Properties

Label 2380.2.cb.b.1801.41
Level $2380$
Weight $2$
Character 2380.1801
Analytic conductor $19.004$
Analytic rank $0$
Dimension $92$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2380,2,Mod(781,2380)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2380.781"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2380, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2380 = 2^{2} \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2380.cb (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [92] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.0043956811\)
Analytic rank: \(0\)
Dimension: \(92\)
Relative dimension: \(46\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1801.41
Character \(\chi\) \(=\) 2380.1801
Dual form 2380.2.cb.b.781.41

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.29941 - 1.32756i) q^{3} +(0.866025 + 0.500000i) q^{5} +(-2.54913 - 0.708459i) q^{7} +(2.02485 - 3.50715i) q^{9} +(-1.96280 + 1.13322i) q^{11} +5.19317 q^{13} +2.65513 q^{15} +(-2.01316 - 3.59822i) q^{17} +(2.74671 - 4.75744i) q^{19} +(-6.80202 + 1.75510i) q^{21} +(7.41926 + 4.28351i) q^{23} +(0.500000 + 0.866025i) q^{25} -2.78710i q^{27} -6.77457i q^{29} +(1.99915 - 1.15421i) q^{31} +(-3.00885 + 5.21148i) q^{33} +(-1.85339 - 1.88811i) q^{35} +(1.84700 + 1.06637i) q^{37} +(11.9412 - 6.89426i) q^{39} -1.68589i q^{41} -9.33371 q^{43} +(3.50715 - 2.02485i) q^{45} +(1.83350 - 3.17572i) q^{47} +(5.99617 + 3.61191i) q^{49} +(-9.40595 - 5.60117i) q^{51} +(-4.19617 - 7.26798i) q^{53} -2.26644 q^{55} -14.5857i q^{57} +(-3.70533 - 6.41782i) q^{59} +(3.20135 + 1.84830i) q^{61} +(-7.64629 + 7.50566i) q^{63} +(4.49742 + 2.59658i) q^{65} +(1.60521 + 2.78030i) q^{67} +22.7466 q^{69} +6.38209i q^{71} +(7.06719 - 4.08025i) q^{73} +(2.29941 + 1.32756i) q^{75} +(5.80628 - 1.49817i) q^{77} +(-3.93995 - 2.27473i) q^{79} +(2.37450 + 4.11276i) q^{81} -10.1819 q^{83} +(0.0556607 - 4.12273i) q^{85} +(-8.99368 - 15.5775i) q^{87} +(5.39421 - 9.34304i) q^{89} +(-13.2381 - 3.67914i) q^{91} +(3.06458 - 5.30800i) q^{93} +(4.75744 - 2.74671i) q^{95} +2.95814i q^{97} +9.17843i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 92 q + 56 q^{9} - 24 q^{13} + 12 q^{15} + 4 q^{17} - 24 q^{21} + 46 q^{25} - 24 q^{33} + 14 q^{35} - 64 q^{43} + 16 q^{47} + 38 q^{49} - 22 q^{51} - 8 q^{53} + 18 q^{59} + 16 q^{67} - 36 q^{69} - 12 q^{77}+ \cdots + 44 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2380\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(1191\) \(1261\) \(1361\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.29941 1.32756i 1.32756 0.766469i 0.342642 0.939466i \(-0.388678\pi\)
0.984922 + 0.172997i \(0.0553450\pi\)
\(4\) 0 0
\(5\) 0.866025 + 0.500000i 0.387298 + 0.223607i
\(6\) 0 0
\(7\) −2.54913 0.708459i −0.963482 0.267772i
\(8\) 0 0
\(9\) 2.02485 3.50715i 0.674951 1.16905i
\(10\) 0 0
\(11\) −1.96280 + 1.13322i −0.591806 + 0.341679i −0.765811 0.643065i \(-0.777662\pi\)
0.174005 + 0.984745i \(0.444329\pi\)
\(12\) 0 0
\(13\) 5.19317 1.44033 0.720163 0.693805i \(-0.244067\pi\)
0.720163 + 0.693805i \(0.244067\pi\)
\(14\) 0 0
\(15\) 2.65513 0.685551
\(16\) 0 0
\(17\) −2.01316 3.59822i −0.488263 0.872696i
\(18\) 0 0
\(19\) 2.74671 4.75744i 0.630139 1.09143i −0.357384 0.933957i \(-0.616331\pi\)
0.987523 0.157475i \(-0.0503353\pi\)
\(20\) 0 0
\(21\) −6.80202 + 1.75510i −1.48432 + 0.382995i
\(22\) 0 0
\(23\) 7.41926 + 4.28351i 1.54702 + 0.893174i 0.998367 + 0.0571267i \(0.0181939\pi\)
0.548657 + 0.836048i \(0.315139\pi\)
\(24\) 0 0
\(25\) 0.500000 + 0.866025i 0.100000 + 0.173205i
\(26\) 0 0
\(27\) 2.78710i 0.536377i
\(28\) 0 0
\(29\) 6.77457i 1.25801i −0.777403 0.629003i \(-0.783463\pi\)
0.777403 0.629003i \(-0.216537\pi\)
\(30\) 0 0
\(31\) 1.99915 1.15421i 0.359058 0.207302i −0.309609 0.950864i \(-0.600198\pi\)
0.668668 + 0.743561i \(0.266865\pi\)
\(32\) 0 0
\(33\) −3.00885 + 5.21148i −0.523774 + 0.907203i
\(34\) 0 0
\(35\) −1.85339 1.88811i −0.313279 0.319149i
\(36\) 0 0
\(37\) 1.84700 + 1.06637i 0.303645 + 0.175310i 0.644079 0.764959i \(-0.277241\pi\)
−0.340434 + 0.940268i \(0.610574\pi\)
\(38\) 0 0
\(39\) 11.9412 6.89426i 1.91212 1.10397i
\(40\) 0 0
\(41\) 1.68589i 0.263291i −0.991297 0.131646i \(-0.957974\pi\)
0.991297 0.131646i \(-0.0420261\pi\)
\(42\) 0 0
\(43\) −9.33371 −1.42338 −0.711688 0.702495i \(-0.752069\pi\)
−0.711688 + 0.702495i \(0.752069\pi\)
\(44\) 0 0
\(45\) 3.50715 2.02485i 0.522815 0.301847i
\(46\) 0 0
\(47\) 1.83350 3.17572i 0.267444 0.463226i −0.700757 0.713400i \(-0.747154\pi\)
0.968201 + 0.250174i \(0.0804877\pi\)
\(48\) 0 0
\(49\) 5.99617 + 3.61191i 0.856596 + 0.515987i
\(50\) 0 0
\(51\) −9.40595 5.60117i −1.31710 0.784321i
\(52\) 0 0
\(53\) −4.19617 7.26798i −0.576389 0.998334i −0.995889 0.0905792i \(-0.971128\pi\)
0.419501 0.907755i \(-0.362205\pi\)
\(54\) 0 0
\(55\) −2.26644 −0.305607
\(56\) 0 0
\(57\) 14.5857i 1.93193i
\(58\) 0 0
\(59\) −3.70533 6.41782i −0.482393 0.835529i 0.517403 0.855742i \(-0.326899\pi\)
−0.999796 + 0.0202129i \(0.993566\pi\)
\(60\) 0 0
\(61\) 3.20135 + 1.84830i 0.409891 + 0.236651i 0.690743 0.723100i \(-0.257284\pi\)
−0.280852 + 0.959751i \(0.590617\pi\)
\(62\) 0 0
\(63\) −7.64629 + 7.50566i −0.963342 + 0.945625i
\(64\) 0 0
\(65\) 4.49742 + 2.59658i 0.557836 + 0.322067i
\(66\) 0 0
\(67\) 1.60521 + 2.78030i 0.196107 + 0.339668i 0.947263 0.320457i \(-0.103837\pi\)
−0.751156 + 0.660125i \(0.770503\pi\)
\(68\) 0 0
\(69\) 22.7466 2.73836
\(70\) 0 0
\(71\) 6.38209i 0.757415i 0.925516 + 0.378707i \(0.123631\pi\)
−0.925516 + 0.378707i \(0.876369\pi\)
\(72\) 0 0
\(73\) 7.06719 4.08025i 0.827153 0.477557i −0.0257242 0.999669i \(-0.508189\pi\)
0.852877 + 0.522112i \(0.174856\pi\)
\(74\) 0 0
\(75\) 2.29941 + 1.32756i 0.265513 + 0.153294i
\(76\) 0 0
\(77\) 5.80628 1.49817i 0.661687 0.170733i
\(78\) 0 0
\(79\) −3.93995 2.27473i −0.443279 0.255927i 0.261708 0.965147i \(-0.415714\pi\)
−0.704988 + 0.709220i \(0.749047\pi\)
\(80\) 0 0
\(81\) 2.37450 + 4.11276i 0.263834 + 0.456974i
\(82\) 0 0
\(83\) −10.1819 −1.11761 −0.558805 0.829299i \(-0.688740\pi\)
−0.558805 + 0.829299i \(0.688740\pi\)
\(84\) 0 0
\(85\) 0.0556607 4.12273i 0.00603725 0.447173i
\(86\) 0 0
\(87\) −8.99368 15.5775i −0.964224 1.67008i
\(88\) 0 0
\(89\) 5.39421 9.34304i 0.571785 0.990360i −0.424598 0.905382i \(-0.639585\pi\)
0.996383 0.0849782i \(-0.0270821\pi\)
\(90\) 0 0
\(91\) −13.2381 3.67914i −1.38773 0.385679i
\(92\) 0 0
\(93\) 3.06458 5.30800i 0.317782 0.550414i
\(94\) 0 0
\(95\) 4.75744 2.74671i 0.488103 0.281807i
\(96\) 0 0
\(97\) 2.95814i 0.300353i 0.988659 + 0.150177i \(0.0479843\pi\)
−0.988659 + 0.150177i \(0.952016\pi\)
\(98\) 0 0
\(99\) 9.17843i 0.922467i
\(100\) 0 0
\(101\) −6.85443 11.8722i −0.682041 1.18133i −0.974357 0.225008i \(-0.927759\pi\)
0.292316 0.956322i \(-0.405574\pi\)
\(102\) 0 0
\(103\) 8.94692 15.4965i 0.881566 1.52692i 0.0319659 0.999489i \(-0.489823\pi\)
0.849600 0.527428i \(-0.176843\pi\)
\(104\) 0 0
\(105\) −6.76828 1.88105i −0.660516 0.183571i
\(106\) 0 0
\(107\) 11.9643 + 6.90759i 1.15663 + 0.667782i 0.950495 0.310741i \(-0.100577\pi\)
0.206138 + 0.978523i \(0.433910\pi\)
\(108\) 0 0
\(109\) −10.4322 + 6.02304i −0.999225 + 0.576903i −0.908019 0.418929i \(-0.862405\pi\)
−0.0912059 + 0.995832i \(0.529072\pi\)
\(110\) 0 0
\(111\) 5.66268 0.537478
\(112\) 0 0
\(113\) 5.36234i 0.504447i −0.967669 0.252223i \(-0.918838\pi\)
0.967669 0.252223i \(-0.0811618\pi\)
\(114\) 0 0
\(115\) 4.28351 + 7.41926i 0.399440 + 0.691850i
\(116\) 0 0
\(117\) 10.5154 18.2132i 0.972149 1.68381i
\(118\) 0 0
\(119\) 2.58263 + 10.5986i 0.236749 + 0.971571i
\(120\) 0 0
\(121\) −2.93161 + 5.07770i −0.266510 + 0.461609i
\(122\) 0 0
\(123\) −2.23812 3.87654i −0.201805 0.349536i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) −11.6950 −1.03776 −0.518880 0.854847i \(-0.673651\pi\)
−0.518880 + 0.854847i \(0.673651\pi\)
\(128\) 0 0
\(129\) −21.4620 + 12.3911i −1.88962 + 1.09097i
\(130\) 0 0
\(131\) 13.7140 + 7.91779i 1.19820 + 0.691780i 0.960153 0.279473i \(-0.0901599\pi\)
0.238046 + 0.971254i \(0.423493\pi\)
\(132\) 0 0
\(133\) −10.3722 + 10.1814i −0.899382 + 0.882842i
\(134\) 0 0
\(135\) 1.39355 2.41370i 0.119938 0.207738i
\(136\) 0 0
\(137\) 8.82606 + 15.2872i 0.754061 + 1.30607i 0.945840 + 0.324634i \(0.105241\pi\)
−0.191779 + 0.981438i \(0.561426\pi\)
\(138\) 0 0
\(139\) 17.8871i 1.51717i 0.651577 + 0.758583i \(0.274108\pi\)
−0.651577 + 0.758583i \(0.725892\pi\)
\(140\) 0 0
\(141\) 9.73636i 0.819949i
\(142\) 0 0
\(143\) −10.1931 + 5.88501i −0.852394 + 0.492130i
\(144\) 0 0
\(145\) 3.38729 5.86695i 0.281299 0.487224i
\(146\) 0 0
\(147\) 18.5827 + 0.344957i 1.53267 + 0.0284516i
\(148\) 0 0
\(149\) 6.71665 11.6336i 0.550249 0.953060i −0.448007 0.894030i \(-0.647866\pi\)
0.998256 0.0590299i \(-0.0188007\pi\)
\(150\) 0 0
\(151\) 9.70439 + 16.8085i 0.789732 + 1.36786i 0.926131 + 0.377202i \(0.123114\pi\)
−0.136399 + 0.990654i \(0.543553\pi\)
\(152\) 0 0
\(153\) −16.6958 0.225410i −1.34978 0.0182233i
\(154\) 0 0
\(155\) 2.30842 0.185417
\(156\) 0 0
\(157\) 5.08009 + 8.79897i 0.405435 + 0.702235i 0.994372 0.105945i \(-0.0337866\pi\)
−0.588937 + 0.808179i \(0.700453\pi\)
\(158\) 0 0
\(159\) −19.2974 11.1414i −1.53039 0.883568i
\(160\) 0 0
\(161\) −15.8780 16.1755i −1.25136 1.27481i
\(162\) 0 0
\(163\) 5.21254 + 3.00946i 0.408278 + 0.235719i 0.690050 0.723762i \(-0.257589\pi\)
−0.281772 + 0.959481i \(0.590922\pi\)
\(164\) 0 0
\(165\) −5.21148 + 3.00885i −0.405713 + 0.234239i
\(166\) 0 0
\(167\) 9.19627i 0.711629i −0.934557 0.355814i \(-0.884204\pi\)
0.934557 0.355814i \(-0.115796\pi\)
\(168\) 0 0
\(169\) 13.9690 1.07454
\(170\) 0 0
\(171\) −11.1234 19.2662i −0.850625 1.47333i
\(172\) 0 0
\(173\) −18.7923 10.8497i −1.42875 0.824890i −0.431729 0.902004i \(-0.642096\pi\)
−0.997022 + 0.0771138i \(0.975430\pi\)
\(174\) 0 0
\(175\) −0.661024 2.56184i −0.0499687 0.193657i
\(176\) 0 0
\(177\) −17.0401 9.83813i −1.28082 0.739479i
\(178\) 0 0
\(179\) 10.0329 + 17.3774i 0.749891 + 1.29885i 0.947874 + 0.318644i \(0.103227\pi\)
−0.197983 + 0.980205i \(0.563439\pi\)
\(180\) 0 0
\(181\) 7.37876i 0.548459i 0.961664 + 0.274230i \(0.0884228\pi\)
−0.961664 + 0.274230i \(0.911577\pi\)
\(182\) 0 0
\(183\) 9.81496 0.725543
\(184\) 0 0
\(185\) 1.06637 + 1.84700i 0.0784008 + 0.135794i
\(186\) 0 0
\(187\) 8.02901 + 4.78122i 0.587140 + 0.349637i
\(188\) 0 0
\(189\) −1.97454 + 7.10469i −0.143627 + 0.516790i
\(190\) 0 0
\(191\) −11.8913 + 20.5964i −0.860427 + 1.49030i 0.0110905 + 0.999938i \(0.496470\pi\)
−0.871517 + 0.490365i \(0.836864\pi\)
\(192\) 0 0
\(193\) −2.74549 + 1.58511i −0.197625 + 0.114099i −0.595547 0.803320i \(-0.703065\pi\)
0.397922 + 0.917419i \(0.369731\pi\)
\(194\) 0 0
\(195\) 13.7885 0.987417
\(196\) 0 0
\(197\) 24.3208i 1.73278i 0.499366 + 0.866391i \(0.333566\pi\)
−0.499366 + 0.866391i \(0.666434\pi\)
\(198\) 0 0
\(199\) −13.2113 + 7.62752i −0.936521 + 0.540701i −0.888868 0.458163i \(-0.848508\pi\)
−0.0476531 + 0.998864i \(0.515174\pi\)
\(200\) 0 0
\(201\) 7.38205 + 4.26203i 0.520690 + 0.300620i
\(202\) 0 0
\(203\) −4.79950 + 17.2693i −0.336859 + 1.21207i
\(204\) 0 0
\(205\) 0.842943 1.46002i 0.0588737 0.101972i
\(206\) 0 0
\(207\) 30.0458 17.3470i 2.08833 1.20570i
\(208\) 0 0
\(209\) 12.4505i 0.861222i
\(210\) 0 0
\(211\) 13.9799i 0.962418i 0.876606 + 0.481209i \(0.159802\pi\)
−0.876606 + 0.481209i \(0.840198\pi\)
\(212\) 0 0
\(213\) 8.47263 + 14.6750i 0.580535 + 1.00552i
\(214\) 0 0
\(215\) −8.08323 4.66685i −0.551271 0.318277i
\(216\) 0 0
\(217\) −5.91382 + 1.52592i −0.401456 + 0.103586i
\(218\) 0 0
\(219\) 10.8336 18.7643i 0.732065 1.26797i
\(220\) 0 0
\(221\) −10.4547 18.6862i −0.703258 1.25697i
\(222\) 0 0
\(223\) −18.5025 −1.23902 −0.619508 0.784990i \(-0.712668\pi\)
−0.619508 + 0.784990i \(0.712668\pi\)
\(224\) 0 0
\(225\) 4.04970 0.269980
\(226\) 0 0
\(227\) −19.0454 + 10.9959i −1.26409 + 0.729822i −0.973863 0.227137i \(-0.927064\pi\)
−0.290225 + 0.956958i \(0.593730\pi\)
\(228\) 0 0
\(229\) 11.7307 20.3181i 0.775184 1.34266i −0.159507 0.987197i \(-0.550990\pi\)
0.934691 0.355461i \(-0.115676\pi\)
\(230\) 0 0
\(231\) 11.3621 11.1531i 0.747570 0.733822i
\(232\) 0 0
\(233\) 6.22393 + 3.59339i 0.407743 + 0.235411i 0.689820 0.723981i \(-0.257690\pi\)
−0.282076 + 0.959392i \(0.591023\pi\)
\(234\) 0 0
\(235\) 3.17572 1.83350i 0.207161 0.119604i
\(236\) 0 0
\(237\) −12.0794 −0.784642
\(238\) 0 0
\(239\) −16.3353 −1.05664 −0.528320 0.849045i \(-0.677178\pi\)
−0.528320 + 0.849045i \(0.677178\pi\)
\(240\) 0 0
\(241\) −5.48166 + 3.16484i −0.353105 + 0.203865i −0.666052 0.745905i \(-0.732017\pi\)
0.312947 + 0.949771i \(0.398684\pi\)
\(242\) 0 0
\(243\) 18.1610 + 10.4853i 1.16503 + 0.672630i
\(244\) 0 0
\(245\) 3.38688 + 6.12609i 0.216380 + 0.391382i
\(246\) 0 0
\(247\) 14.2641 24.7062i 0.907605 1.57202i
\(248\) 0 0
\(249\) −23.4124 + 13.5171i −1.48370 + 0.856613i
\(250\) 0 0
\(251\) 25.9339 1.63693 0.818465 0.574556i \(-0.194825\pi\)
0.818465 + 0.574556i \(0.194825\pi\)
\(252\) 0 0
\(253\) −19.4167 −1.22072
\(254\) 0 0
\(255\) −5.34520 9.55373i −0.334729 0.598278i
\(256\) 0 0
\(257\) 6.18454 10.7119i 0.385781 0.668192i −0.606096 0.795391i \(-0.707265\pi\)
0.991877 + 0.127199i \(0.0405987\pi\)
\(258\) 0 0
\(259\) −3.95278 4.02683i −0.245614 0.250215i
\(260\) 0 0
\(261\) −23.7594 13.7175i −1.47067 0.849092i
\(262\) 0 0
\(263\) 3.07046 + 5.31819i 0.189333 + 0.327934i 0.945028 0.326990i \(-0.106034\pi\)
−0.755695 + 0.654923i \(0.772701\pi\)
\(264\) 0 0
\(265\) 8.39234i 0.515538i
\(266\) 0 0
\(267\) 28.6446i 1.75302i
\(268\) 0 0
\(269\) 8.28619 4.78403i 0.505218 0.291688i −0.225648 0.974209i \(-0.572450\pi\)
0.730866 + 0.682521i \(0.239117\pi\)
\(270\) 0 0
\(271\) −1.40631 + 2.43580i −0.0854272 + 0.147964i −0.905573 0.424190i \(-0.860559\pi\)
0.820146 + 0.572154i \(0.193892\pi\)
\(272\) 0 0
\(273\) −35.3241 + 9.11455i −2.13791 + 0.551638i
\(274\) 0 0
\(275\) −1.96280 1.13322i −0.118361 0.0683359i
\(276\) 0 0
\(277\) 15.6812 9.05357i 0.942195 0.543976i 0.0515472 0.998671i \(-0.483585\pi\)
0.890648 + 0.454694i \(0.150251\pi\)
\(278\) 0 0
\(279\) 9.34842i 0.559675i
\(280\) 0 0
\(281\) −9.69058 −0.578092 −0.289046 0.957315i \(-0.593338\pi\)
−0.289046 + 0.957315i \(0.593338\pi\)
\(282\) 0 0
\(283\) −0.0630133 + 0.0363808i −0.00374575 + 0.00216261i −0.501872 0.864942i \(-0.667355\pi\)
0.498126 + 0.867105i \(0.334022\pi\)
\(284\) 0 0
\(285\) 7.29287 12.6316i 0.431992 0.748232i
\(286\) 0 0
\(287\) −1.19438 + 4.29755i −0.0705021 + 0.253676i
\(288\) 0 0
\(289\) −8.89436 + 14.4876i −0.523198 + 0.852211i
\(290\) 0 0
\(291\) 3.92712 + 6.80197i 0.230212 + 0.398738i
\(292\) 0 0
\(293\) 9.79142 0.572021 0.286010 0.958227i \(-0.407671\pi\)
0.286010 + 0.958227i \(0.407671\pi\)
\(294\) 0 0
\(295\) 7.41066i 0.431465i
\(296\) 0 0
\(297\) 3.15840 + 5.47051i 0.183269 + 0.317431i
\(298\) 0 0
\(299\) 38.5295 + 22.2450i 2.22822 + 1.28646i
\(300\) 0 0
\(301\) 23.7929 + 6.61254i 1.37140 + 0.381141i
\(302\) 0 0
\(303\) −31.5223 18.1994i −1.81091 1.04553i
\(304\) 0 0
\(305\) 1.84830 + 3.20135i 0.105834 + 0.183309i
\(306\) 0 0
\(307\) −20.6621 −1.17925 −0.589624 0.807678i \(-0.700724\pi\)
−0.589624 + 0.807678i \(0.700724\pi\)
\(308\) 0 0
\(309\) 47.5104i 2.70277i
\(310\) 0 0
\(311\) 1.77694 1.02592i 0.100761 0.0581745i −0.448773 0.893646i \(-0.648139\pi\)
0.549534 + 0.835471i \(0.314805\pi\)
\(312\) 0 0
\(313\) −15.4073 8.89542i −0.870873 0.502799i −0.00323490 0.999995i \(-0.501030\pi\)
−0.867638 + 0.497196i \(0.834363\pi\)
\(314\) 0 0
\(315\) −10.3747 + 2.67695i −0.584549 + 0.150829i
\(316\) 0 0
\(317\) −11.1022 6.40988i −0.623564 0.360015i 0.154691 0.987963i \(-0.450562\pi\)
−0.778255 + 0.627948i \(0.783895\pi\)
\(318\) 0 0
\(319\) 7.67710 + 13.2971i 0.429835 + 0.744496i
\(320\) 0 0
\(321\) 36.6811 2.04734
\(322\) 0 0
\(323\) −22.6479 0.305768i −1.26016 0.0170134i
\(324\) 0 0
\(325\) 2.59658 + 4.49742i 0.144033 + 0.249472i
\(326\) 0 0
\(327\) −15.9919 + 27.6989i −0.884356 + 1.53175i
\(328\) 0 0
\(329\) −6.92371 + 6.79637i −0.381716 + 0.374696i
\(330\) 0 0
\(331\) −7.95698 + 13.7819i −0.437355 + 0.757522i −0.997485 0.0708836i \(-0.977418\pi\)
0.560129 + 0.828405i \(0.310751\pi\)
\(332\) 0 0
\(333\) 7.47981 4.31847i 0.409891 0.236651i
\(334\) 0 0
\(335\) 3.21041i 0.175404i
\(336\) 0 0
\(337\) 0.705077i 0.0384080i −0.999816 0.0192040i \(-0.993887\pi\)
0.999816 0.0192040i \(-0.00611319\pi\)
\(338\) 0 0
\(339\) −7.11885 12.3302i −0.386643 0.669685i
\(340\) 0 0
\(341\) −2.61595 + 4.53097i −0.141662 + 0.245366i
\(342\) 0 0
\(343\) −12.7262 13.4553i −0.687148 0.726517i
\(344\) 0 0
\(345\) 19.6991 + 11.3733i 1.06056 + 0.612317i
\(346\) 0 0
\(347\) 7.83467 4.52335i 0.420587 0.242826i −0.274741 0.961518i \(-0.588592\pi\)
0.695328 + 0.718692i \(0.255259\pi\)
\(348\) 0 0
\(349\) 14.6559 0.784511 0.392256 0.919856i \(-0.371695\pi\)
0.392256 + 0.919856i \(0.371695\pi\)
\(350\) 0 0
\(351\) 14.4739i 0.772558i
\(352\) 0 0
\(353\) −0.182487 0.316077i −0.00971280 0.0168231i 0.861128 0.508388i \(-0.169758\pi\)
−0.870841 + 0.491565i \(0.836425\pi\)
\(354\) 0 0
\(355\) −3.19105 + 5.52705i −0.169363 + 0.293346i
\(356\) 0 0
\(357\) 20.0088 + 20.9419i 1.05898 + 1.10836i
\(358\) 0 0
\(359\) 15.1685 26.2726i 0.800563 1.38662i −0.118682 0.992932i \(-0.537867\pi\)
0.919246 0.393684i \(-0.128800\pi\)
\(360\) 0 0
\(361\) −5.58884 9.68015i −0.294149 0.509482i
\(362\) 0 0
\(363\) 15.5676i 0.817088i
\(364\) 0 0
\(365\) 8.16049 0.427140
\(366\) 0 0
\(367\) 15.3092 8.83874i 0.799131 0.461379i −0.0440360 0.999030i \(-0.514022\pi\)
0.843167 + 0.537651i \(0.180688\pi\)
\(368\) 0 0
\(369\) −5.91265 3.41367i −0.307800 0.177709i
\(370\) 0 0
\(371\) 5.54754 + 21.4999i 0.288014 + 1.11622i
\(372\) 0 0
\(373\) 5.02179 8.69800i 0.260019 0.450366i −0.706228 0.707985i \(-0.749605\pi\)
0.966247 + 0.257619i \(0.0829379\pi\)
\(374\) 0 0
\(375\) 1.32756 + 2.29941i 0.0685551 + 0.118741i
\(376\) 0 0
\(377\) 35.1815i 1.81194i
\(378\) 0 0
\(379\) 32.2693i 1.65756i 0.559572 + 0.828782i \(0.310965\pi\)
−0.559572 + 0.828782i \(0.689035\pi\)
\(380\) 0 0
\(381\) −26.8915 + 15.5258i −1.37769 + 0.795411i
\(382\) 0 0
\(383\) −10.6946 + 18.5236i −0.546469 + 0.946512i 0.452044 + 0.891996i \(0.350695\pi\)
−0.998513 + 0.0545160i \(0.982638\pi\)
\(384\) 0 0
\(385\) 5.77747 + 1.60568i 0.294447 + 0.0818331i
\(386\) 0 0
\(387\) −18.8994 + 32.7347i −0.960709 + 1.66400i
\(388\) 0 0
\(389\) 0.528754 + 0.915828i 0.0268089 + 0.0464343i 0.879119 0.476603i \(-0.158132\pi\)
−0.852310 + 0.523037i \(0.824799\pi\)
\(390\) 0 0
\(391\) 0.476847 35.3195i 0.0241152 1.78619i
\(392\) 0 0
\(393\) 42.0455 2.12091
\(394\) 0 0
\(395\) −2.27473 3.93995i −0.114454 0.198241i
\(396\) 0 0
\(397\) 29.2258 + 16.8735i 1.46680 + 0.846858i 0.999310 0.0371399i \(-0.0118247\pi\)
0.467491 + 0.883998i \(0.345158\pi\)
\(398\) 0 0
\(399\) −10.3334 + 37.1810i −0.517316 + 1.86138i
\(400\) 0 0
\(401\) 2.36176 + 1.36356i 0.117941 + 0.0680931i 0.557810 0.829969i \(-0.311642\pi\)
−0.439869 + 0.898062i \(0.644975\pi\)
\(402\) 0 0
\(403\) 10.3819 5.99401i 0.517161 0.298583i
\(404\) 0 0
\(405\) 4.74901i 0.235980i
\(406\) 0 0
\(407\) −4.83372 −0.239599
\(408\) 0 0
\(409\) 10.8425 + 18.7797i 0.536126 + 0.928597i 0.999108 + 0.0422292i \(0.0134460\pi\)
−0.462982 + 0.886367i \(0.653221\pi\)
\(410\) 0 0
\(411\) 40.5894 + 23.4343i 2.00213 + 1.15593i
\(412\) 0 0
\(413\) 4.89863 + 18.9850i 0.241046 + 0.934189i
\(414\) 0 0
\(415\) −8.81779 5.09095i −0.432848 0.249905i
\(416\) 0 0
\(417\) 23.7463 + 41.1298i 1.16286 + 2.01413i
\(418\) 0 0
\(419\) 23.5890i 1.15240i −0.817309 0.576199i \(-0.804535\pi\)
0.817309 0.576199i \(-0.195465\pi\)
\(420\) 0 0
\(421\) −14.5795 −0.710560 −0.355280 0.934760i \(-0.615614\pi\)
−0.355280 + 0.934760i \(0.615614\pi\)
\(422\) 0 0
\(423\) −7.42514 12.8607i −0.361023 0.625309i
\(424\) 0 0
\(425\) 2.10957 3.54256i 0.102329 0.171839i
\(426\) 0 0
\(427\) −6.85124 6.97960i −0.331555 0.337767i
\(428\) 0 0
\(429\) −15.6255 + 27.0641i −0.754405 + 1.30667i
\(430\) 0 0
\(431\) −8.35896 + 4.82605i −0.402637 + 0.232463i −0.687621 0.726070i \(-0.741345\pi\)
0.284984 + 0.958532i \(0.408012\pi\)
\(432\) 0 0
\(433\) 14.4445 0.694161 0.347080 0.937835i \(-0.387173\pi\)
0.347080 + 0.937835i \(0.387173\pi\)
\(434\) 0 0
\(435\) 17.9874i 0.862428i
\(436\) 0 0
\(437\) 40.7571 23.5311i 1.94968 1.12565i
\(438\) 0 0
\(439\) 15.2473 + 8.80304i 0.727714 + 0.420146i 0.817585 0.575807i \(-0.195312\pi\)
−0.0898711 + 0.995953i \(0.528646\pi\)
\(440\) 0 0
\(441\) 24.8089 13.7159i 1.18137 0.653137i
\(442\) 0 0
\(443\) 4.28777 7.42664i 0.203718 0.352850i −0.746005 0.665940i \(-0.768031\pi\)
0.949724 + 0.313090i \(0.101364\pi\)
\(444\) 0 0
\(445\) 9.34304 5.39421i 0.442902 0.255710i
\(446\) 0 0
\(447\) 35.6671i 1.68700i
\(448\) 0 0
\(449\) 14.2397i 0.672011i 0.941860 + 0.336006i \(0.109076\pi\)
−0.941860 + 0.336006i \(0.890924\pi\)
\(450\) 0 0
\(451\) 1.91048 + 3.30906i 0.0899612 + 0.155817i
\(452\) 0 0
\(453\) 44.6287 + 25.7664i 2.09684 + 1.21061i
\(454\) 0 0
\(455\) −9.62494 9.80527i −0.451224 0.459678i
\(456\) 0 0
\(457\) 2.93435 5.08245i 0.137263 0.237747i −0.789197 0.614141i \(-0.789503\pi\)
0.926460 + 0.376394i \(0.122836\pi\)
\(458\) 0 0
\(459\) −10.0286 + 5.61088i −0.468095 + 0.261893i
\(460\) 0 0
\(461\) −0.693346 −0.0322924 −0.0161462 0.999870i \(-0.505140\pi\)
−0.0161462 + 0.999870i \(0.505140\pi\)
\(462\) 0 0
\(463\) 4.52755 0.210413 0.105207 0.994450i \(-0.466450\pi\)
0.105207 + 0.994450i \(0.466450\pi\)
\(464\) 0 0
\(465\) 5.30800 3.06458i 0.246153 0.142116i
\(466\) 0 0
\(467\) 8.26513 14.3156i 0.382465 0.662448i −0.608949 0.793209i \(-0.708409\pi\)
0.991414 + 0.130761i \(0.0417421\pi\)
\(468\) 0 0
\(469\) −2.12216 8.22458i −0.0979922 0.379776i
\(470\) 0 0
\(471\) 23.3624 + 13.4883i 1.07648 + 0.621508i
\(472\) 0 0
\(473\) 18.3202 10.5772i 0.842363 0.486339i
\(474\) 0 0
\(475\) 5.49342 0.252055
\(476\) 0 0
\(477\) −33.9865 −1.55614
\(478\) 0 0
\(479\) −18.6809 + 10.7854i −0.853552 + 0.492798i −0.861848 0.507167i \(-0.830693\pi\)
0.00829605 + 0.999966i \(0.497359\pi\)
\(480\) 0 0
\(481\) 9.59178 + 5.53782i 0.437348 + 0.252503i
\(482\) 0 0
\(483\) −57.9840 16.1150i −2.63836 0.733258i
\(484\) 0 0
\(485\) −1.47907 + 2.56182i −0.0671611 + 0.116326i
\(486\) 0 0
\(487\) −24.6661 + 14.2410i −1.11773 + 0.645320i −0.940820 0.338907i \(-0.889943\pi\)
−0.176908 + 0.984227i \(0.556609\pi\)
\(488\) 0 0
\(489\) 15.9810 0.722687
\(490\) 0 0
\(491\) −10.3393 −0.466608 −0.233304 0.972404i \(-0.574954\pi\)
−0.233304 + 0.972404i \(0.574954\pi\)
\(492\) 0 0
\(493\) −24.3764 + 13.6383i −1.09786 + 0.614238i
\(494\) 0 0
\(495\) −4.58922 + 7.94875i −0.206270 + 0.357270i
\(496\) 0 0
\(497\) 4.52145 16.2688i 0.202815 0.729756i
\(498\) 0 0
\(499\) −22.8635 13.2002i −1.02351 0.590923i −0.108391 0.994108i \(-0.534570\pi\)
−0.915118 + 0.403185i \(0.867903\pi\)
\(500\) 0 0
\(501\) −12.2086 21.1460i −0.545442 0.944733i
\(502\) 0 0
\(503\) 17.4411i 0.777662i 0.921309 + 0.388831i \(0.127121\pi\)
−0.921309 + 0.388831i \(0.872879\pi\)
\(504\) 0 0
\(505\) 13.7089i 0.610036i
\(506\) 0 0
\(507\) 32.1204 18.5447i 1.42652 0.823600i
\(508\) 0 0
\(509\) −11.7519 + 20.3549i −0.520893 + 0.902214i 0.478811 + 0.877918i \(0.341068\pi\)
−0.999705 + 0.0242961i \(0.992266\pi\)
\(510\) 0 0
\(511\) −20.9059 + 5.39428i −0.924823 + 0.238629i
\(512\) 0 0
\(513\) −13.2595 7.65535i −0.585419 0.337992i
\(514\) 0 0
\(515\) 15.4965 8.94692i 0.682858 0.394248i
\(516\) 0 0
\(517\) 8.31106i 0.365520i
\(518\) 0 0
\(519\) −57.6148 −2.52901
\(520\) 0 0
\(521\) −26.2021 + 15.1278i −1.14793 + 0.662759i −0.948383 0.317128i \(-0.897281\pi\)
−0.199550 + 0.979888i \(0.563948\pi\)
\(522\) 0 0
\(523\) 0.277896 0.481330i 0.0121516 0.0210471i −0.859886 0.510487i \(-0.829465\pi\)
0.872037 + 0.489440i \(0.162799\pi\)
\(524\) 0 0
\(525\) −4.92098 5.01317i −0.214769 0.218793i
\(526\) 0 0
\(527\) −8.17772 4.86977i −0.356227 0.212131i
\(528\) 0 0
\(529\) 25.1970 + 43.6425i 1.09552 + 1.89750i
\(530\) 0 0
\(531\) −30.0110 −1.30237
\(532\) 0 0
\(533\) 8.75509i 0.379225i
\(534\) 0 0
\(535\) 6.90759 + 11.9643i 0.298641 + 0.517262i
\(536\) 0 0
\(537\) 46.1393 + 26.6385i 1.99106 + 1.14954i
\(538\) 0 0
\(539\) −15.8624 0.294459i −0.683241 0.0126833i
\(540\) 0 0
\(541\) −28.5680 16.4938i −1.22824 0.709122i −0.261575 0.965183i \(-0.584242\pi\)
−0.966661 + 0.256061i \(0.917575\pi\)
\(542\) 0 0
\(543\) 9.79578 + 16.9668i 0.420377 + 0.728115i
\(544\) 0 0
\(545\) −12.0461 −0.515997
\(546\) 0 0
\(547\) 8.79966i 0.376246i 0.982145 + 0.188123i \(0.0602404\pi\)
−0.982145 + 0.188123i \(0.939760\pi\)
\(548\) 0 0
\(549\) 12.9645 7.48508i 0.553313 0.319455i
\(550\) 0 0
\(551\) −32.2296 18.6078i −1.37303 0.792718i
\(552\) 0 0
\(553\) 8.43191 + 8.58989i 0.358561 + 0.365279i
\(554\) 0 0
\(555\) 4.90402 + 2.83134i 0.208164 + 0.120184i
\(556\) 0 0
\(557\) −13.4579 23.3098i −0.570230 0.987668i −0.996542 0.0830915i \(-0.973521\pi\)
0.426312 0.904576i \(-0.359813\pi\)
\(558\) 0 0
\(559\) −48.4715 −2.05013
\(560\) 0 0
\(561\) 24.8094 + 0.334950i 1.04745 + 0.0141416i
\(562\) 0 0
\(563\) −0.0997319 0.172741i −0.00420320 0.00728015i 0.863916 0.503636i \(-0.168005\pi\)
−0.868119 + 0.496356i \(0.834671\pi\)
\(564\) 0 0
\(565\) 2.68117 4.64393i 0.112798 0.195371i
\(566\) 0 0
\(567\) −3.13921 12.1662i −0.131834 0.510933i
\(568\) 0 0
\(569\) −3.78163 + 6.54997i −0.158534 + 0.274589i −0.934340 0.356382i \(-0.884010\pi\)
0.775806 + 0.630971i \(0.217343\pi\)
\(570\) 0 0
\(571\) −9.94179 + 5.73989i −0.416051 + 0.240207i −0.693386 0.720566i \(-0.743882\pi\)
0.277335 + 0.960773i \(0.410549\pi\)
\(572\) 0 0
\(573\) 63.1460i 2.63796i
\(574\) 0 0
\(575\) 8.56703i 0.357270i
\(576\) 0 0
\(577\) 4.14253 + 7.17507i 0.172456 + 0.298702i 0.939278 0.343158i \(-0.111497\pi\)
−0.766822 + 0.641860i \(0.778163\pi\)
\(578\) 0 0
\(579\) −4.20867 + 7.28962i −0.174906 + 0.302946i
\(580\) 0 0
\(581\) 25.9550 + 7.21346i 1.07680 + 0.299265i
\(582\) 0 0
\(583\) 16.4725 + 9.51039i 0.682221 + 0.393880i
\(584\) 0 0
\(585\) 18.2132 10.5154i 0.753023 0.434758i
\(586\) 0 0
\(587\) −44.4591 −1.83502 −0.917512 0.397708i \(-0.869806\pi\)
−0.917512 + 0.397708i \(0.869806\pi\)
\(588\) 0 0
\(589\) 12.6811i 0.522517i
\(590\) 0 0
\(591\) 32.2874 + 55.9233i 1.32812 + 2.30038i
\(592\) 0 0
\(593\) 0.714808 1.23808i 0.0293536 0.0508420i −0.850975 0.525206i \(-0.823988\pi\)
0.880329 + 0.474364i \(0.157322\pi\)
\(594\) 0 0
\(595\) −3.06267 + 10.4700i −0.125557 + 0.429226i
\(596\) 0 0
\(597\) −20.2520 + 35.0776i −0.828861 + 1.43563i
\(598\) 0 0
\(599\) −17.0136 29.4685i −0.695158 1.20405i −0.970127 0.242596i \(-0.922001\pi\)
0.274969 0.961453i \(-0.411332\pi\)
\(600\) 0 0
\(601\) 44.9867i 1.83504i −0.397685 0.917522i \(-0.630186\pi\)
0.397685 0.917522i \(-0.369814\pi\)
\(602\) 0 0
\(603\) 13.0012 0.529451
\(604\) 0 0
\(605\) −5.07770 + 2.93161i −0.206438 + 0.119187i
\(606\) 0 0
\(607\) 31.6740 + 18.2870i 1.28561 + 0.742246i 0.977868 0.209224i \(-0.0670938\pi\)
0.307741 + 0.951470i \(0.400427\pi\)
\(608\) 0 0
\(609\) 11.8901 + 46.0808i 0.481810 + 1.86729i
\(610\) 0 0
\(611\) 9.52168 16.4920i 0.385206 0.667196i
\(612\) 0 0
\(613\) −5.04168 8.73244i −0.203631 0.352700i 0.746064 0.665874i \(-0.231941\pi\)
−0.949696 + 0.313174i \(0.898608\pi\)
\(614\) 0 0
\(615\) 4.47625i 0.180500i
\(616\) 0 0
\(617\) 7.17367i 0.288801i −0.989519 0.144400i \(-0.953875\pi\)
0.989519 0.144400i \(-0.0461254\pi\)
\(618\) 0 0
\(619\) −35.8177 + 20.6793i −1.43963 + 0.831173i −0.997824 0.0659362i \(-0.978997\pi\)
−0.441809 + 0.897109i \(0.645663\pi\)
\(620\) 0 0
\(621\) 11.9386 20.6782i 0.479079 0.829788i
\(622\) 0 0
\(623\) −20.3697 + 19.9951i −0.816095 + 0.801086i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 16.5289 + 28.6289i 0.660100 + 1.14333i
\(628\) 0 0
\(629\) 0.118709 8.79268i 0.00473326 0.350587i
\(630\) 0 0
\(631\) 35.1276 1.39841 0.699204 0.714923i \(-0.253538\pi\)
0.699204 + 0.714923i \(0.253538\pi\)
\(632\) 0 0
\(633\) 18.5592 + 32.1456i 0.737664 + 1.27767i
\(634\) 0 0
\(635\) −10.1281 5.84748i −0.401922 0.232050i
\(636\) 0 0
\(637\) 31.1391 + 18.7573i 1.23378 + 0.743190i
\(638\) 0 0
\(639\) 22.3829 + 12.9228i 0.885455 + 0.511218i
\(640\) 0 0
\(641\) −17.1721 + 9.91433i −0.678258 + 0.391593i −0.799199 0.601067i \(-0.794742\pi\)
0.120940 + 0.992660i \(0.461409\pi\)
\(642\) 0 0
\(643\) 7.76853i 0.306361i 0.988198 + 0.153180i \(0.0489516\pi\)
−0.988198 + 0.153180i \(0.951048\pi\)
\(644\) 0 0
\(645\) −24.7822 −0.975798
\(646\) 0 0
\(647\) −12.0714 20.9082i −0.474574 0.821987i 0.525002 0.851101i \(-0.324065\pi\)
−0.999576 + 0.0291143i \(0.990731\pi\)
\(648\) 0 0
\(649\) 14.5456 + 8.39793i 0.570966 + 0.329648i
\(650\) 0 0
\(651\) −11.5725 + 11.3597i −0.453563 + 0.445221i
\(652\) 0 0
\(653\) 18.8445 + 10.8799i 0.737441 + 0.425762i 0.821138 0.570730i \(-0.193340\pi\)
−0.0836974 + 0.996491i \(0.526673\pi\)
\(654\) 0 0
\(655\) 7.91779 + 13.7140i 0.309374 + 0.535851i
\(656\) 0 0
\(657\) 33.0476i 1.28931i
\(658\) 0 0
\(659\) −19.0502 −0.742091 −0.371045 0.928615i \(-0.621001\pi\)
−0.371045 + 0.928615i \(0.621001\pi\)
\(660\) 0 0
\(661\) 6.38718 + 11.0629i 0.248432 + 0.430298i 0.963091 0.269176i \(-0.0867513\pi\)
−0.714659 + 0.699473i \(0.753418\pi\)
\(662\) 0 0
\(663\) −48.8467 29.0878i −1.89705 1.12968i
\(664\) 0 0
\(665\) −14.0733 + 3.63128i −0.545739 + 0.140815i
\(666\) 0 0
\(667\) 29.0190 50.2623i 1.12362 1.94617i
\(668\) 0 0
\(669\) −42.5447 + 24.5632i −1.64487 + 0.949668i
\(670\) 0 0
\(671\) −8.37815 −0.323435
\(672\) 0 0
\(673\) 1.43896i 0.0554678i −0.999615 0.0277339i \(-0.991171\pi\)
0.999615 0.0277339i \(-0.00882911\pi\)
\(674\) 0 0
\(675\) 2.41370 1.39355i 0.0929033 0.0536377i
\(676\) 0 0
\(677\) −10.7036 6.17972i −0.411372 0.237506i 0.280007 0.959998i \(-0.409663\pi\)
−0.691379 + 0.722492i \(0.742997\pi\)
\(678\) 0 0
\(679\) 2.09572 7.54069i 0.0804263 0.289385i
\(680\) 0 0
\(681\) −29.1954 + 50.5680i −1.11877 + 1.93777i
\(682\) 0 0
\(683\) −18.6703 + 10.7793i −0.714400 + 0.412459i −0.812688 0.582699i \(-0.801997\pi\)
0.0982881 + 0.995158i \(0.468663\pi\)
\(684\) 0 0
\(685\) 17.6521i 0.674453i
\(686\) 0 0
\(687\) 62.2928i 2.37662i
\(688\) 0 0
\(689\) −21.7914 37.7439i −0.830187 1.43793i
\(690\) 0 0
\(691\) 15.9270 + 9.19544i 0.605891 + 0.349811i 0.771355 0.636405i \(-0.219579\pi\)
−0.165465 + 0.986216i \(0.552912\pi\)
\(692\) 0 0
\(693\) 6.50254 23.3971i 0.247011 0.888781i
\(694\) 0 0
\(695\) −8.94356 + 15.4907i −0.339249 + 0.587596i
\(696\) 0 0
\(697\) −6.06619 + 3.39396i −0.229773 + 0.128555i
\(698\) 0 0
\(699\) 19.0818 0.721740
\(700\) 0 0
\(701\) −5.33558 −0.201522 −0.100761 0.994911i \(-0.532128\pi\)
−0.100761 + 0.994911i \(0.532128\pi\)
\(702\) 0 0
\(703\) 10.1464 5.85800i 0.382677 0.220939i
\(704\) 0 0
\(705\) 4.86818 8.43194i 0.183346 0.317565i
\(706\) 0 0
\(707\) 9.06189 + 35.1200i 0.340807 + 1.32082i
\(708\) 0 0
\(709\) 1.27704 + 0.737301i 0.0479603 + 0.0276899i 0.523788 0.851848i \(-0.324518\pi\)
−0.475828 + 0.879538i \(0.657852\pi\)
\(710\) 0 0
\(711\) −15.9556 + 9.21199i −0.598383 + 0.345477i
\(712\) 0 0
\(713\) 19.7763 0.740629
\(714\) 0 0
\(715\) −11.7700 −0.440174
\(716\) 0 0
\(717\) −37.5614 + 21.6861i −1.40276 + 0.809882i
\(718\) 0 0
\(719\) −37.9996 21.9391i −1.41715 0.818189i −0.421098 0.907015i \(-0.638355\pi\)
−0.996047 + 0.0888256i \(0.971689\pi\)
\(720\) 0 0
\(721\) −33.7855 + 33.1642i −1.25824 + 1.23510i
\(722\) 0 0
\(723\) −8.40306 + 14.5545i −0.312513 + 0.541288i
\(724\) 0 0
\(725\) 5.86695 3.38729i 0.217893 0.125801i
\(726\) 0 0
\(727\) 32.1298 1.19163 0.595815 0.803122i \(-0.296829\pi\)
0.595815 + 0.803122i \(0.296829\pi\)
\(728\) 0 0
\(729\) 41.4324 1.53453
\(730\) 0 0
\(731\) 18.7903 + 33.5847i 0.694983 + 1.24218i
\(732\) 0 0
\(733\) −16.6420 + 28.8248i −0.614687 + 1.06467i 0.375752 + 0.926720i \(0.377384\pi\)
−0.990439 + 0.137949i \(0.955949\pi\)
\(734\) 0 0
\(735\) 15.9206 + 9.59009i 0.587240 + 0.353736i
\(736\) 0 0
\(737\) −6.30139 3.63811i −0.232115 0.134012i
\(738\) 0 0
\(739\) 17.7185 + 30.6894i 0.651787 + 1.12893i 0.982689 + 0.185263i \(0.0593138\pi\)
−0.330902 + 0.943665i \(0.607353\pi\)
\(740\) 0 0
\(741\) 75.7462i 2.78261i
\(742\) 0 0
\(743\) 41.1423i 1.50937i −0.656090 0.754683i \(-0.727791\pi\)
0.656090 0.754683i \(-0.272209\pi\)
\(744\) 0 0
\(745\) 11.6336 6.71665i 0.426221 0.246079i
\(746\) 0 0
\(747\) −20.6169 + 35.7094i −0.754331 + 1.30654i
\(748\) 0 0
\(749\) −25.6049 26.0846i −0.935581 0.953110i
\(750\) 0 0
\(751\) 19.1652 + 11.0650i 0.699348 + 0.403769i 0.807105 0.590408i \(-0.201033\pi\)
−0.107756 + 0.994177i \(0.534367\pi\)
\(752\) 0 0
\(753\) 59.6325 34.4289i 2.17313 1.25466i
\(754\) 0 0
\(755\) 19.4088i 0.706358i
\(756\) 0 0
\(757\) −22.1151 −0.803789 −0.401894 0.915686i \(-0.631648\pi\)
−0.401894 + 0.915686i \(0.631648\pi\)
\(758\) 0 0
\(759\) −44.6469 + 25.7769i −1.62058 + 0.935642i
\(760\) 0 0
\(761\) −1.16722 + 2.02168i −0.0423117 + 0.0732860i −0.886406 0.462909i \(-0.846806\pi\)
0.844094 + 0.536195i \(0.180139\pi\)
\(762\) 0 0
\(763\) 30.8602 7.96275i 1.11721 0.288271i
\(764\) 0 0
\(765\) −14.3463 8.54313i −0.518692 0.308877i
\(766\) 0 0
\(767\) −19.2424 33.3288i −0.694803 1.20343i
\(768\) 0 0
\(769\) −12.3981 −0.447089 −0.223544 0.974694i \(-0.571763\pi\)
−0.223544 + 0.974694i \(0.571763\pi\)
\(770\) 0 0
\(771\) 32.8415i 1.18276i
\(772\) 0 0
\(773\) 9.61898 + 16.6606i 0.345971 + 0.599239i 0.985530 0.169503i \(-0.0542163\pi\)
−0.639559 + 0.768742i \(0.720883\pi\)
\(774\) 0 0
\(775\) 1.99915 + 1.15421i 0.0718116 + 0.0414605i
\(776\) 0 0
\(777\) −14.4349 4.01177i −0.517850 0.143922i
\(778\) 0 0
\(779\) −8.02051 4.63064i −0.287365 0.165910i
\(780\) 0 0
\(781\) −7.23233 12.5268i −0.258793 0.448243i
\(782\) 0 0
\(783\) −18.8814 −0.674766
\(784\) 0 0
\(785\) 10.1602i 0.362632i
\(786\) 0 0
\(787\) −28.6254 + 16.5269i −1.02038 + 0.589119i −0.914215 0.405229i \(-0.867192\pi\)
−0.106169 + 0.994348i \(0.533858\pi\)
\(788\) 0 0
\(789\) 14.1205 + 8.15247i 0.502703 + 0.290235i
\(790\) 0 0
\(791\) −3.79900 + 13.6693i −0.135077 + 0.486026i
\(792\) 0 0
\(793\) 16.6252 + 9.59855i 0.590377 + 0.340854i
\(794\) 0 0
\(795\) −11.1414 19.2974i −0.395144 0.684409i
\(796\) 0 0
\(797\) 55.1647 1.95403 0.977016 0.213165i \(-0.0683771\pi\)
0.977016 + 0.213165i \(0.0683771\pi\)
\(798\) 0 0
\(799\) −15.1181 0.204108i −0.534839 0.00722082i
\(800\) 0 0
\(801\) −21.8449 37.8365i −0.771853 1.33689i
\(802\) 0 0
\(803\) −9.24765 + 16.0174i −0.326343 + 0.565242i
\(804\) 0 0
\(805\) −5.66301 21.9474i −0.199595 0.773544i
\(806\) 0 0
\(807\) 12.7022 22.0009i 0.447139 0.774468i
\(808\) 0 0
\(809\) 7.35785 4.24806i 0.258688 0.149354i −0.365048 0.930989i \(-0.618947\pi\)
0.623736 + 0.781635i \(0.285614\pi\)
\(810\) 0 0
\(811\) 35.6068i 1.25032i 0.780495 + 0.625162i \(0.214967\pi\)
−0.780495 + 0.625162i \(0.785033\pi\)
\(812\) 0 0
\(813\) 7.46786i 0.261909i
\(814\) 0 0
\(815\) 3.00946 + 5.21254i 0.105417 + 0.182587i
\(816\) 0 0
\(817\) −25.6370 + 44.4046i −0.896925 + 1.55352i
\(818\) 0 0
\(819\) −39.7085 + 38.9782i −1.38753 + 1.36201i
\(820\) 0 0
\(821\) −14.6437 8.45455i −0.511069 0.295066i 0.222204 0.975000i \(-0.428675\pi\)
−0.733273 + 0.679934i \(0.762008\pi\)
\(822\) 0 0
\(823\) 36.2795 20.9460i 1.26462 0.730131i 0.290658 0.956827i \(-0.406126\pi\)
0.973966 + 0.226696i \(0.0727924\pi\)
\(824\) 0 0
\(825\) −6.01770 −0.209509
\(826\) 0 0
\(827\) 42.9221i 1.49255i −0.665638 0.746274i \(-0.731841\pi\)
0.665638 0.746274i \(-0.268159\pi\)
\(828\) 0 0
\(829\) −8.71323 15.0918i −0.302623 0.524158i 0.674106 0.738634i \(-0.264529\pi\)
−0.976729 + 0.214476i \(0.931196\pi\)
\(830\) 0 0
\(831\) 24.0384 41.6357i 0.833883 1.44433i
\(832\) 0 0
\(833\) 0.925188 28.8469i 0.0320559 0.999486i
\(834\) 0 0
\(835\) 4.59814 7.96420i 0.159125 0.275613i
\(836\) 0 0
\(837\) −3.21690 5.57183i −0.111192 0.192591i
\(838\) 0 0
\(839\) 24.1800i 0.834788i 0.908726 + 0.417394i \(0.137056\pi\)
−0.908726 + 0.417394i \(0.862944\pi\)
\(840\) 0 0
\(841\) −16.8948 −0.582580
\(842\) 0 0
\(843\) −22.2826 + 12.8649i −0.767454 + 0.443090i
\(844\) 0 0
\(845\) 12.0975 + 6.98450i 0.416167 + 0.240274i
\(846\) 0 0
\(847\) 11.0704 10.8668i 0.380384 0.373388i
\(848\) 0 0
\(849\) −0.0965956 + 0.167308i −0.00331515 + 0.00574201i
\(850\) 0 0
\(851\) 9.13559 + 15.8233i 0.313164 + 0.542416i
\(852\) 0 0
\(853\) 5.95768i 0.203987i 0.994785 + 0.101993i \(0.0325221\pi\)
−0.994785 + 0.101993i \(0.967478\pi\)
\(854\) 0 0
\(855\) 22.2467i 0.760822i
\(856\) 0 0
\(857\) 9.98979 5.76761i 0.341245 0.197018i −0.319578 0.947560i \(-0.603541\pi\)
0.660822 + 0.750542i \(0.270208\pi\)
\(858\) 0 0
\(859\) −0.822752 + 1.42505i −0.0280719 + 0.0486220i −0.879720 0.475492i \(-0.842270\pi\)
0.851648 + 0.524114i \(0.175603\pi\)
\(860\) 0 0
\(861\) 2.95891 + 11.4674i 0.100839 + 0.390809i
\(862\) 0 0
\(863\) 21.4495 37.1517i 0.730151 1.26466i −0.226667 0.973972i \(-0.572783\pi\)
0.956818 0.290687i \(-0.0938837\pi\)
\(864\) 0 0
\(865\) −10.8497 18.7923i −0.368902 0.638957i
\(866\) 0 0
\(867\) −1.21857 + 45.1207i −0.0413847 + 1.53238i
\(868\) 0 0
\(869\) 10.3111 0.349780
\(870\) 0 0
\(871\) 8.33610 + 14.4386i 0.282458 + 0.489232i
\(872\) 0 0
\(873\) 10.3746 + 5.98979i 0.351128 + 0.202724i
\(874\) 0 0
\(875\) 0.708459 2.54913i 0.0239503 0.0861765i
\(876\) 0 0
\(877\) 45.6353 + 26.3476i 1.54100 + 0.889695i 0.998776 + 0.0494579i \(0.0157494\pi\)
0.542220 + 0.840237i \(0.317584\pi\)
\(878\) 0 0
\(879\) 22.5145 12.9987i 0.759394 0.438436i
\(880\) 0 0
\(881\) 30.5581i 1.02953i −0.857331 0.514765i \(-0.827879\pi\)
0.857331 0.514765i \(-0.172121\pi\)
\(882\) 0 0
\(883\) 54.0191 1.81789 0.908943 0.416920i \(-0.136890\pi\)
0.908943 + 0.416920i \(0.136890\pi\)
\(884\) 0 0
\(885\) −9.83813 17.0401i −0.330705 0.572798i
\(886\) 0 0
\(887\) −28.9204 16.6972i −0.971051 0.560637i −0.0714948 0.997441i \(-0.522777\pi\)
−0.899557 + 0.436804i \(0.856110\pi\)
\(888\) 0 0
\(889\) 29.8120 + 8.28539i 0.999863 + 0.277883i
\(890\) 0 0
\(891\) −9.32135 5.38168i −0.312277 0.180293i
\(892\) 0 0
\(893\) −10.0722 17.4456i −0.337053 0.583793i
\(894\) 0 0
\(895\) 20.0657i 0.670723i
\(896\) 0 0
\(897\) 118.127 3.94414
\(898\) 0 0
\(899\) −7.81928 13.5434i −0.260788 0.451698i
\(900\) 0 0
\(901\) −17.7042 + 29.7304i −0.589813 + 0.990462i
\(902\) 0 0
\(903\) 63.4881 16.3816i 2.11275 0.545146i
\(904\) 0 0
\(905\) −3.68938 + 6.39020i −0.122639 + 0.212417i
\(906\) 0 0
\(907\) −31.2009 + 18.0138i −1.03601 + 0.598140i −0.918700 0.394956i \(-0.870760\pi\)
−0.117309 + 0.993096i \(0.537427\pi\)
\(908\) 0 0
\(909\) −55.5168 −1.84138
\(910\) 0 0
\(911\) 3.30503i 0.109500i −0.998500 0.0547502i \(-0.982564\pi\)
0.998500 0.0547502i \(-0.0174362\pi\)
\(912\) 0 0
\(913\) 19.9850 11.5384i 0.661408 0.381864i
\(914\) 0 0
\(915\) 8.50001 + 4.90748i 0.281002 + 0.162236i
\(916\) 0 0
\(917\) −29.3494 29.8993i −0.969204 0.987363i
\(918\) 0 0
\(919\) −16.2089 + 28.0746i −0.534682 + 0.926097i 0.464496 + 0.885575i \(0.346235\pi\)
−0.999179 + 0.0405221i \(0.987098\pi\)
\(920\) 0 0
\(921\) −47.5106 + 27.4302i −1.56553 + 0.903857i
\(922\) 0 0
\(923\) 33.1433i 1.09092i
\(924\) 0 0
\(925\) 2.13273i 0.0701238i
\(926\) 0 0
\(927\) −36.2324 62.7563i −1.19003 2.06119i
\(928\) 0 0
\(929\) 22.2852 + 12.8664i 0.731154 + 0.422132i 0.818844 0.574016i \(-0.194615\pi\)
−0.0876899 + 0.996148i \(0.527948\pi\)
\(930\) 0 0
\(931\) 33.6532 18.6056i 1.10294 0.609773i
\(932\) 0 0
\(933\) 2.72395 4.71801i 0.0891780 0.154461i
\(934\) 0 0
\(935\) 4.56272 + 8.15517i 0.149217 + 0.266702i
\(936\) 0 0
\(937\) 53.6320 1.75208 0.876040 0.482238i \(-0.160176\pi\)
0.876040 + 0.482238i \(0.160176\pi\)
\(938\) 0 0
\(939\) −47.2370 −1.54152
\(940\) 0 0
\(941\) −3.63809 + 2.10045i −0.118598 + 0.0684727i −0.558126 0.829756i \(-0.688479\pi\)
0.439527 + 0.898229i \(0.355146\pi\)
\(942\) 0 0
\(943\) 7.22152 12.5080i 0.235165 0.407318i
\(944\) 0 0
\(945\) −5.26235 + 5.16557i −0.171184 + 0.168036i
\(946\) 0 0
\(947\) −0.438771 0.253324i −0.0142581 0.00823194i 0.492854 0.870112i \(-0.335954\pi\)
−0.507112 + 0.861880i \(0.669287\pi\)
\(948\) 0 0
\(949\) 36.7011 21.1894i 1.19137 0.687837i
\(950\) 0 0
\(951\) −34.0381 −1.10376
\(952\) 0 0
\(953\) 7.68847 0.249054 0.124527 0.992216i \(-0.460259\pi\)
0.124527 + 0.992216i \(0.460259\pi\)
\(954\) 0 0
\(955\) −20.5964 + 11.8913i −0.666484 + 0.384795i
\(956\) 0 0
\(957\) 35.3056 + 20.3837i 1.14127 + 0.658911i
\(958\) 0 0
\(959\) −11.6685 45.2220i −0.376795 1.46029i
\(960\) 0 0
\(961\) −12.8356 + 22.2319i −0.414051 + 0.717158i
\(962\) 0 0
\(963\) 48.4519 27.9737i 1.56134 0.901440i
\(964\) 0 0
\(965\) −3.17022 −0.102053
\(966\) 0 0
\(967\) 28.5744 0.918890 0.459445 0.888206i \(-0.348048\pi\)
0.459445 + 0.888206i \(0.348048\pi\)
\(968\) 0 0
\(969\) −52.4827 + 29.3634i −1.68599 + 0.943290i
\(970\) 0 0
\(971\) −18.0778 + 31.3116i −0.580144 + 1.00484i 0.415318 + 0.909676i \(0.363670\pi\)
−0.995462 + 0.0951620i \(0.969663\pi\)
\(972\) 0 0
\(973\) 12.6723 45.5967i 0.406255 1.46176i
\(974\) 0 0
\(975\) 11.9412 + 6.89426i 0.382425 + 0.220793i
\(976\) 0 0
\(977\) −20.3621 35.2682i −0.651441 1.12833i −0.982773 0.184815i \(-0.940831\pi\)
0.331332 0.943514i \(-0.392502\pi\)
\(978\) 0 0
\(979\) 24.4513i 0.781468i
\(980\) 0 0
\(981\) 48.7831i 1.55752i
\(982\) 0 0
\(983\) −23.6425 + 13.6500i −0.754078 + 0.435367i −0.827166 0.561958i \(-0.810048\pi\)
0.0730872 + 0.997326i \(0.476715\pi\)
\(984\) 0 0
\(985\) −12.1604 + 21.0624i −0.387462 + 0.671103i
\(986\) 0 0
\(987\) −6.89781 + 24.8193i −0.219560 + 0.790007i
\(988\) 0 0
\(989\) −69.2492 39.9811i −2.20200 1.27132i
\(990\) 0 0
\(991\) 13.6834 7.90013i 0.434669 0.250956i −0.266665 0.963789i \(-0.585922\pi\)
0.701334 + 0.712833i \(0.252588\pi\)
\(992\) 0 0
\(993\) 42.2536i 1.34088i
\(994\) 0 0
\(995\) −15.2550 −0.483617
\(996\) 0 0
\(997\) 22.4152 12.9414i 0.709895 0.409858i −0.101127 0.994874i \(-0.532245\pi\)
0.811022 + 0.585015i \(0.198912\pi\)
\(998\) 0 0
\(999\) 2.97207 5.14777i 0.0940321 0.162868i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2380.2.cb.b.1801.41 yes 92
7.4 even 3 inner 2380.2.cb.b.781.6 92
17.16 even 2 inner 2380.2.cb.b.1801.6 yes 92
119.67 even 6 inner 2380.2.cb.b.781.41 yes 92
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2380.2.cb.b.781.6 92 7.4 even 3 inner
2380.2.cb.b.781.41 yes 92 119.67 even 6 inner
2380.2.cb.b.1801.6 yes 92 17.16 even 2 inner
2380.2.cb.b.1801.41 yes 92 1.1 even 1 trivial