42576i −0.629090 + 0.363205i −0.780400 0.625281i \(-0.784984\pi\)
0.151310 + 0.988486i \(0.451651\pi\)
\(314\) 0 0
\(315\) −0.462709 + 0.480944i −0.0260707 + 0.0270981i
\(316\) 0 0
\(317\) 11.9496 6.89908i 0.671154 0.387491i −0.125360 0.992111i \(-0.540009\pi\)
0.796514 + 0.604621i \(0.206675\pi\)
\(318\) 0 0
\(319\) 4.11028 7.11922i 0.230132 0.398600i
\(320\) 0 0
\(321\) −15.5192 −0.866198
\(322\) 0 0
\(323\) −12.1390 11.7284i −0.675432 0.652585i
\(324\) 0 0
\(325\) 0.925507 1.60303i 0.0513379 0.0889199i
\(326\) 0 0
\(327\) 13.0464 + 22.5971i 0.721469 + 1.24962i
\(328\) 0 0
\(329\) −16.9923 + 4.90684i −0.936815 + 0.270523i
\(330\) 0 0
\(331\) −14.6139 25.3120i −0.803253 1.39128i −0.917464 0.397819i \(-0.869767\pi\)
0.114211 0.993457i \(-0.463566\pi\)
\(332\) 0 0
\(333\) 1.71146 + 0.988112i 0.0937875 + 0.0541482i
\(334\) 0 0
\(335\) 14.1215i 0.771539i
\(336\) 0 0
\(337\) 25.2631i 1.37617i 0.725630 + 0.688085i \(0.241548\pi\)
−0.725630 + 0.688085i \(0.758452\pi\)
\(338\) 0 0
\(339\) −16.1991 + 28.0577i −0.879815 + 1.52388i
\(340\) 0 0
\(341\) 1.44865 + 2.50913i 0.0784486 + 0.135877i
\(342\) 0 0
\(343\) 12.3151 13.8325i 0.664955 0.746884i
\(344\) 0 0
\(345\) 4.94236 2.85347i 0.266088 0.153626i
\(346\) 0 0
\(347\) −9.90901 5.72097i −0.531943 0.307118i 0.209864 0.977731i \(-0.432698\pi\)
−0.741807 + 0.670613i \(0.766031\pi\)
\(348\) 0 0
\(349\) −12.5080 −0.669536 −0.334768 0.942301i \(-0.608658\pi\)
−0.334768 + 0.942301i \(0.608658\pi\)
\(350\) 0 0
\(351\) 9.97889i 0.532634i
\(352\) 0 0
\(353\) 9.02968 15.6399i 0.480601 0.832426i −0.519151 0.854682i \(-0.673752\pi\)
0.999752 + 0.0222568i \(0.00708516\pi\)
\(354\) 0 0
\(355\) −1.64208 2.84417i −0.0871526 0.150953i
\(356\) 0 0
\(357\) −8.46346 + 15.9797i −0.447934 + 0.845738i
\(358\) 0 0
\(359\) 4.98301 + 8.63083i 0.262993 + 0.455518i 0.967036 0.254640i \(-0.0819569\pi\)
−0.704043 + 0.710158i \(0.748624\pi\)
\(360\) 0 0
\(361\) 1.12029 1.94039i 0.0589624 0.102126i
\(362\) 0 0
\(363\) 9.52610i 0.499991i
\(364\) 0 0
\(365\) −5.65059 −0.295765
\(366\) 0 0
\(367\) 19.5510 + 11.2878i 1.02055 + 0.589217i 0.914264 0.405118i \(-0.132770\pi\)
0.106289 + 0.994335i \(0.466103\pi\)
\(368\) 0 0
\(369\) −2.24641 + 1.29696i −0.116943 + 0.0675172i
\(370\) 0 0
\(371\) 15.1082 + 14.5354i 0.784379 + 0.754639i
\(372\) 0 0
\(373\) −4.17546 7.23211i −0.216197 0.374465i 0.737445 0.675407i \(-0.236032\pi\)
−0.953642 + 0.300943i \(0.902699\pi\)
\(374\) 0 0
\(375\) 0.828817 1.43555i 0.0427999 0.0741317i
\(376\) 0 0
\(377\) 6.63895i 0.341923i
\(378\) 0 0
\(379\) 5.68789i 0.292167i −0.989272 0.146084i \(-0.953333\pi\)
0.989272 0.146084i \(-0.0466669\pi\)
\(380\) 0 0
\(381\) 8.96892 + 5.17821i 0.459492 + 0.265288i
\(382\) 0 0
\(383\) 6.92066 + 11.9869i 0.353629 + 0.612504i 0.986882 0.161441i \(-0.0516141\pi\)
−0.633253 + 0.773945i \(0.718281\pi\)
\(384\) 0 0
\(385\) −1.45602 + 5.88663i −0.0742059 + 0.300010i
\(386\) 0 0
\(387\) 0.139668 + 0.241912i 0.00709973 + 0.0122971i
\(388\) 0 0
\(389\) 11.7325 20.3213i 0.594861 1.03033i −0.398706 0.917079i \(-0.630541\pi\)
0.993567 0.113250i \(-0.0361261\pi\)
\(390\) 0 0
\(391\) −9.86333 + 10.2086i −0.498810 + 0.516273i
\(392\) 0 0
\(393\) −29.9327 −1.50991
\(394\) 0 0
\(395\) 1.69170 2.93011i 0.0851187 0.147430i
\(396\) 0 0
\(397\) −19.3696 + 11.1830i −0.972133 + 0.561261i −0.899886 0.436126i \(-0.856350\pi\)
−0.0722471 + 0.997387i \(0.523017\pi\)
\(398\) 0 0
\(399\) 17.4290 + 4.31097i 0.872542 + 0.215818i
\(400\) 0 0
\(401\) −10.3130 + 5.95423i −0.515008 + 0.297340i −0.734890 0.678187i \(-0.762766\pi\)
0.219882 + 0.975527i \(0.429433\pi\)
\(402\) 0 0
\(403\) −2.02638 1.16993i −0.100941 0.0582784i
\(404\) 0 0
\(405\) 8.17962i 0.406449i
\(406\) 0 0
\(407\) 17.9564 0.890065
\(408\) 0 0
\(409\) −11.2006 + 19.4000i −0.553834 + 0.959269i 0.444159 + 0.895948i \(0.353503\pi\)
−0.997993 + 0.0633210i \(0.979831\pi\)
\(410\) 0 0
\(411\) −1.77214 + 1.02314i −0.0874131 + 0.0504680i
\(412\) 0 0
\(413\) 28.0507 + 26.9872i 1.38029 + 1.32795i
\(414\) 0 0
\(415\) 1.78926 1.03303i 0.0878314 0.0507095i
\(416\) 0 0
\(417\) −18.3243 + 31.7386i −0.897345 + 1.55425i
\(418\) 0 0
\(419\) 21.2301i 1.03716i −0.855029 0.518580i \(-0.826461\pi\)
0.855029 0.518580i \(-0.173539\pi\)
\(420\) 0 0
\(421\) −4.03128 −0.196472 −0.0982362 0.995163i \(-0.531320\pi\)
−0.0982362 + 0.995163i \(0.531320\pi\)
\(422\) 0 0
\(423\) 0.843129 1.46034i 0.0409943 0.0710043i
\(424\) 0 0
\(425\) −0.998475 + 4.00038i −0.0484331 + 0.194047i
\(426\) 0 0
\(427\) −3.41631 11.8306i −0.165327 0.572524i
\(428\) 0 0
\(429\) 3.51625 + 6.09033i 0.169766 + 0.294044i
\(430\) 0 0
\(431\) −13.7778 7.95462i −0.663654 0.383161i 0.130014 0.991512i \(-0.458498\pi\)
−0.793668 + 0.608351i \(0.791831\pi\)
\(432\) 0 0
\(433\) −32.0080 −1.53821 −0.769104 0.639124i \(-0.779297\pi\)
−0.769104 + 0.639124i \(0.779297\pi\)
\(434\) 0 0
\(435\) 5.94536i 0.285058i
\(436\) 0 0
\(437\) 12.2060 + 7.04716i 0.583894 + 0.337112i
\(438\) 0 0
\(439\) 16.0733 9.27994i 0.767138 0.442907i −0.0647146 0.997904i \(-0.520614\pi\)
0.831853 + 0.554996i \(0.187280\pi\)
\(440\) 0 0
\(441\) 0.0682171 + 1.76442i 0.00324843 + 0.0840202i
\(442\) 0 0
\(443\) 15.7680 + 27.3110i 0.749160 + 1.29758i 0.948226 + 0.317597i \(0.102876\pi\)
−0.199066 + 0.979986i \(0.563791\pi\)
\(444\) 0 0
\(445\) −0.587503 0.339195i −0.0278503 0.0160794i
\(446\) 0 0
\(447\) 33.9723i 1.60683i
\(448\) 0 0
\(449\) 11.0589i 0.521901i −0.965352 0.260950i \(-0.915964\pi\)
0.965352 0.260950i \(-0.0840359\pi\)
\(450\) 0 0
\(451\) −11.7845 + 20.4113i −0.554909 + 0.961131i
\(452\) 0 0
\(453\) 0.380117 0.219461i 0.0178595 0.0103112i
\(454\) 0 0
\(455\) −1.35868 4.70508i −0.0636958 0.220578i
\(456\) 0 0
\(457\) −5.25676 9.10498i −0.245901 0.425913i 0.716484 0.697604i \(-0.245750\pi\)
−0.962385 + 0.271691i \(0.912417\pi\)
\(458\) 0 0
\(459\) −6.12145 21.3683i −0.285725 0.997387i
\(460\) 0 0
\(461\) 15.3372 0.714327 0.357163 0.934042i \(-0.383744\pi\)
0.357163 + 0.934042i \(0.383744\pi\)
\(462\) 0 0
\(463\) −11.6436 −0.541123 −0.270562 0.962703i \(-0.587209\pi\)
−0.270562 + 0.962703i \(0.587209\pi\)
\(464\) 0 0
\(465\) −1.81468 1.04771i −0.0841537 0.0485862i
\(466\) 0 0
\(467\) 13.9157 + 24.1027i 0.643942 + 1.11534i 0.984545 + 0.175133i \(0.0560357\pi\)
−0.340602 + 0.940207i \(0.610631\pi\)
\(468\) 0 0
\(469\) 26.9244 + 25.9035i 1.24325 + 1.19611i
\(470\) 0 0
\(471\) 7.53229 4.34877i 0.347070 0.200381i
\(472\) 0 0
\(473\) 2.19806 + 1.26905i 0.101067 + 0.0583511i
\(474\) 0 0
\(475\) 4.09383 0.187838
\(476\) 0 0
\(477\) −1.99883 −0.0915203
\(478\) 0 0
\(479\) 6.64099 + 3.83418i 0.303434 + 0.175188i 0.643985 0.765038i \(-0.277280\pi\)
−0.340550 + 0.940226i \(0.610613\pi\)
\(480\) 0 0
\(481\) −12.5588 + 7.25082i −0.572631 + 0.330609i
\(482\) 0 0
\(483\) 3.62544 14.6574i 0.164963 0.666937i
\(484\) 0 0
\(485\) −3.28679 5.69289i −0.149246 0.258501i
\(486\) 0 0
\(487\) −6.27188 3.62107i −0.284206 0.164086i 0.351120 0.936330i \(-0.385801\pi\)
−0.635326 + 0.772244i \(0.719134\pi\)
\(488\) 0 0
\(489\) −21.6473 −0.978926
\(490\) 0 0
\(491\) −5.20382 −0.234845 −0.117423 0.993082i \(-0.537463\pi\)
−0.117423 + 0.993082i \(0.537463\pi\)
\(492\) 0 0
\(493\) −4.07260 14.2163i −0.183421 0.640271i
\(494\) 0 0
\(495\) −0.289075 0.500693i −0.0129930 0.0225045i
\(496\) 0 0
\(497\) −8.43488 2.08632i −0.378356 0.0935843i
\(498\) 0 0
\(499\) 31.5727 18.2285i 1.41339 0.816021i 0.417684 0.908592i \(-0.362842\pi\)
0.995706 + 0.0925711i \(0.0295085\pi\)
\(500\) 0 0
\(501\) −4.20493 + 7.28316i −0.187862 + 0.325387i
\(502\) 0 0
\(503\) 12.0546i 0.537489i −0.963212 0.268744i \(-0.913391\pi\)
0.963212 0.268744i \(-0.0866087\pi\)
\(504\) 0 0
\(505\) 1.50969i 0.0671802i
\(506\) 0 0
\(507\) 13.7436 + 7.93488i 0.610376 + 0.352401i
\(508\) 0 0
\(509\) 14.0412 + 24.3200i 0.622364 + 1.07797i 0.989044 + 0.147619i \(0.0471610\pi\)
−0.366680 + 0.930347i \(0.619506\pi\)
\(510\) 0 0
\(511\) −10.3651 + 10.7736i −0.458524 + 0.476594i
\(512\) 0 0
\(513\) −19.1132 + 11.0350i −0.843867 + 0.487207i
\(514\) 0 0
\(515\) 0.526516 + 0.303984i 0.0232011 + 0.0133951i
\(516\) 0 0
\(517\) 15.3217i 0.673847i
\(518\) 0 0
\(519\) −19.9400 −0.875268
\(520\) 0 0
\(521\) −8.35689 4.82485i −0.366122 0.211381i 0.305641 0.952147i \(-0.401129\pi\)
−0.671763 + 0.740766i \(0.734463\pi\)
\(522\) 0 0
\(523\) 1.06564 + 1.84575i 0.0465974 + 0.0807091i 0.888383 0.459102i \(-0.151829\pi\)
−0.841786 + 0.539811i \(0.818496\pi\)
\(524\) 0 0
\(525\) −1.21673 4.21353i −0.0531026 0.183893i
\(526\) 0 0
\(527\) 5.05687 + 1.26217i 0.220281 + 0.0549809i
\(528\) 0 0
\(529\) −5.57348 + 9.65356i −0.242325 + 0.419720i
\(530\) 0 0
\(531\) −3.71114 −0.161050
\(532\) 0 0
\(533\) 19.0344i 0.824470i
\(534\) 0 0
\(535\) −4.68113 + 8.10796i −0.202383 + 0.350538i
\(536\) 0 0
\(537\) −2.74336 + 1.58388i −0.118385 + 0.0683493i
\(538\) 0 0
\(539\) 8.55275 + 13.5741i 0.368393 + 0.584679i
\(540\) 0 0
\(541\) 5.38035 3.10635i 0.231319 0.133552i −0.379861 0.925044i \(-0.624028\pi\)
0.611181 + 0.791491i \(0.290695\pi\)
\(542\) 0 0
\(543\) −8.73364 + 15.1271i −0.374796 + 0.649166i
\(544\) 0 0
\(545\) 15.7410 0.674271
\(546\) 0 0
\(547\) 3.34325i 0.142947i −0.997442 0.0714735i \(-0.977230\pi\)
0.997442 0.0714735i \(-0.0227701\pi\)
\(548\) 0 0
\(549\) 1.01674 + 0.587015i 0.0433934 + 0.0250532i
\(550\) 0 0
\(551\) −12.7160 + 7.34158i −0.541719 + 0.312762i
\(552\) 0 0
\(553\) −2.48348 8.60024i −0.105608 0.365719i
\(554\) 0 0
\(555\) −11.2467 + 6.49331i −0.477397 + 0.275626i
\(556\) 0 0
\(557\) 22.1183 38.3099i 0.937180 1.62324i 0.166481 0.986045i \(-0.446759\pi\)
0.770699 0.637199i \(-0.219907\pi\)
\(558\) 0 0
\(559\) −2.04978 −0.0866966
\(560\) 0 0
\(561\) −11.2656 10.8845i −0.475633 0.459545i
\(562\) 0 0
\(563\) −7.90031 + 13.6837i −0.332958 + 0.576701i −0.983090 0.183121i \(-0.941380\pi\)
0.650132 + 0.759821i \(0.274713\pi\)
\(564\) 0 0
\(565\) 9.77243 + 16.9263i 0.411129 + 0.712097i
\(566\) 0 0
\(567\) 15.5955 + 15.0042i 0.654948 + 0.630116i
\(568\) 0 0
\(569\) −12.2131 21.1537i −0.511999 0.886808i −0.999903 0.0139112i \(-0.995572\pi\)
0.487904 0.872897i \(-0.337762\pi\)
\(570\) 0 0
\(571\) 34.9908 + 20.2019i 1.46432 + 0.845424i 0.999207 0.0398280i \(-0.0126810\pi\)
0.465111 + 0.885252i \(0.346014\pi\)
\(572\) 0 0
\(573\) 13.7553i 0.574635i
\(574\) 0 0
\(575\) 3.44282i 0.143576i
\(576\) 0 0
\(577\) 21.4661 37.1803i 0.893645 1.54784i 0.0581717 0.998307i \(-0.481473\pi\)
0.835473 0.549531i \(-0.185194\pi\)
\(578\) 0 0
\(579\) 10.4830 + 18.1571i 0.435658 + 0.754583i
\(580\) 0 0
\(581\) 1.31250 5.30637i 0.0544518 0.220145i
\(582\) 0 0
\(583\) −15.7286 + 9.08091i −0.651412 + 0.376093i
\(584\) 0 0
\(585\) 0.404361 + 0.233458i 0.0167183 + 0.00965230i
\(586\) 0 0
\(587\) −0.876945 −0.0361954 −0.0180977 0.999836i \(-0.505761\pi\)
−0.0180977 + 0.999836i \(0.505761\pi\)
\(588\) 0 0
\(589\) 5.17500i 0.213232i
\(590\) 0 0
\(591\) 8.09614 14.0229i 0.333031 0.576826i
\(592\) 0 0
\(593\) −12.5372 21.7151i −0.514842 0.891732i −0.999852 0.0172232i \(-0.994517\pi\)
0.485010 0.874509i \(-0.338816\pi\)
\(594\) 0 0
\(595\) 5.79569 + 9.24175i 0.237600 + 0.378875i
\(596\) 0 0
\(597\) −6.06613 10.5068i −0.248270 0.430016i
\(598\) 0 0
\(599\) −19.6809 + 34.0884i −0.804141 + 1.39281i 0.112728 + 0.993626i \(0.464041\pi\)
−0.916869 + 0.399187i \(0.869292\pi\)
\(600\) 0 0
\(601\) 25.3186i 1.03277i −0.856357 0.516384i \(-0.827278\pi\)
0.856357 0.516384i \(-0.172722\pi\)
\(602\) 0 0
\(603\) −3.56213 −0.145061
\(604\) 0 0
\(605\) 4.97688 + 2.87340i 0.202339 + 0.116820i
\(606\) 0 0
\(607\) −24.6593 + 14.2370i −1.00089 + 0.577864i −0.908511 0.417860i \(-0.862780\pi\)
−0.0923782 + 0.995724i \(0.529447\pi\)
\(608\) 0 0
\(609\) 11.3356 + 10.9058i 0.459341 + 0.441925i
\(610\) 0 0
\(611\) 6.18692 + 10.7161i 0.250296 + 0.433526i
\(612\) 0 0
\(613\) −17.3975 + 30.1333i −0.702676 + 1.21707i 0.264847 + 0.964290i \(0.414679\pi\)
−0.967524 + 0.252781i \(0.918655\pi\)
\(614\) 0 0
\(615\) 17.0458i 0.687353i
\(616\) 0 0
\(617\) 22.9421i 0.923613i 0.886981 + 0.461806i \(0.152798\pi\)
−0.886981 + 0.461806i \(0.847202\pi\)
\(618\) 0 0
\(619\) −1.76637 1.01982i −0.0709966 0.0409899i 0.464081 0.885793i \(-0.346384\pi\)
−0.535078 + 0.844803i \(0.679718\pi\)
\(620\) 0 0
\(621\) 9.28020 + 16.0738i 0.372401 + 0.645018i
\(622\) 0 0
\(623\) −1.72439 + 0.497951i −0.0690864 + 0.0199500i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) −7.77678 + 13.4698i −0.310575 + 0.537931i
\(628\) 0 0
\(629\) 22.4448 23.2306i 0.894933 0.926265i
\(630\) 0 0
\(631\) −31.5409 −1.25563 −0.627813 0.778364i \(-0.716050\pi\)
−0.627813 + 0.778364i \(0.716050\pi\)
\(632\) 0 0
\(633\) −8.78150 + 15.2100i −0.349033 + 0.604543i
\(634\) 0 0
\(635\) 5.41067 3.12385i 0.214716 0.123966i
\(636\) 0 0
\(637\) −11.4631 6.04020i −0.454184 0.239321i
\(638\) 0 0
\(639\) 0.717438 0.414213i 0.0283814 0.0163860i
\(640\) 0 0
\(641\) 30.5828 + 17.6570i 1.20795 + 0.697408i 0.962310 0.271954i \(-0.0876699\pi\)
0.245636 + 0.969362i \(0.421003\pi\)
\(642\) 0 0
\(643\) 35.7989i 1.41177i 0.708327 + 0.705884i \(0.249450\pi\)
−0.708327 + 0.705884i \(0.750550\pi\)
\(644\) 0 0
\(645\) −1.83564 −0.0722781
\(646\) 0 0
\(647\) −2.45836 + 4.25800i −0.0966481 + 0.167399i −0.910295 0.413960i \(-0.864145\pi\)
0.813647 + 0.581359i \(0.197479\pi\)
\(648\) 0 0
\(649\) −29.2026 + 16.8601i −1.14630 + 0.661817i
\(650\) 0 0
\(651\) −5.32631 + 1.53807i −0.208754 + 0.0602817i
\(652\) 0 0
\(653\) 20.8091 12.0141i 0.814323 0.470150i −0.0341319 0.999417i \(-0.510867\pi\)
0.848455 + 0.529268i \(0.177533\pi\)
\(654\) 0 0
\(655\) −9.02875 + 15.6383i −0.352783 + 0.611037i
\(656\) 0 0
\(657\) 1.42535i 0.0556084i
\(658\) 0 0
\(659\) −31.1409 −1.21308 −0.606539 0.795054i \(-0.707443\pi\)
−0.606539 + 0.795054i \(0.707443\pi\)
\(660\) 0 0
\(661\) 15.0092 25.9966i 0.583789 1.01115i −0.411236 0.911529i \(-0.634903\pi\)
0.995025 0.0996234i \(-0.0317638\pi\)
\(662\) 0 0
\(663\) 12.2744 + 3.06362i 0.476698 + 0.118981i
\(664\) 0 0
\(665\) 7.50945 7.80539i 0.291204 0.302680i
\(666\) 0 0
\(667\) 6.17411 + 10.6939i 0.239063 + 0.414069i
\(668\) 0 0
\(669\) −1.81353 1.04704i −0.0701153 0.0404811i
\(670\) 0 0
\(671\) 10.6675 0.411814
\(672\) 0 0
\(673\) 14.9067i 0.574610i 0.957839 + 0.287305i \(0.0927593\pi\)
−0.957839 + 0.287305i \(0.907241\pi\)
\(674\) 0 0
\(675\) 4.66878 + 2.69552i 0.179701 + 0.103751i
\(676\) 0 0
\(677\) −26.5469 + 15.3268i −1.02028 + 0.589058i −0.914185 0.405298i \(-0.867168\pi\)
−0.106094 + 0.994356i \(0.533835\pi\)
\(678\) 0 0
\(679\) −16.8833 4.17599i −0.647921 0.160260i
\(680\) 0 0
\(681\) 3.56958 + 6.18270i 0.136787 + 0.236921i
\(682\) 0 0
\(683\) −16.3296 9.42791i −0.624836 0.360749i 0.153914 0.988084i \(-0.450812\pi\)
−0.778749 + 0.627335i \(0.784146\pi\)
\(684\) 0 0
\(685\) 1.23446i 0.0471664i
\(686\) 0 0
\(687\) 0.906665i 0.0345914i
\(688\) 0 0
\(689\) 7.33377 12.7025i 0.279394 0.483925i
\(690\) 0 0
\(691\) −32.0159 + 18.4844i −1.21794 + 0.703180i −0.964478 0.264165i \(-0.914904\pi\)
−0.253466 + 0.967344i \(0.581570\pi\)
\(692\) 0 0
\(693\) −1.48489 0.367280i −0.0564065 0.0139518i
\(694\) 0 0
\(695\) 11.0545 + 19.1469i 0.419321 + 0.726285i
\(696\) 0 0
\(697\) 11.6764 + 40.7592i 0.442277 + 1.54387i
\(698\) 0 0
\(699\) 0.294260 0.0111299
\(700\) 0 0
\(701\) −14.2279 −0.537379 −0.268690 0.963227i \(-0.586591\pi\)
−0.268690 + 0.963227i \(0.586591\pi\)
\(702\) 0 0
\(703\) −27.7759 16.0364i −1.04759 0.604824i
\(704\) 0 0
\(705\) 5.54056 + 9.59653i 0.208670 + 0.361426i
\(706\) 0 0
\(707\) −2.87841 2.76927i −0.108254 0.104149i
\(708\) 0 0
\(709\) 18.5183 10.6916i 0.695470 0.401530i −0.110188 0.993911i \(-0.535145\pi\)
0.805658 + 0.592381i \(0.201812\pi\)
\(710\) 0 0
\(711\) 0.739117 + 0.426729i 0.0277190 + 0.0160036i
\(712\) 0 0
\(713\) −4.35206 −0.162986
\(714\) 0 0
\(715\) 4.24250 0.158660
\(716\) 0 0
\(717\) 24.1593 + 13.9484i 0.902246 + 0.520912i
\(718\) 0 0
\(719\) 31.2943 18.0678i 1.16708 0.673815i 0.214090 0.976814i \(-0.431321\pi\)
0.952991 + 0.302999i \(0.0979880\pi\)
\(720\) 0 0
\(721\) 1.54539 0.446260i 0.0575533 0.0166196i
\(722\) 0 0
\(723\) −9.12078 15.7977i −0.339206 0.587521i
\(724\) 0 0
\(725\) 3.10614 + 1.79333i 0.115359 + 0.0666025i
\(726\) 0 0
\(727\) −21.7441 −0.806443 −0.403222 0.915102i \(-0.632110\pi\)
−0.403222 + 0.915102i \(0.632110\pi\)
\(728\) 0 0
\(729\) −28.8724 −1.06935
\(730\) 0 0
\(731\) 4.38930 1.25742i 0.162344 0.0465073i
\(732\) 0 0
\(733\) −21.2381 36.7854i −0.784447 1.35870i −0.929329 0.369252i \(-0.879614\pi\)
0.144883 0.989449i \(-0.453720\pi\)
\(734\) 0 0
\(735\) −10.2655 5.40916i −0.378649 0.199520i
\(736\) 0 0
\(737\) −28.0300 + 16.1831i −1.03250 + 0.596113i
\(738\) 0 0
\(739\) −6.40704 + 11.0973i −0.235687 + 0.408221i −0.959472 0.281804i \(-0.909067\pi\)
0.723785 + 0.690025i \(0.242401\pi\)
\(740\) 0 0
\(741\) 12.5611i 0.461444i
\(742\) 0 0
\(743\) 40.3418i 1.48000i −0.672608 0.739999i \(-0.734826\pi\)
0.672608 0.739999i \(-0.265174\pi\)
\(744\) 0 0
\(745\) 17.7487 + 10.2472i 0.650263 + 0.375429i
\(746\) 0 0
\(747\) 0.260581 + 0.451339i 0.00953415 + 0.0165136i
\(748\) 0 0
\(749\) 6.87207 + 23.7979i 0.251100 + 0.869555i
\(750\) 0 0
\(751\) 21.4119 12.3622i 0.781332 0.451102i −0.0555700 0.998455i \(-0.517698\pi\)
0.836902 + 0.547352i \(0.184364\pi\)
\(752\) 0 0
\(753\) 40.3745 + 23.3102i 1.47133 + 0.849471i
\(754\) 0 0
\(755\) 0.264788i 0.00963662i
\(756\) 0 0
\(757\) 45.0684 1.63804 0.819019 0.573767i \(-0.194518\pi\)
0.819019 + 0.573767i \(0.194518\pi\)
\(758\) 0 0
\(759\) 11.3278 + 6.54011i 0.411173 + 0.237391i
\(760\) 0 0
\(761\) −2.28549 3.95859i −0.0828490 0.143499i 0.821624 0.570030i \(-0.193069\pi\)
−0.904473 + 0.426532i \(0.859735\pi\)
\(762\) 0 0
\(763\) 28.8743 30.0122i 1.04532 1.08651i
\(764\) 0 0
\(765\) −1.00909 0.251864i −0.0364838 0.00910616i
\(766\) 0 0
\(767\) 13.6163 23.5841i 0.491655 0.851572i
\(768\) 0 0
\(769\) −27.2297 −0.981927 −0.490964 0.871180i \(-0.663355\pi\)
−0.490964 + 0.871180i \(0.663355\pi\)
\(770\) 0 0
\(771\) 14.4852i 0.521673i
\(772\) 0 0
\(773\) 21.2672 36.8358i 0.764927 1.32489i −0.175358 0.984505i \(-0.556108\pi\)
0.940285 0.340388i \(-0.110558\pi\)
\(774\) 0 0
\(775\) −1.09474 + 0.632048i −0.0393242 + 0.0227039i
\(776\) 0 0
\(777\) −8.24998 + 33.3542i −0.295966 + 1.19658i
\(778\) 0 0
\(779\) 36.4576 21.0488i 1.30623 0.754153i
\(780\) 0 0
\(781\) 3.76362 6.51879i 0.134673 0.233261i
\(782\) 0 0
\(783\) −19.3358 −0.691005
\(784\) 0 0
\(785\) 5.24696i 0.187272i
\(786\) 0 0
\(787\) −7.06643 4.07981i −0.251891 0.145429i 0.368739 0.929533i \(-0.379790\pi\)
−0.620630 + 0.784104i \(0.713123\pi\)
\(788\) 0 0
\(789\) 21.9151 12.6527i 0.780200 0.450449i
\(790\) 0 0
\(791\) 50.1981 + 12.4162i 1.78484 + 0.441470i
\(792\) 0 0
\(793\) −7.46089 + 4.30755i −0.264944 + 0.152966i
\(794\) 0 0
\(795\) 6.56759 11.3754i 0.232929 0.403444i
\(796\) 0 0
\(797\) −22.1034 −0.782943 −0.391471 0.920190i \(-0.628034\pi\)
−0.391471 + 0.920190i \(0.628034\pi\)
\(798\) 0 0
\(799\) −19.8220 19.1515i −0.701253 0.677533i
\(800\) 0 0
\(801\) 0.0855615 0.148197i 0.00302317 0.00523628i
\(802\) 0 0
\(803\) −6.47554 11.2160i −0.228517 0.395802i
\(804\) 0 0
\(805\) −6.56417 6.31529i −0.231357 0.222585i
\(806\) 0 0
\(807\) 12.6947 + 21.9878i 0.446873 + 0.774007i
\(808\) 0 0
\(809\) −6.63543 3.83096i −0.233289 0.134690i 0.378799 0.925479i \(-0.376337\pi\)
−0.612088 + 0.790789i \(0.709670\pi\)
\(810\) 0 0
\(811\) 21.4622i 0.753640i 0.926287 + 0.376820i \(0.122982\pi\)
−0.926287 + 0.376820i \(0.877018\pi\)
\(812\) 0 0
\(813\) 26.9415i 0.944880i
\(814\) 0 0
\(815\) −6.52958 + 11.3096i −0.228721 + 0.396157i
\(816\) 0 0
\(817\) −2.26672 3.92607i −0.0793024 0.137356i
\(818\) 0 0
\(819\) 1.18685 0.342725i 0.0414719 0.0119758i
\(820\) 0 0
\(821\) 26.8990 15.5302i 0.938782 0.542006i 0.0492038 0.998789i \(-0.484332\pi\)
0.889578 + 0.456783i \(0.150998\pi\)
\(822\) 0 0
\(823\) −47.9515 27.6848i −1.67148 0.965031i −0.966809 0.255500i \(-0.917760\pi\)
−0.704674 0.709531i \(-0.748907\pi\)
\(824\) 0 0
\(825\) 3.79927 0.132274
\(826\) 0 0
\(827\) 23.8140i 0.828094i −0.910256 0.414047i \(-0.864115\pi\)
0.910256 0.414047i \(-0.135885\pi\)
\(828\) 0 0
\(829\) −1.81879 + 3.15023i −0.0631691 + 0.109412i −0.895880 0.444295i \(-0.853454\pi\)
0.832711 + 0.553707i \(0.186787\pi\)
\(830\) 0 0
\(831\) −0.630494 1.09205i −0.0218716 0.0378827i
\(832\) 0 0
\(833\) 28.2518 + 5.90226i 0.978866 + 0.204501i
\(834\) 0 0
\(835\) 2.53671 + 4.39370i 0.0877864 + 0.152050i
\(836\) 0 0
\(837\) 3.40740 5.90179i 0.117777 0.203996i
\(838\) 0 0
\(839\) 14.7134i 0.507962i −0.967209 0.253981i \(-0.918260\pi\)
0.967209 0.253981i \(-0.0817401\pi\)
\(840\) 0 0
\(841\) 16.1359 0.556410
\(842\) 0 0
\(843\) 2.79243 + 1.61221i 0.0961763 + 0.0555274i
\(844\) 0 0
\(845\) 8.29111 4.78687i 0.285223 0.164673i
\(846\) 0 0
\(847\) 14.6078 4.21826i 0.501929 0.144941i
\(848\) 0 0
\(849\) −21.5458 37.3185i −0.739451 1.28077i
\(850\) 0 0
\(851\) −13.4863 + 23.3589i −0.462304 + 0.800733i
\(852\) 0 0
\(853\) 31.3265i 1.07260i 0.844028 + 0.536299i \(0.180178\pi\)
−0.844028 + 0.536299i \(0.819822\pi\)
\(854\) 0 0
\(855\) 1.03266i 0.0353163i
\(856\) 0 0
\(857\) −2.40326 1.38752i −0.0820937 0.0473968i 0.458391 0.888751i \(-0.348426\pi\)
−0.540485 + 0.841354i \(0.681759\pi\)
\(858\) 0 0
\(859\) 4.86474 + 8.42597i 0.165983 + 0.287491i 0.937004 0.349319i \(-0.113587\pi\)
−0.771021 + 0.636810i \(0.780254\pi\)
\(860\) 0 0
\(861\) −32.4999 31.2677i −1.10759 1.06560i
\(862\) 0 0
\(863\) 4.11084 + 7.12018i 0.139935 + 0.242374i 0.927472 0.373893i \(-0.121977\pi\)
−0.787537 + 0.616267i \(0.788644\pi\)
\(864\) 0 0
\(865\) −6.01459 + 10.4176i −0.204502 + 0.354208i
\(866\) 0 0
\(867\) −28.1631 + 0.969309i −0.956469 + 0.0329195i
\(868\) 0 0
\(869\) 7.75470 0.263060
\(870\) 0 0
\(871\) 13.0695 22.6371i 0.442845 0.767029i
\(872\) 0 0
\(873\) 1.43603 0.829090i 0.0486021 0.0280604i
\(874\) 0 0
\(875\) −2.56835 0.635268i −0.0868262 0.0214760i
\(876\) 0 0
\(877\) 2.08816 1.20560i 0.0705121 0.0407102i −0.464329 0.885663i \(-0.653705\pi\)
0.534842 + 0.844952i \(0.320371\pi\)
\(878\) 0 0
\(879\) −39.7031 22.9226i −1.33915 0.773160i
\(880\) 0 0
\(881\) 40.4257i 1.36198i −0.732294 0.680988i \(-0.761550\pi\)
0.732294 0.680988i \(-0.238450\pi\)
\(882\) 0 0
\(883\) −44.9234 −1.51179 −0.755897 0.654691i \(-0.772799\pi\)
−0.755897 + 0.654691i \(0.772799\pi\)
\(884\) 0 0
\(885\) 12.1938 21.1202i 0.409888 0.709948i
\(886\) 0 0
\(887\) −39.4867 + 22.7976i −1.32583 + 0.765470i −0.984652 0.174528i \(-0.944160\pi\)
−0.341181 + 0.939998i \(0.610827\pi\)
\(888\) 0 0
\(889\) 3.96897 16.0463i 0.133115 0.538176i
\(890\) 0 0
\(891\) −16.2359 + 9.37379i −0.543922 + 0.314034i
\(892\) 0 0
\(893\) −13.6834 + 23.7004i −0.457898 + 0.793103i
\(894\) 0 0
\(895\) 1.91101i 0.0638780i
\(896\) 0 0
\(897\) −10.5636 −0.352709
\(898\) 0 0
\(899\) 2.26694 3.92646i 0.0756067 0.130955i
\(900\) 0 0
\(901\) −7.91197 + 31.6992i −0.263586 + 1.05605i
\(902\) 0 0
\(903\) −3.36717 + 3.49987i −0.112052 + 0.116468i
\(904\) 0 0
\(905\) 5.26874 + 9.12572i 0.175139 + 0.303349i
\(906\) 0 0
\(907\) −0.896334 0.517498i −0.0297623 0.0171833i 0.485045 0.874489i \(-0.338803\pi\)
−0.514807 + 0.857306i \(0.672137\pi\)
\(908\) 0 0
\(909\) 0.380817 0.0126309
\(910\) 0 0
\(911\) 10.3487i 0.342866i −0.985196 0.171433i \(-0.945160\pi\)
0.985196 0.171433i \(-0.0548398\pi\)
\(912\) 0 0
\(913\) 4.10096 + 2.36769i 0.135722 + 0.0783591i
\(914\) 0 0
\(915\) −6.68143 + 3.85753i −0.220881 + 0.127526i
\(916\) 0 0
\(917\) 13.2545 + 45.9002i 0.437703 + 1.51576i
\(918\) 0 0
\(919\) 23.4531 + 40.6220i 0.773646 + 1.33999i 0.935552 + 0.353188i \(0.114903\pi\)
−0.161906 + 0.986806i \(0.551764\pi\)
\(920\) 0 0
\(921\) −45.3623 26.1900i −1.49474 0.862988i
\(922\) 0 0
\(923\) 6.07903i 0.200094i
\(924\) 0 0
\(925\) 7.83443i 0.257594i
\(926\) 0 0
\(927\) −0.0766796 + 0.132813i −0.00251849 + 0.00436215i
\(928\) 0 0
\(929\) 31.4827 18.1766i 1.03291 0.596353i 0.115096 0.993354i \(-0.463282\pi\)
0.917818 + 0.397001i \(0.129949\pi\)
\(930\) 0 0
\(931\) −1.10712 28.6354i −0.0362843 0.938487i
\(932\) 0 0
\(933\) −26.7930 46.4068i −0.877163 1.51929i
\(934\) 0 0
\(935\) −9.08467 + 2.60252i −0.297100 + 0.0851114i
\(936\) 0 0
\(937\) 6.64333 0.217028 0.108514 0.994095i \(-0.465391\pi\)
0.108514 + 0.994095i \(0.465391\pi\)
\(938\) 0 0
\(939\) 21.3031 0.695201
\(940\) 0 0
\(941\) −42.5638 24.5742i −1.38754 0.801097i −0.394502 0.918895i \(-0.629083\pi\)
−0.993038 + 0.117798i \(0.962416\pi\)
\(942\) 0 0
\(943\) −17.7016 30.6601i −0.576444 0.998431i
\(944\) 0 0
\(945\) 13.7034 3.95712i 0.445773 0.128725i
\(946\) 0 0
\(947\) 26.5242 15.3137i 0.861920 0.497630i −0.00273456 0.999996i \(-0.500870\pi\)
0.864655 + 0.502366i \(0.167537\pi\)
\(948\) 0 0
\(949\) 9.05804 + 5.22966i 0.294036 + 0.169762i
\(950\) 0 0
\(951\) −22.8723 −0.741685
\(952\) 0 0
\(953\) 43.3506 1.40426 0.702132 0.712047i \(-0.252232\pi\)
0.702132 + 0.712047i \(0.252232\pi\)
\(954\) 0 0
\(955\) −7.18640 4.14907i −0.232546 0.134261i
\(956\) 0 0
\(957\) −11.8011 + 6.81334i −0.381474 + 0.220244i
\(958\) 0 0
\(959\) 2.35366 + 2.26442i 0.0760036 + 0.0731219i
\(960\) 0 0
\(961\) −14.7010 25.4629i −0.474227 0.821385i
\(962\) 0 0
\(963\) −2.04522 1.18081i −0.0659064 0.0380511i
\(964\) 0 0
\(965\) 12.6481 0.407158
\(966\) 0 0
\(967\) −32.3742 −1.04108 −0.520542 0.853836i \(-0.674270\pi\)
−0.520542 + 0.853836i \(0.674270\pi\)
\(968\) 0 0
\(969\) 7.70549 + 26.8977i 0.247536 + 0.864080i
\(970\) 0 0
\(971\) −12.3766 21.4369i −0.397184 0.687942i 0.596194 0.802841i \(-0.296679\pi\)
−0.993377 + 0.114899i \(0.963346\pi\)
\(972\) 0 0
\(973\) 56.7837 + 14.0451i 1.82040 + 0.450266i
\(974\) 0 0
\(975\) −2.65723 + 1.53415i −0.0850995 + 0.0491322i
\(976\) 0 0
\(977\) −3.83328 + 6.63943i −0.122637 + 0.212414i −0.920807 0.390019i \(-0.872469\pi\)
0.798170 + 0.602433i \(0.205802\pi\)
\(978\) 0 0
\(979\) 1.55486i 0.0496935i
\(980\) 0 0
\(981\) 3.97065i 0.126773i
\(982\) 0 0
\(983\) −20.0196 11.5583i −0.638526 0.368653i 0.145520 0.989355i \(-0.453514\pi\)
−0.784047 + 0.620702i \(0.786848\pi\)
\(984\) 0 0
\(985\) −4.88416 8.45961i −0.155622 0.269545i
\(986\) 0 0
\(987\) 28.4602 + 7.03948i 0.905899 + 0.224069i
\(988\) 0 0
\(989\) −3.30174 + 1.90626i −0.104989 + 0.0606156i
\(990\) 0 0
\(991\) 15.6930 + 9.06034i 0.498504 + 0.287811i 0.728095 0.685476i \(-0.240406\pi\)
−0.229592 + 0.973287i \(0.573739\pi\)
\(992\) 0 0
\(993\) 48.4490i 1.53748i
\(994\) 0 0
\(995\) −7.31902 −0.232028
\(996\) 0 0
\(997\) 12.8870 + 7.44029i 0.408134 + 0.235636i 0.689988 0.723821i \(-0.257616\pi\)
−0.281854 + 0.959457i \(0.590949\pi\)
\(998\) 0 0
\(999\) −21.1179 36.5772i −0.668139 1.15725i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2380.2.cb.b.781.13 92
7.2 even 3 inner 2380.2.cb.b.1801.34 yes 92
17.16 even 2 inner 2380.2.cb.b.781.34 yes 92
119.16 even 6 inner 2380.2.cb.b.1801.13 yes 92
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2380.2.cb.b.781.13 92 1.1 even 1 trivial
2380.2.cb.b.781.34 yes 92 17.16 even 2 inner
2380.2.cb.b.1801.13 yes 92 119.16 even 6 inner
2380.2.cb.b.1801.34 yes 92 7.2 even 3 inner