Properties

Label 2380.2.be.a.421.1
Level $2380$
Weight $2$
Character 2380.421
Analytic conductor $19.004$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2380,2,Mod(421,2380)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2380.421"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2380, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2380 = 2^{2} \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2380.be (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.0043956811\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 421.1
Root \(-0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 2380.421
Dual form 2380.2.be.a.701.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.00000i) q^{3} +(-0.707107 - 0.707107i) q^{5} +(-0.707107 + 0.707107i) q^{7} -1.00000i q^{9} +(0.585786 - 0.585786i) q^{11} -0.171573 q^{13} -1.41421i q^{15} +(1.00000 - 4.00000i) q^{17} +1.41421i q^{19} -1.41421 q^{21} +(-0.707107 + 0.707107i) q^{23} +1.00000i q^{25} +(4.00000 - 4.00000i) q^{27} +(2.24264 + 2.24264i) q^{29} +(-6.12132 - 6.12132i) q^{31} +1.17157 q^{33} +1.00000 q^{35} +(3.29289 + 3.29289i) q^{37} +(-0.171573 - 0.171573i) q^{39} +(2.70711 - 2.70711i) q^{41} -11.4142i q^{43} +(-0.707107 + 0.707107i) q^{45} -7.00000 q^{47} -1.00000i q^{49} +(5.00000 - 3.00000i) q^{51} -8.24264i q^{53} -0.828427 q^{55} +(-1.41421 + 1.41421i) q^{57} -3.17157i q^{59} +(4.36396 - 4.36396i) q^{61} +(0.707107 + 0.707107i) q^{63} +(0.121320 + 0.121320i) q^{65} +0.343146 q^{67} -1.41421 q^{69} +(2.00000 + 2.00000i) q^{71} +(12.0711 + 12.0711i) q^{73} +(-1.00000 + 1.00000i) q^{75} +0.828427i q^{77} +(3.24264 - 3.24264i) q^{79} +5.00000 q^{81} -15.1421i q^{83} +(-3.53553 + 2.12132i) q^{85} +4.48528i q^{87} +11.0711 q^{89} +(0.121320 - 0.121320i) q^{91} -12.2426i q^{93} +(1.00000 - 1.00000i) q^{95} +(-12.8995 - 12.8995i) q^{97} +(-0.585786 - 0.585786i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} + 8 q^{11} - 12 q^{13} + 4 q^{17} + 16 q^{27} - 8 q^{29} - 16 q^{31} + 16 q^{33} + 4 q^{35} + 16 q^{37} - 12 q^{39} + 8 q^{41} - 28 q^{47} + 20 q^{51} + 8 q^{55} - 8 q^{61} - 8 q^{65} + 24 q^{67}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2380\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(1191\) \(1261\) \(1361\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 + 1.00000i 0.577350 + 0.577350i 0.934172 0.356822i \(-0.116140\pi\)
−0.356822 + 0.934172i \(0.616140\pi\)
\(4\) 0 0
\(5\) −0.707107 0.707107i −0.316228 0.316228i
\(6\) 0 0
\(7\) −0.707107 + 0.707107i −0.267261 + 0.267261i
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 0.585786 0.585786i 0.176621 0.176621i −0.613260 0.789881i \(-0.710142\pi\)
0.789881 + 0.613260i \(0.210142\pi\)
\(12\) 0 0
\(13\) −0.171573 −0.0475858 −0.0237929 0.999717i \(-0.507574\pi\)
−0.0237929 + 0.999717i \(0.507574\pi\)
\(14\) 0 0
\(15\) 1.41421i 0.365148i
\(16\) 0 0
\(17\) 1.00000 4.00000i 0.242536 0.970143i
\(18\) 0 0
\(19\) 1.41421i 0.324443i 0.986754 + 0.162221i \(0.0518659\pi\)
−0.986754 + 0.162221i \(0.948134\pi\)
\(20\) 0 0
\(21\) −1.41421 −0.308607
\(22\) 0 0
\(23\) −0.707107 + 0.707107i −0.147442 + 0.147442i −0.776974 0.629532i \(-0.783247\pi\)
0.629532 + 0.776974i \(0.283247\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 4.00000 4.00000i 0.769800 0.769800i
\(28\) 0 0
\(29\) 2.24264 + 2.24264i 0.416448 + 0.416448i 0.883977 0.467530i \(-0.154856\pi\)
−0.467530 + 0.883977i \(0.654856\pi\)
\(30\) 0 0
\(31\) −6.12132 6.12132i −1.09942 1.09942i −0.994478 0.104943i \(-0.966534\pi\)
−0.104943 0.994478i \(-0.533466\pi\)
\(32\) 0 0
\(33\) 1.17157 0.203945
\(34\) 0 0
\(35\) 1.00000 0.169031
\(36\) 0 0
\(37\) 3.29289 + 3.29289i 0.541348 + 0.541348i 0.923924 0.382576i \(-0.124963\pi\)
−0.382576 + 0.923924i \(0.624963\pi\)
\(38\) 0 0
\(39\) −0.171573 0.171573i −0.0274736 0.0274736i
\(40\) 0 0
\(41\) 2.70711 2.70711i 0.422779 0.422779i −0.463380 0.886159i \(-0.653364\pi\)
0.886159 + 0.463380i \(0.153364\pi\)
\(42\) 0 0
\(43\) 11.4142i 1.74065i −0.492477 0.870326i \(-0.663908\pi\)
0.492477 0.870326i \(-0.336092\pi\)
\(44\) 0 0
\(45\) −0.707107 + 0.707107i −0.105409 + 0.105409i
\(46\) 0 0
\(47\) −7.00000 −1.02105 −0.510527 0.859861i \(-0.670550\pi\)
−0.510527 + 0.859861i \(0.670550\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) 5.00000 3.00000i 0.700140 0.420084i
\(52\) 0 0
\(53\) 8.24264i 1.13221i −0.824332 0.566107i \(-0.808449\pi\)
0.824332 0.566107i \(-0.191551\pi\)
\(54\) 0 0
\(55\) −0.828427 −0.111705
\(56\) 0 0
\(57\) −1.41421 + 1.41421i −0.187317 + 0.187317i
\(58\) 0 0
\(59\) 3.17157i 0.412904i −0.978457 0.206452i \(-0.933808\pi\)
0.978457 0.206452i \(-0.0661917\pi\)
\(60\) 0 0
\(61\) 4.36396 4.36396i 0.558748 0.558748i −0.370203 0.928951i \(-0.620712\pi\)
0.928951 + 0.370203i \(0.120712\pi\)
\(62\) 0 0
\(63\) 0.707107 + 0.707107i 0.0890871 + 0.0890871i
\(64\) 0 0
\(65\) 0.121320 + 0.121320i 0.0150479 + 0.0150479i
\(66\) 0 0
\(67\) 0.343146 0.0419219 0.0209610 0.999780i \(-0.493327\pi\)
0.0209610 + 0.999780i \(0.493327\pi\)
\(68\) 0 0
\(69\) −1.41421 −0.170251
\(70\) 0 0
\(71\) 2.00000 + 2.00000i 0.237356 + 0.237356i 0.815755 0.578398i \(-0.196322\pi\)
−0.578398 + 0.815755i \(0.696322\pi\)
\(72\) 0 0
\(73\) 12.0711 + 12.0711i 1.41281 + 1.41281i 0.737883 + 0.674928i \(0.235825\pi\)
0.674928 + 0.737883i \(0.264175\pi\)
\(74\) 0 0
\(75\) −1.00000 + 1.00000i −0.115470 + 0.115470i
\(76\) 0 0
\(77\) 0.828427i 0.0944080i
\(78\) 0 0
\(79\) 3.24264 3.24264i 0.364826 0.364826i −0.500760 0.865586i \(-0.666946\pi\)
0.865586 + 0.500760i \(0.166946\pi\)
\(80\) 0 0
\(81\) 5.00000 0.555556
\(82\) 0 0
\(83\) 15.1421i 1.66207i −0.556224 0.831033i \(-0.687750\pi\)
0.556224 0.831033i \(-0.312250\pi\)
\(84\) 0 0
\(85\) −3.53553 + 2.12132i −0.383482 + 0.230089i
\(86\) 0 0
\(87\) 4.48528i 0.480873i
\(88\) 0 0
\(89\) 11.0711 1.17353 0.586765 0.809757i \(-0.300401\pi\)
0.586765 + 0.809757i \(0.300401\pi\)
\(90\) 0 0
\(91\) 0.121320 0.121320i 0.0127178 0.0127178i
\(92\) 0 0
\(93\) 12.2426i 1.26950i
\(94\) 0 0
\(95\) 1.00000 1.00000i 0.102598 0.102598i
\(96\) 0 0
\(97\) −12.8995 12.8995i −1.30975 1.30975i −0.921597 0.388148i \(-0.873115\pi\)
−0.388148 0.921597i \(-0.626885\pi\)
\(98\) 0 0
\(99\) −0.585786 0.585786i −0.0588738 0.0588738i
\(100\) 0 0
\(101\) 11.6569 1.15990 0.579950 0.814652i \(-0.303072\pi\)
0.579950 + 0.814652i \(0.303072\pi\)
\(102\) 0 0
\(103\) 10.0000 0.985329 0.492665 0.870219i \(-0.336023\pi\)
0.492665 + 0.870219i \(0.336023\pi\)
\(104\) 0 0
\(105\) 1.00000 + 1.00000i 0.0975900 + 0.0975900i
\(106\) 0 0
\(107\) −12.3640 12.3640i −1.19527 1.19527i −0.975567 0.219702i \(-0.929491\pi\)
−0.219702 0.975567i \(-0.570509\pi\)
\(108\) 0 0
\(109\) −5.82843 + 5.82843i −0.558262 + 0.558262i −0.928812 0.370550i \(-0.879169\pi\)
0.370550 + 0.928812i \(0.379169\pi\)
\(110\) 0 0
\(111\) 6.58579i 0.625095i
\(112\) 0 0
\(113\) 3.17157 3.17157i 0.298356 0.298356i −0.542013 0.840370i \(-0.682338\pi\)
0.840370 + 0.542013i \(0.182338\pi\)
\(114\) 0 0
\(115\) 1.00000 0.0932505
\(116\) 0 0
\(117\) 0.171573i 0.0158619i
\(118\) 0 0
\(119\) 2.12132 + 3.53553i 0.194461 + 0.324102i
\(120\) 0 0
\(121\) 10.3137i 0.937610i
\(122\) 0 0
\(123\) 5.41421 0.488183
\(124\) 0 0
\(125\) 0.707107 0.707107i 0.0632456 0.0632456i
\(126\) 0 0
\(127\) 6.34315i 0.562863i 0.959581 + 0.281432i \(0.0908092\pi\)
−0.959581 + 0.281432i \(0.909191\pi\)
\(128\) 0 0
\(129\) 11.4142 11.4142i 1.00497 1.00497i
\(130\) 0 0
\(131\) 6.94975 + 6.94975i 0.607202 + 0.607202i 0.942214 0.335012i \(-0.108740\pi\)
−0.335012 + 0.942214i \(0.608740\pi\)
\(132\) 0 0
\(133\) −1.00000 1.00000i −0.0867110 0.0867110i
\(134\) 0 0
\(135\) −5.65685 −0.486864
\(136\) 0 0
\(137\) 15.4142 1.31693 0.658463 0.752613i \(-0.271207\pi\)
0.658463 + 0.752613i \(0.271207\pi\)
\(138\) 0 0
\(139\) −3.89949 3.89949i −0.330751 0.330751i 0.522121 0.852872i \(-0.325141\pi\)
−0.852872 + 0.522121i \(0.825141\pi\)
\(140\) 0 0
\(141\) −7.00000 7.00000i −0.589506 0.589506i
\(142\) 0 0
\(143\) −0.100505 + 0.100505i −0.00840466 + 0.00840466i
\(144\) 0 0
\(145\) 3.17157i 0.263385i
\(146\) 0 0
\(147\) 1.00000 1.00000i 0.0824786 0.0824786i
\(148\) 0 0
\(149\) −1.48528 −0.121679 −0.0608395 0.998148i \(-0.519378\pi\)
−0.0608395 + 0.998148i \(0.519378\pi\)
\(150\) 0 0
\(151\) 2.31371i 0.188287i 0.995559 + 0.0941435i \(0.0300112\pi\)
−0.995559 + 0.0941435i \(0.969989\pi\)
\(152\) 0 0
\(153\) −4.00000 1.00000i −0.323381 0.0808452i
\(154\) 0 0
\(155\) 8.65685i 0.695335i
\(156\) 0 0
\(157\) −22.1421 −1.76713 −0.883567 0.468304i \(-0.844865\pi\)
−0.883567 + 0.468304i \(0.844865\pi\)
\(158\) 0 0
\(159\) 8.24264 8.24264i 0.653684 0.653684i
\(160\) 0 0
\(161\) 1.00000i 0.0788110i
\(162\) 0 0
\(163\) −6.70711 + 6.70711i −0.525341 + 0.525341i −0.919180 0.393839i \(-0.871147\pi\)
0.393839 + 0.919180i \(0.371147\pi\)
\(164\) 0 0
\(165\) −0.828427 0.828427i −0.0644930 0.0644930i
\(166\) 0 0
\(167\) −0.414214 0.414214i −0.0320528 0.0320528i 0.690899 0.722952i \(-0.257215\pi\)
−0.722952 + 0.690899i \(0.757215\pi\)
\(168\) 0 0
\(169\) −12.9706 −0.997736
\(170\) 0 0
\(171\) 1.41421 0.108148
\(172\) 0 0
\(173\) 14.3137 + 14.3137i 1.08825 + 1.08825i 0.995709 + 0.0925424i \(0.0294994\pi\)
0.0925424 + 0.995709i \(0.470501\pi\)
\(174\) 0 0
\(175\) −0.707107 0.707107i −0.0534522 0.0534522i
\(176\) 0 0
\(177\) 3.17157 3.17157i 0.238390 0.238390i
\(178\) 0 0
\(179\) 9.82843i 0.734611i 0.930100 + 0.367306i \(0.119720\pi\)
−0.930100 + 0.367306i \(0.880280\pi\)
\(180\) 0 0
\(181\) 15.1924 15.1924i 1.12924 1.12924i 0.138941 0.990301i \(-0.455630\pi\)
0.990301 0.138941i \(-0.0443697\pi\)
\(182\) 0 0
\(183\) 8.72792 0.645187
\(184\) 0 0
\(185\) 4.65685i 0.342379i
\(186\) 0 0
\(187\) −1.75736 2.92893i −0.128511 0.214185i
\(188\) 0 0
\(189\) 5.65685i 0.411476i
\(190\) 0 0
\(191\) −4.31371 −0.312129 −0.156064 0.987747i \(-0.549881\pi\)
−0.156064 + 0.987747i \(0.549881\pi\)
\(192\) 0 0
\(193\) 2.36396 2.36396i 0.170162 0.170162i −0.616889 0.787050i \(-0.711607\pi\)
0.787050 + 0.616889i \(0.211607\pi\)
\(194\) 0 0
\(195\) 0.242641i 0.0173759i
\(196\) 0 0
\(197\) −6.48528 + 6.48528i −0.462057 + 0.462057i −0.899329 0.437272i \(-0.855945\pi\)
0.437272 + 0.899329i \(0.355945\pi\)
\(198\) 0 0
\(199\) −0.585786 0.585786i −0.0415253 0.0415253i 0.686039 0.727565i \(-0.259348\pi\)
−0.727565 + 0.686039i \(0.759348\pi\)
\(200\) 0 0
\(201\) 0.343146 + 0.343146i 0.0242036 + 0.0242036i
\(202\) 0 0
\(203\) −3.17157 −0.222601
\(204\) 0 0
\(205\) −3.82843 −0.267389
\(206\) 0 0
\(207\) 0.707107 + 0.707107i 0.0491473 + 0.0491473i
\(208\) 0 0
\(209\) 0.828427 + 0.828427i 0.0573035 + 0.0573035i
\(210\) 0 0
\(211\) −2.58579 + 2.58579i −0.178013 + 0.178013i −0.790489 0.612476i \(-0.790174\pi\)
0.612476 + 0.790489i \(0.290174\pi\)
\(212\) 0 0
\(213\) 4.00000i 0.274075i
\(214\) 0 0
\(215\) −8.07107 + 8.07107i −0.550442 + 0.550442i
\(216\) 0 0
\(217\) 8.65685 0.587666
\(218\) 0 0
\(219\) 24.1421i 1.63137i
\(220\) 0 0
\(221\) −0.171573 + 0.686292i −0.0115412 + 0.0461650i
\(222\) 0 0
\(223\) 15.8284i 1.05995i −0.848013 0.529975i \(-0.822201\pi\)
0.848013 0.529975i \(-0.177799\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) 10.7279 10.7279i 0.712037 0.712037i −0.254924 0.966961i \(-0.582050\pi\)
0.966961 + 0.254924i \(0.0820504\pi\)
\(228\) 0 0
\(229\) 16.3848i 1.08274i 0.840786 + 0.541368i \(0.182094\pi\)
−0.840786 + 0.541368i \(0.817906\pi\)
\(230\) 0 0
\(231\) −0.828427 + 0.828427i −0.0545065 + 0.0545065i
\(232\) 0 0
\(233\) 0.807612 + 0.807612i 0.0529084 + 0.0529084i 0.733066 0.680158i \(-0.238089\pi\)
−0.680158 + 0.733066i \(0.738089\pi\)
\(234\) 0 0
\(235\) 4.94975 + 4.94975i 0.322886 + 0.322886i
\(236\) 0 0
\(237\) 6.48528 0.421264
\(238\) 0 0
\(239\) 7.82843 0.506379 0.253189 0.967417i \(-0.418520\pi\)
0.253189 + 0.967417i \(0.418520\pi\)
\(240\) 0 0
\(241\) −0.464466 0.464466i −0.0299189 0.0299189i 0.691989 0.721908i \(-0.256735\pi\)
−0.721908 + 0.691989i \(0.756735\pi\)
\(242\) 0 0
\(243\) −7.00000 7.00000i −0.449050 0.449050i
\(244\) 0 0
\(245\) −0.707107 + 0.707107i −0.0451754 + 0.0451754i
\(246\) 0 0
\(247\) 0.242641i 0.0154389i
\(248\) 0 0
\(249\) 15.1421 15.1421i 0.959594 0.959594i
\(250\) 0 0
\(251\) −21.8995 −1.38228 −0.691142 0.722719i \(-0.742892\pi\)
−0.691142 + 0.722719i \(0.742892\pi\)
\(252\) 0 0
\(253\) 0.828427i 0.0520828i
\(254\) 0 0
\(255\) −5.65685 1.41421i −0.354246 0.0885615i
\(256\) 0 0
\(257\) 16.3137i 1.01762i 0.860878 + 0.508811i \(0.169915\pi\)
−0.860878 + 0.508811i \(0.830085\pi\)
\(258\) 0 0
\(259\) −4.65685 −0.289363
\(260\) 0 0
\(261\) 2.24264 2.24264i 0.138816 0.138816i
\(262\) 0 0
\(263\) 1.31371i 0.0810067i −0.999179 0.0405034i \(-0.987104\pi\)
0.999179 0.0405034i \(-0.0128962\pi\)
\(264\) 0 0
\(265\) −5.82843 + 5.82843i −0.358037 + 0.358037i
\(266\) 0 0
\(267\) 11.0711 + 11.0711i 0.677538 + 0.677538i
\(268\) 0 0
\(269\) 16.1213 + 16.1213i 0.982934 + 0.982934i 0.999857 0.0169226i \(-0.00538687\pi\)
−0.0169226 + 0.999857i \(0.505387\pi\)
\(270\) 0 0
\(271\) −3.41421 −0.207399 −0.103699 0.994609i \(-0.533068\pi\)
−0.103699 + 0.994609i \(0.533068\pi\)
\(272\) 0 0
\(273\) 0.242641 0.0146853
\(274\) 0 0
\(275\) 0.585786 + 0.585786i 0.0353243 + 0.0353243i
\(276\) 0 0
\(277\) −6.36396 6.36396i −0.382373 0.382373i 0.489583 0.871957i \(-0.337149\pi\)
−0.871957 + 0.489583i \(0.837149\pi\)
\(278\) 0 0
\(279\) −6.12132 + 6.12132i −0.366474 + 0.366474i
\(280\) 0 0
\(281\) 4.65685i 0.277805i −0.990306 0.138902i \(-0.955643\pi\)
0.990306 0.138902i \(-0.0443574\pi\)
\(282\) 0 0
\(283\) 9.72792 9.72792i 0.578265 0.578265i −0.356160 0.934425i \(-0.615914\pi\)
0.934425 + 0.356160i \(0.115914\pi\)
\(284\) 0 0
\(285\) 2.00000 0.118470
\(286\) 0 0
\(287\) 3.82843i 0.225985i
\(288\) 0 0
\(289\) −15.0000 8.00000i −0.882353 0.470588i
\(290\) 0 0
\(291\) 25.7990i 1.51236i
\(292\) 0 0
\(293\) 3.65685 0.213636 0.106818 0.994279i \(-0.465934\pi\)
0.106818 + 0.994279i \(0.465934\pi\)
\(294\) 0 0
\(295\) −2.24264 + 2.24264i −0.130572 + 0.130572i
\(296\) 0 0
\(297\) 4.68629i 0.271926i
\(298\) 0 0
\(299\) 0.121320 0.121320i 0.00701614 0.00701614i
\(300\) 0 0
\(301\) 8.07107 + 8.07107i 0.465209 + 0.465209i
\(302\) 0 0
\(303\) 11.6569 + 11.6569i 0.669669 + 0.669669i
\(304\) 0 0
\(305\) −6.17157 −0.353383
\(306\) 0 0
\(307\) −32.1421 −1.83445 −0.917224 0.398371i \(-0.869576\pi\)
−0.917224 + 0.398371i \(0.869576\pi\)
\(308\) 0 0
\(309\) 10.0000 + 10.0000i 0.568880 + 0.568880i
\(310\) 0 0
\(311\) −4.70711 4.70711i −0.266916 0.266916i 0.560941 0.827856i \(-0.310440\pi\)
−0.827856 + 0.560941i \(0.810440\pi\)
\(312\) 0 0
\(313\) 8.92893 8.92893i 0.504693 0.504693i −0.408200 0.912893i \(-0.633843\pi\)
0.912893 + 0.408200i \(0.133843\pi\)
\(314\) 0 0
\(315\) 1.00000i 0.0563436i
\(316\) 0 0
\(317\) −15.0919 + 15.0919i −0.847645 + 0.847645i −0.989839 0.142194i \(-0.954584\pi\)
0.142194 + 0.989839i \(0.454584\pi\)
\(318\) 0 0
\(319\) 2.62742 0.147107
\(320\) 0 0
\(321\) 24.7279i 1.38018i
\(322\) 0 0
\(323\) 5.65685 + 1.41421i 0.314756 + 0.0786889i
\(324\) 0 0
\(325\) 0.171573i 0.00951715i
\(326\) 0 0
\(327\) −11.6569 −0.644626
\(328\) 0 0
\(329\) 4.94975 4.94975i 0.272888 0.272888i
\(330\) 0 0
\(331\) 0.857864i 0.0471525i −0.999722 0.0235762i \(-0.992495\pi\)
0.999722 0.0235762i \(-0.00750525\pi\)
\(332\) 0 0
\(333\) 3.29289 3.29289i 0.180449 0.180449i
\(334\) 0 0
\(335\) −0.242641 0.242641i −0.0132569 0.0132569i
\(336\) 0 0
\(337\) −9.89949 9.89949i −0.539260 0.539260i 0.384052 0.923312i \(-0.374528\pi\)
−0.923312 + 0.384052i \(0.874528\pi\)
\(338\) 0 0
\(339\) 6.34315 0.344512
\(340\) 0 0
\(341\) −7.17157 −0.388362
\(342\) 0 0
\(343\) 0.707107 + 0.707107i 0.0381802 + 0.0381802i
\(344\) 0 0
\(345\) 1.00000 + 1.00000i 0.0538382 + 0.0538382i
\(346\) 0 0
\(347\) −20.9706 + 20.9706i −1.12576 + 1.12576i −0.134900 + 0.990859i \(0.543071\pi\)
−0.990859 + 0.134900i \(0.956929\pi\)
\(348\) 0 0
\(349\) 23.6569i 1.26632i −0.774020 0.633161i \(-0.781757\pi\)
0.774020 0.633161i \(-0.218243\pi\)
\(350\) 0 0
\(351\) −0.686292 + 0.686292i −0.0366315 + 0.0366315i
\(352\) 0 0
\(353\) −26.7990 −1.42637 −0.713183 0.700978i \(-0.752747\pi\)
−0.713183 + 0.700978i \(0.752747\pi\)
\(354\) 0 0
\(355\) 2.82843i 0.150117i
\(356\) 0 0
\(357\) −1.41421 + 5.65685i −0.0748481 + 0.299392i
\(358\) 0 0
\(359\) 0.514719i 0.0271658i 0.999908 + 0.0135829i \(0.00432371\pi\)
−0.999908 + 0.0135829i \(0.995676\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) −10.3137 + 10.3137i −0.541329 + 0.541329i
\(364\) 0 0
\(365\) 17.0711i 0.893541i
\(366\) 0 0
\(367\) −12.4142 + 12.4142i −0.648017 + 0.648017i −0.952513 0.304497i \(-0.901512\pi\)
0.304497 + 0.952513i \(0.401512\pi\)
\(368\) 0 0
\(369\) −2.70711 2.70711i −0.140926 0.140926i
\(370\) 0 0
\(371\) 5.82843 + 5.82843i 0.302597 + 0.302597i
\(372\) 0 0
\(373\) 15.7990 0.818041 0.409020 0.912525i \(-0.365871\pi\)
0.409020 + 0.912525i \(0.365871\pi\)
\(374\) 0 0
\(375\) 1.41421 0.0730297
\(376\) 0 0
\(377\) −0.384776 0.384776i −0.0198170 0.0198170i
\(378\) 0 0
\(379\) 12.7279 + 12.7279i 0.653789 + 0.653789i 0.953903 0.300114i \(-0.0970247\pi\)
−0.300114 + 0.953903i \(0.597025\pi\)
\(380\) 0 0
\(381\) −6.34315 + 6.34315i −0.324969 + 0.324969i
\(382\) 0 0
\(383\) 30.9706i 1.58252i 0.611479 + 0.791261i \(0.290575\pi\)
−0.611479 + 0.791261i \(0.709425\pi\)
\(384\) 0 0
\(385\) 0.585786 0.585786i 0.0298544 0.0298544i
\(386\) 0 0
\(387\) −11.4142 −0.580217
\(388\) 0 0
\(389\) 17.4853i 0.886539i −0.896388 0.443269i \(-0.853818\pi\)
0.896388 0.443269i \(-0.146182\pi\)
\(390\) 0 0
\(391\) 2.12132 + 3.53553i 0.107280 + 0.178800i
\(392\) 0 0
\(393\) 13.8995i 0.701137i
\(394\) 0 0
\(395\) −4.58579 −0.230736
\(396\) 0 0
\(397\) −5.72792 + 5.72792i −0.287476 + 0.287476i −0.836081 0.548605i \(-0.815159\pi\)
0.548605 + 0.836081i \(0.315159\pi\)
\(398\) 0 0
\(399\) 2.00000i 0.100125i
\(400\) 0 0
\(401\) 8.65685 8.65685i 0.432303 0.432303i −0.457108 0.889411i \(-0.651115\pi\)
0.889411 + 0.457108i \(0.151115\pi\)
\(402\) 0 0
\(403\) 1.05025 + 1.05025i 0.0523168 + 0.0523168i
\(404\) 0 0
\(405\) −3.53553 3.53553i −0.175682 0.175682i
\(406\) 0 0
\(407\) 3.85786 0.191227
\(408\) 0 0
\(409\) 8.14214 0.402603 0.201301 0.979529i \(-0.435483\pi\)
0.201301 + 0.979529i \(0.435483\pi\)
\(410\) 0 0
\(411\) 15.4142 + 15.4142i 0.760327 + 0.760327i
\(412\) 0 0
\(413\) 2.24264 + 2.24264i 0.110353 + 0.110353i
\(414\) 0 0
\(415\) −10.7071 + 10.7071i −0.525591 + 0.525591i
\(416\) 0 0
\(417\) 7.79899i 0.381918i
\(418\) 0 0
\(419\) 25.9203 25.9203i 1.26629 1.26629i 0.318300 0.947990i \(-0.396888\pi\)
0.947990 0.318300i \(-0.103112\pi\)
\(420\) 0 0
\(421\) −8.65685 −0.421909 −0.210955 0.977496i \(-0.567657\pi\)
−0.210955 + 0.977496i \(0.567657\pi\)
\(422\) 0 0
\(423\) 7.00000i 0.340352i
\(424\) 0 0
\(425\) 4.00000 + 1.00000i 0.194029 + 0.0485071i
\(426\) 0 0
\(427\) 6.17157i 0.298663i
\(428\) 0 0
\(429\) −0.201010 −0.00970486
\(430\) 0 0
\(431\) −20.3137 + 20.3137i −0.978477 + 0.978477i −0.999773 0.0212963i \(-0.993221\pi\)
0.0212963 + 0.999773i \(0.493221\pi\)
\(432\) 0 0
\(433\) 36.1127i 1.73547i −0.497031 0.867733i \(-0.665576\pi\)
0.497031 0.867733i \(-0.334424\pi\)
\(434\) 0 0
\(435\) 3.17157 3.17157i 0.152065 0.152065i
\(436\) 0 0
\(437\) −1.00000 1.00000i −0.0478365 0.0478365i
\(438\) 0 0
\(439\) 11.8995 + 11.8995i 0.567932 + 0.567932i 0.931549 0.363617i \(-0.118458\pi\)
−0.363617 + 0.931549i \(0.618458\pi\)
\(440\) 0 0
\(441\) −1.00000 −0.0476190
\(442\) 0 0
\(443\) 33.0711 1.57125 0.785627 0.618701i \(-0.212341\pi\)
0.785627 + 0.618701i \(0.212341\pi\)
\(444\) 0 0
\(445\) −7.82843 7.82843i −0.371103 0.371103i
\(446\) 0 0
\(447\) −1.48528 1.48528i −0.0702514 0.0702514i
\(448\) 0 0
\(449\) 1.72792 1.72792i 0.0815457 0.0815457i −0.665157 0.746703i \(-0.731636\pi\)
0.746703 + 0.665157i \(0.231636\pi\)
\(450\) 0 0
\(451\) 3.17157i 0.149344i
\(452\) 0 0
\(453\) −2.31371 + 2.31371i −0.108708 + 0.108708i
\(454\) 0 0
\(455\) −0.171573 −0.00804346
\(456\) 0 0
\(457\) 10.6863i 0.499884i −0.968261 0.249942i \(-0.919589\pi\)
0.968261 0.249942i \(-0.0804115\pi\)
\(458\) 0 0
\(459\) −12.0000 20.0000i −0.560112 0.933520i
\(460\) 0 0
\(461\) 14.6863i 0.684009i 0.939698 + 0.342004i \(0.111106\pi\)
−0.939698 + 0.342004i \(0.888894\pi\)
\(462\) 0 0
\(463\) −35.3137 −1.64117 −0.820584 0.571527i \(-0.806351\pi\)
−0.820584 + 0.571527i \(0.806351\pi\)
\(464\) 0 0
\(465\) −8.65685 + 8.65685i −0.401452 + 0.401452i
\(466\) 0 0
\(467\) 14.3137i 0.662359i −0.943568 0.331180i \(-0.892553\pi\)
0.943568 0.331180i \(-0.107447\pi\)
\(468\) 0 0
\(469\) −0.242641 + 0.242641i −0.0112041 + 0.0112041i
\(470\) 0 0
\(471\) −22.1421 22.1421i −1.02026 1.02026i
\(472\) 0 0
\(473\) −6.68629 6.68629i −0.307436 0.307436i
\(474\) 0 0
\(475\) −1.41421 −0.0648886
\(476\) 0 0
\(477\) −8.24264 −0.377405
\(478\) 0 0
\(479\) 6.70711 + 6.70711i 0.306456 + 0.306456i 0.843533 0.537077i \(-0.180472\pi\)
−0.537077 + 0.843533i \(0.680472\pi\)
\(480\) 0 0
\(481\) −0.564971 0.564971i −0.0257605 0.0257605i
\(482\) 0 0
\(483\) 1.00000 1.00000i 0.0455016 0.0455016i
\(484\) 0 0
\(485\) 18.2426i 0.828356i
\(486\) 0 0
\(487\) 1.29289 1.29289i 0.0585866 0.0585866i −0.677206 0.735793i \(-0.736810\pi\)
0.735793 + 0.677206i \(0.236810\pi\)
\(488\) 0 0
\(489\) −13.4142 −0.606612
\(490\) 0 0
\(491\) 38.5980i 1.74190i 0.491369 + 0.870951i \(0.336496\pi\)
−0.491369 + 0.870951i \(0.663504\pi\)
\(492\) 0 0
\(493\) 11.2132 6.72792i 0.505017 0.303010i
\(494\) 0 0
\(495\) 0.828427i 0.0372350i
\(496\) 0 0
\(497\) −2.82843 −0.126872
\(498\) 0 0
\(499\) −10.7574 + 10.7574i −0.481566 + 0.481566i −0.905631 0.424066i \(-0.860603\pi\)
0.424066 + 0.905631i \(0.360603\pi\)
\(500\) 0 0
\(501\) 0.828427i 0.0370114i
\(502\) 0 0
\(503\) 19.0711 19.0711i 0.850337 0.850337i −0.139838 0.990174i \(-0.544658\pi\)
0.990174 + 0.139838i \(0.0446580\pi\)
\(504\) 0 0
\(505\) −8.24264 8.24264i −0.366793 0.366793i
\(506\) 0 0
\(507\) −12.9706 12.9706i −0.576043 0.576043i
\(508\) 0 0
\(509\) 2.14214 0.0949485 0.0474742 0.998872i \(-0.484883\pi\)
0.0474742 + 0.998872i \(0.484883\pi\)
\(510\) 0 0
\(511\) −17.0711 −0.755180
\(512\) 0 0
\(513\) 5.65685 + 5.65685i 0.249756 + 0.249756i
\(514\) 0 0
\(515\) −7.07107 7.07107i −0.311588 0.311588i
\(516\) 0 0
\(517\) −4.10051 + 4.10051i −0.180340 + 0.180340i
\(518\) 0 0
\(519\) 28.6274i 1.25660i
\(520\) 0 0
\(521\) 24.0000 24.0000i 1.05146 1.05146i 0.0528570 0.998602i \(-0.483167\pi\)
0.998602 0.0528570i \(-0.0168327\pi\)
\(522\) 0 0
\(523\) −44.6569 −1.95271 −0.976354 0.216178i \(-0.930641\pi\)
−0.976354 + 0.216178i \(0.930641\pi\)
\(524\) 0 0
\(525\) 1.41421i 0.0617213i
\(526\) 0 0
\(527\) −30.6066 + 18.3640i −1.33324 + 0.799947i
\(528\) 0 0
\(529\) 22.0000i 0.956522i
\(530\) 0 0
\(531\) −3.17157 −0.137635
\(532\) 0 0
\(533\) −0.464466 + 0.464466i −0.0201183 + 0.0201183i
\(534\) 0 0
\(535\) 17.4853i 0.755955i
\(536\) 0 0
\(537\) −9.82843 + 9.82843i −0.424128 + 0.424128i
\(538\) 0 0
\(539\) −0.585786 0.585786i −0.0252316 0.0252316i
\(540\) 0 0
\(541\) −23.8995 23.8995i −1.02752 1.02752i −0.999610 0.0279091i \(-0.991115\pi\)
−0.0279091 0.999610i \(-0.508885\pi\)
\(542\) 0 0
\(543\) 30.3848 1.30394
\(544\) 0 0
\(545\) 8.24264 0.353076
\(546\) 0 0
\(547\) 12.8492 + 12.8492i 0.549394 + 0.549394i 0.926266 0.376872i \(-0.123000\pi\)
−0.376872 + 0.926266i \(0.623000\pi\)
\(548\) 0 0
\(549\) −4.36396 4.36396i −0.186249 0.186249i
\(550\) 0 0
\(551\) −3.17157 + 3.17157i −0.135114 + 0.135114i
\(552\) 0 0
\(553\) 4.58579i 0.195007i
\(554\) 0 0
\(555\) 4.65685 4.65685i 0.197672 0.197672i
\(556\) 0 0
\(557\) −19.0711 −0.808067 −0.404034 0.914744i \(-0.632392\pi\)
−0.404034 + 0.914744i \(0.632392\pi\)
\(558\) 0 0
\(559\) 1.95837i 0.0828302i
\(560\) 0 0
\(561\) 1.17157 4.68629i 0.0494638 0.197855i
\(562\) 0 0
\(563\) 43.4853i 1.83269i 0.400394 + 0.916343i \(0.368873\pi\)
−0.400394 + 0.916343i \(0.631127\pi\)
\(564\) 0 0
\(565\) −4.48528 −0.188697
\(566\) 0 0
\(567\) −3.53553 + 3.53553i −0.148478 + 0.148478i
\(568\) 0 0
\(569\) 43.2843i 1.81457i 0.420515 + 0.907286i \(0.361849\pi\)
−0.420515 + 0.907286i \(0.638151\pi\)
\(570\) 0 0
\(571\) −21.0000 + 21.0000i −0.878823 + 0.878823i −0.993413 0.114590i \(-0.963445\pi\)
0.114590 + 0.993413i \(0.463445\pi\)
\(572\) 0 0
\(573\) −4.31371 4.31371i −0.180208 0.180208i
\(574\) 0 0
\(575\) −0.707107 0.707107i −0.0294884 0.0294884i
\(576\) 0 0
\(577\) −24.9706 −1.03954 −0.519769 0.854307i \(-0.673982\pi\)
−0.519769 + 0.854307i \(0.673982\pi\)
\(578\) 0 0
\(579\) 4.72792 0.196486
\(580\) 0 0
\(581\) 10.7071 + 10.7071i 0.444206 + 0.444206i
\(582\) 0 0
\(583\) −4.82843 4.82843i −0.199973 0.199973i
\(584\) 0 0
\(585\) 0.121320 0.121320i 0.00501598 0.00501598i
\(586\) 0 0
\(587\) 16.1421i 0.666257i −0.942881 0.333129i \(-0.891896\pi\)
0.942881 0.333129i \(-0.108104\pi\)
\(588\) 0 0
\(589\) 8.65685 8.65685i 0.356699 0.356699i
\(590\) 0 0
\(591\) −12.9706 −0.533538
\(592\) 0 0
\(593\) 4.79899i 0.197071i −0.995134 0.0985354i \(-0.968584\pi\)
0.995134 0.0985354i \(-0.0314158\pi\)
\(594\) 0 0
\(595\) 1.00000 4.00000i 0.0409960 0.163984i
\(596\) 0 0
\(597\) 1.17157i 0.0479493i
\(598\) 0 0
\(599\) 15.3137 0.625701 0.312851 0.949802i \(-0.398716\pi\)
0.312851 + 0.949802i \(0.398716\pi\)
\(600\) 0 0
\(601\) 9.89949 9.89949i 0.403809 0.403809i −0.475764 0.879573i \(-0.657828\pi\)
0.879573 + 0.475764i \(0.157828\pi\)
\(602\) 0 0
\(603\) 0.343146i 0.0139740i
\(604\) 0 0
\(605\) 7.29289 7.29289i 0.296498 0.296498i
\(606\) 0 0
\(607\) 8.68629 + 8.68629i 0.352566 + 0.352566i 0.861063 0.508498i \(-0.169799\pi\)
−0.508498 + 0.861063i \(0.669799\pi\)
\(608\) 0 0
\(609\) −3.17157 3.17157i −0.128519 0.128519i
\(610\) 0 0
\(611\) 1.20101 0.0485877
\(612\) 0 0
\(613\) −25.3553 −1.02409 −0.512046 0.858958i \(-0.671112\pi\)
−0.512046 + 0.858958i \(0.671112\pi\)
\(614\) 0 0
\(615\) −3.82843 3.82843i −0.154377 0.154377i
\(616\) 0 0
\(617\) −4.70711 4.70711i −0.189501 0.189501i 0.605979 0.795480i \(-0.292781\pi\)
−0.795480 + 0.605979i \(0.792781\pi\)
\(618\) 0 0
\(619\) 23.5563 23.5563i 0.946810 0.946810i −0.0518455 0.998655i \(-0.516510\pi\)
0.998655 + 0.0518455i \(0.0165103\pi\)
\(620\) 0 0
\(621\) 5.65685i 0.227002i
\(622\) 0 0
\(623\) −7.82843 + 7.82843i −0.313639 + 0.313639i
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 1.65685i 0.0661684i
\(628\) 0 0
\(629\) 16.4645 9.87868i 0.656481 0.393889i
\(630\) 0 0
\(631\) 42.4853i 1.69131i 0.533728 + 0.845656i \(0.320791\pi\)
−0.533728 + 0.845656i \(0.679209\pi\)
\(632\) 0 0
\(633\) −5.17157 −0.205552
\(634\) 0 0
\(635\) 4.48528 4.48528i 0.177993 0.177993i
\(636\) 0 0
\(637\) 0.171573i 0.00679796i
\(638\) 0 0
\(639\) 2.00000 2.00000i 0.0791188 0.0791188i
\(640\) 0 0
\(641\) 25.0711 + 25.0711i 0.990248 + 0.990248i 0.999953 0.00970526i \(-0.00308933\pi\)
−0.00970526 + 0.999953i \(0.503089\pi\)
\(642\) 0 0
\(643\) 15.3137 + 15.3137i 0.603914 + 0.603914i 0.941349 0.337435i \(-0.109559\pi\)
−0.337435 + 0.941349i \(0.609559\pi\)
\(644\) 0 0
\(645\) −16.1421 −0.635596
\(646\) 0 0
\(647\) 5.02944 0.197728 0.0988638 0.995101i \(-0.468479\pi\)
0.0988638 + 0.995101i \(0.468479\pi\)
\(648\) 0 0
\(649\) −1.85786 1.85786i −0.0729276 0.0729276i
\(650\) 0 0
\(651\) 8.65685 + 8.65685i 0.339289 + 0.339289i
\(652\) 0 0
\(653\) −25.4350 + 25.4350i −0.995350 + 0.995350i −0.999989 0.00463964i \(-0.998523\pi\)
0.00463964 + 0.999989i \(0.498523\pi\)
\(654\) 0 0
\(655\) 9.82843i 0.384028i
\(656\) 0 0
\(657\) 12.0711 12.0711i 0.470937 0.470937i
\(658\) 0 0
\(659\) −6.20101 −0.241557 −0.120779 0.992679i \(-0.538539\pi\)
−0.120779 + 0.992679i \(0.538539\pi\)
\(660\) 0 0
\(661\) 7.02944i 0.273413i −0.990612 0.136707i \(-0.956348\pi\)
0.990612 0.136707i \(-0.0436518\pi\)
\(662\) 0 0
\(663\) −0.857864 + 0.514719i −0.0333167 + 0.0199900i
\(664\) 0 0
\(665\) 1.41421i 0.0548408i
\(666\) 0 0
\(667\) −3.17157 −0.122804
\(668\) 0 0
\(669\) 15.8284 15.8284i 0.611962 0.611962i
\(670\) 0 0
\(671\) 5.11270i 0.197374i
\(672\) 0 0
\(673\) 11.3934 11.3934i 0.439183 0.439183i −0.452554 0.891737i \(-0.649487\pi\)
0.891737 + 0.452554i \(0.149487\pi\)
\(674\) 0 0
\(675\) 4.00000 + 4.00000i 0.153960 + 0.153960i
\(676\) 0 0
\(677\) 6.34315 + 6.34315i 0.243787 + 0.243787i 0.818415 0.574628i \(-0.194853\pi\)
−0.574628 + 0.818415i \(0.694853\pi\)
\(678\) 0 0
\(679\) 18.2426 0.700088
\(680\) 0 0
\(681\) 21.4558 0.822190
\(682\) 0 0
\(683\) −1.75736 1.75736i −0.0672435 0.0672435i 0.672685 0.739929i \(-0.265141\pi\)
−0.739929 + 0.672685i \(0.765141\pi\)
\(684\) 0 0
\(685\) −10.8995 10.8995i −0.416448 0.416448i
\(686\) 0 0
\(687\) −16.3848 + 16.3848i −0.625118 + 0.625118i
\(688\) 0 0
\(689\) 1.41421i 0.0538772i
\(690\) 0 0
\(691\) −25.9203 + 25.9203i −0.986055 + 0.986055i −0.999904 0.0138490i \(-0.995592\pi\)
0.0138490 + 0.999904i \(0.495592\pi\)
\(692\) 0 0
\(693\) 0.828427 0.0314693
\(694\) 0 0
\(695\) 5.51472i 0.209185i
\(696\) 0 0
\(697\) −8.12132 13.5355i −0.307617 0.512695i
\(698\) 0 0
\(699\) 1.61522i 0.0610934i
\(700\) 0 0
\(701\) 26.4558 0.999223 0.499612 0.866249i \(-0.333476\pi\)
0.499612 + 0.866249i \(0.333476\pi\)
\(702\) 0 0
\(703\) −4.65685 + 4.65685i −0.175637 + 0.175637i
\(704\) 0 0
\(705\) 9.89949i 0.372837i
\(706\) 0 0
\(707\) −8.24264 + 8.24264i −0.309996 + 0.309996i
\(708\) 0 0
\(709\) 29.9706 + 29.9706i 1.12557 + 1.12557i 0.990889 + 0.134679i \(0.0430003\pi\)
0.134679 + 0.990889i \(0.457000\pi\)
\(710\) 0 0
\(711\) −3.24264 3.24264i −0.121609 0.121609i
\(712\) 0 0
\(713\) 8.65685 0.324202
\(714\) 0 0
\(715\) 0.142136 0.00531557
\(716\) 0 0
\(717\) 7.82843 + 7.82843i 0.292358 + 0.292358i
\(718\) 0 0
\(719\) −14.8492 14.8492i −0.553783 0.553783i 0.373747 0.927531i \(-0.378073\pi\)
−0.927531 + 0.373747i \(0.878073\pi\)
\(720\) 0 0
\(721\) −7.07107 + 7.07107i −0.263340 + 0.263340i
\(722\) 0 0
\(723\) 0.928932i 0.0345474i
\(724\) 0 0
\(725\) −2.24264 + 2.24264i −0.0832896 + 0.0832896i
\(726\) 0 0
\(727\) −24.4558 −0.907017 −0.453509 0.891252i \(-0.649828\pi\)
−0.453509 + 0.891252i \(0.649828\pi\)
\(728\) 0 0
\(729\) 29.0000i 1.07407i
\(730\) 0 0
\(731\) −45.6569 11.4142i −1.68868 0.422170i
\(732\) 0 0
\(733\) 23.3431i 0.862199i 0.902304 + 0.431099i \(0.141874\pi\)
−0.902304 + 0.431099i \(0.858126\pi\)
\(734\) 0 0
\(735\) −1.41421 −0.0521641
\(736\) 0 0
\(737\) 0.201010 0.201010i 0.00740430 0.00740430i
\(738\) 0 0
\(739\) 24.2843i 0.893311i −0.894706 0.446656i \(-0.852615\pi\)
0.894706 0.446656i \(-0.147385\pi\)
\(740\) 0 0
\(741\) 0.242641 0.242641i 0.00891363 0.00891363i
\(742\) 0 0
\(743\) 23.0919 + 23.0919i 0.847159 + 0.847159i 0.989778 0.142619i \(-0.0455523\pi\)
−0.142619 + 0.989778i \(0.545552\pi\)
\(744\) 0 0
\(745\) 1.05025 + 1.05025i 0.0384783 + 0.0384783i
\(746\) 0 0
\(747\) −15.1421 −0.554022
\(748\) 0 0
\(749\) 17.4853 0.638898
\(750\) 0 0
\(751\) 31.0416 + 31.0416i 1.13273 + 1.13273i 0.989722 + 0.143003i \(0.0456758\pi\)
0.143003 + 0.989722i \(0.454324\pi\)
\(752\) 0 0
\(753\) −21.8995 21.8995i −0.798062 0.798062i
\(754\) 0 0
\(755\) 1.63604 1.63604i 0.0595416 0.0595416i
\(756\) 0 0
\(757\) 51.9411i 1.88783i 0.330185 + 0.943916i \(0.392889\pi\)
−0.330185 + 0.943916i \(0.607111\pi\)
\(758\) 0 0
\(759\) −0.828427 + 0.828427i −0.0300700 + 0.0300700i
\(760\) 0 0
\(761\) 41.4558 1.50277 0.751387 0.659862i \(-0.229385\pi\)
0.751387 + 0.659862i \(0.229385\pi\)
\(762\) 0 0
\(763\) 8.24264i 0.298404i
\(764\) 0 0
\(765\) 2.12132 + 3.53553i 0.0766965 + 0.127827i
\(766\) 0 0
\(767\) 0.544156i 0.0196483i
\(768\) 0 0
\(769\) 4.72792 0.170493 0.0852466 0.996360i \(-0.472832\pi\)
0.0852466 + 0.996360i \(0.472832\pi\)
\(770\) 0 0
\(771\) −16.3137 + 16.3137i −0.587524 + 0.587524i
\(772\) 0 0
\(773\) 49.2843i 1.77263i 0.463081 + 0.886316i \(0.346744\pi\)
−0.463081 + 0.886316i \(0.653256\pi\)
\(774\) 0 0
\(775\) 6.12132 6.12132i 0.219884 0.219884i
\(776\) 0 0
\(777\) −4.65685 4.65685i −0.167064 0.167064i
\(778\) 0 0
\(779\) 3.82843 + 3.82843i 0.137168 + 0.137168i
\(780\) 0 0
\(781\) 2.34315 0.0838443
\(782\) 0 0
\(783\) 17.9411 0.641164
\(784\) 0 0
\(785\) 15.6569 + 15.6569i 0.558817 + 0.558817i
\(786\) 0 0
\(787\) −12.0711 12.0711i −0.430287 0.430287i 0.458439 0.888726i \(-0.348409\pi\)
−0.888726 + 0.458439i \(0.848409\pi\)
\(788\) 0 0
\(789\) 1.31371 1.31371i 0.0467693 0.0467693i
\(790\) 0 0
\(791\) 4.48528i 0.159478i
\(792\) 0 0
\(793\) −0.748737 + 0.748737i −0.0265884 + 0.0265884i
\(794\) 0 0
\(795\) −11.6569 −0.413426
\(796\) 0 0
\(797\) 27.7696i 0.983648i 0.870695 + 0.491824i \(0.163670\pi\)
−0.870695 + 0.491824i \(0.836330\pi\)
\(798\) 0 0
\(799\) −7.00000 + 28.0000i −0.247642 + 0.990569i
\(800\) 0 0
\(801\) 11.0711i 0.391177i
\(802\) 0 0
\(803\) 14.1421 0.499065
\(804\) 0 0
\(805\) −0.707107 + 0.707107i −0.0249222 + 0.0249222i
\(806\) 0 0
\(807\) 32.2426i 1.13499i
\(808\) 0 0
\(809\) 20.0000 20.0000i 0.703163 0.703163i −0.261926 0.965088i \(-0.584357\pi\)
0.965088 + 0.261926i \(0.0843575\pi\)
\(810\) 0 0
\(811\) 0.807612 + 0.807612i 0.0283591 + 0.0283591i 0.721144 0.692785i \(-0.243617\pi\)
−0.692785 + 0.721144i \(0.743617\pi\)
\(812\) 0 0
\(813\) −3.41421 3.41421i −0.119742 0.119742i
\(814\) 0 0
\(815\) 9.48528 0.332255
\(816\) 0 0
\(817\) 16.1421 0.564742
\(818\) 0 0
\(819\) −0.121320 0.121320i −0.00423928 0.00423928i
\(820\) 0 0
\(821\) 23.1421 + 23.1421i 0.807666 + 0.807666i 0.984280 0.176614i \(-0.0565145\pi\)
−0.176614 + 0.984280i \(0.556514\pi\)
\(822\) 0 0
\(823\) 14.6066 14.6066i 0.509154 0.509154i −0.405113 0.914267i \(-0.632768\pi\)
0.914267 + 0.405113i \(0.132768\pi\)
\(824\) 0 0
\(825\) 1.17157i 0.0407889i
\(826\) 0 0
\(827\) −10.1213 + 10.1213i −0.351953 + 0.351953i −0.860836 0.508883i \(-0.830059\pi\)
0.508883 + 0.860836i \(0.330059\pi\)
\(828\) 0 0
\(829\) 5.65685 0.196471 0.0982353 0.995163i \(-0.468680\pi\)
0.0982353 + 0.995163i \(0.468680\pi\)
\(830\) 0 0
\(831\) 12.7279i 0.441527i
\(832\) 0 0
\(833\) −4.00000 1.00000i −0.138592 0.0346479i
\(834\) 0 0
\(835\) 0.585786i 0.0202720i
\(836\) 0 0
\(837\) −48.9706 −1.69267
\(838\) 0 0
\(839\) −35.0711 + 35.0711i −1.21079 + 1.21079i −0.240020 + 0.970768i \(0.577154\pi\)
−0.970768 + 0.240020i \(0.922846\pi\)
\(840\) 0 0
\(841\) 18.9411i 0.653142i
\(842\) 0 0
\(843\) 4.65685 4.65685i 0.160391 0.160391i
\(844\) 0 0
\(845\) 9.17157 + 9.17157i 0.315512 + 0.315512i
\(846\) 0 0
\(847\) −7.29289 7.29289i −0.250587 0.250587i
\(848\) 0 0
\(849\) 19.4558 0.667723
\(850\) 0 0
\(851\) −4.65685 −0.159635
\(852\) 0 0
\(853\) −37.7990 37.7990i −1.29421 1.29421i −0.932156 0.362057i \(-0.882075\pi\)
−0.362057 0.932156i \(-0.617925\pi\)
\(854\) 0 0
\(855\) −1.00000 1.00000i −0.0341993 0.0341993i
\(856\) 0 0
\(857\) 11.5563 11.5563i 0.394757 0.394757i −0.481622 0.876379i \(-0.659952\pi\)
0.876379 + 0.481622i \(0.159952\pi\)
\(858\) 0 0
\(859\) 25.9411i 0.885100i −0.896744 0.442550i \(-0.854074\pi\)
0.896744 0.442550i \(-0.145926\pi\)
\(860\) 0 0
\(861\) −3.82843 + 3.82843i −0.130472 + 0.130472i
\(862\) 0 0
\(863\) 18.9706 0.645765 0.322883 0.946439i \(-0.395348\pi\)
0.322883 + 0.946439i \(0.395348\pi\)
\(864\) 0 0
\(865\) 20.2426i 0.688270i
\(866\) 0 0
\(867\) −7.00000 23.0000i −0.237732 0.781121i
\(868\) 0 0
\(869\) 3.79899i 0.128872i
\(870\) 0 0
\(871\) −0.0588745 −0.00199489
\(872\) 0 0
\(873\) −12.8995 + 12.8995i −0.436582 + 0.436582i
\(874\) 0 0
\(875\) 1.00000i 0.0338062i
\(876\) 0 0
\(877\) 10.4853 10.4853i 0.354063 0.354063i −0.507556 0.861619i \(-0.669451\pi\)
0.861619 + 0.507556i \(0.169451\pi\)
\(878\) 0 0
\(879\) 3.65685 + 3.65685i 0.123343 + 0.123343i
\(880\) 0 0
\(881\) −4.82843 4.82843i −0.162674 0.162674i 0.621076 0.783750i \(-0.286696\pi\)
−0.783750 + 0.621076i \(0.786696\pi\)
\(882\) 0 0
\(883\) 35.9411 1.20952 0.604758 0.796410i \(-0.293270\pi\)
0.604758 + 0.796410i \(0.293270\pi\)
\(884\) 0 0
\(885\) −4.48528 −0.150771
\(886\) 0 0
\(887\) −22.1421 22.1421i −0.743460 0.743460i 0.229782 0.973242i \(-0.426199\pi\)
−0.973242 + 0.229782i \(0.926199\pi\)
\(888\) 0 0
\(889\) −4.48528 4.48528i −0.150432 0.150432i
\(890\) 0 0
\(891\) 2.92893 2.92893i 0.0981229 0.0981229i
\(892\) 0 0
\(893\) 9.89949i 0.331274i
\(894\) 0 0
\(895\) 6.94975 6.94975i 0.232304 0.232304i
\(896\) 0 0
\(897\) 0.242641 0.00810154
\(898\) 0 0
\(899\) 27.4558i 0.915704i
\(900\) 0 0
\(901\) −32.9706 8.24264i −1.09841 0.274602i
\(902\) 0 0
\(903\) 16.1421i 0.537177i
\(904\) 0 0
\(905\) −21.4853 −0.714195
\(906\) 0 0
\(907\) −12.2426 + 12.2426i −0.406510 + 0.406510i −0.880520 0.474010i \(-0.842806\pi\)
0.474010 + 0.880520i \(0.342806\pi\)
\(908\) 0 0
\(909\) 11.6569i 0.386633i
\(910\) 0 0
\(911\) 17.1005 17.1005i 0.566565 0.566565i −0.364599 0.931164i \(-0.618794\pi\)
0.931164 + 0.364599i \(0.118794\pi\)
\(912\) 0 0
\(913\) −8.87006 8.87006i −0.293556 0.293556i
\(914\) 0 0
\(915\) −6.17157 6.17157i −0.204026 0.204026i
\(916\) 0 0
\(917\) −9.82843 −0.324563
\(918\) 0 0
\(919\) −7.17157 −0.236568 −0.118284 0.992980i \(-0.537739\pi\)
−0.118284 + 0.992980i \(0.537739\pi\)
\(920\) 0 0
\(921\) −32.1421 32.1421i −1.05912 1.05912i
\(922\) 0 0
\(923\) −0.343146 0.343146i −0.0112948 0.0112948i
\(924\) 0 0
\(925\) −3.29289 + 3.29289i −0.108270 + 0.108270i
\(926\) 0 0
\(927\) 10.0000i 0.328443i
\(928\) 0 0
\(929\) 41.5355 41.5355i 1.36274 1.36274i 0.492325 0.870411i \(-0.336147\pi\)
0.870411 0.492325i \(-0.163853\pi\)
\(930\) 0 0
\(931\) 1.41421 0.0463490
\(932\) 0 0
\(933\) 9.41421i 0.308208i
\(934\) 0 0
\(935\) −0.828427 + 3.31371i −0.0270925 + 0.108370i
\(936\) 0 0
\(937\) 8.31371i 0.271597i −0.990736 0.135799i \(-0.956640\pi\)
0.990736 0.135799i \(-0.0433600\pi\)
\(938\) 0 0
\(939\) 17.8579 0.582769
\(940\) 0 0
\(941\) 6.70711 6.70711i 0.218645 0.218645i −0.589282 0.807927i \(-0.700589\pi\)
0.807927 + 0.589282i \(0.200589\pi\)
\(942\) 0 0
\(943\) 3.82843i 0.124671i
\(944\) 0 0
\(945\) 4.00000 4.00000i 0.130120 0.130120i
\(946\) 0 0
\(947\) 26.7487 + 26.7487i 0.869217 + 0.869217i 0.992386 0.123169i \(-0.0393056\pi\)
−0.123169 + 0.992386i \(0.539306\pi\)
\(948\) 0 0
\(949\) −2.07107 2.07107i −0.0672297 0.0672297i
\(950\) 0 0
\(951\) −30.1838 −0.978776
\(952\) 0 0
\(953\) 12.4437 0.403089 0.201545 0.979479i \(-0.435404\pi\)
0.201545 + 0.979479i \(0.435404\pi\)
\(954\) 0 0
\(955\) 3.05025 + 3.05025i 0.0987039 + 0.0987039i
\(956\) 0 0
\(957\) 2.62742 + 2.62742i 0.0849323 + 0.0849323i
\(958\) 0 0
\(959\) −10.8995 + 10.8995i −0.351963 + 0.351963i
\(960\) 0 0
\(961\) 43.9411i 1.41746i
\(962\) 0 0
\(963\) −12.3640 + 12.3640i −0.398423 + 0.398423i
\(964\) 0 0
\(965\) −3.34315 −0.107620
\(966\) 0 0
\(967\) 11.5147i 0.370288i −0.982711 0.185144i \(-0.940725\pi\)
0.982711 0.185144i \(-0.0592752\pi\)
\(968\) 0 0
\(969\) 4.24264 + 7.07107i 0.136293 + 0.227155i
\(970\) 0 0
\(971\) 9.55635i 0.306678i 0.988174 + 0.153339i \(0.0490026\pi\)
−0.988174 + 0.153339i \(0.950997\pi\)
\(972\) 0 0
\(973\) 5.51472 0.176794
\(974\) 0 0
\(975\) 0.171573 0.171573i 0.00549473 0.00549473i
\(976\) 0 0
\(977\) 10.8284i 0.346432i −0.984884 0.173216i \(-0.944584\pi\)
0.984884 0.173216i \(-0.0554159\pi\)
\(978\) 0 0
\(979\) 6.48528 6.48528i 0.207270 0.207270i
\(980\) 0 0
\(981\) 5.82843 + 5.82843i 0.186087 + 0.186087i
\(982\) 0 0
\(983\) −0.313708 0.313708i −0.0100057 0.0100057i 0.702086 0.712092i \(-0.252252\pi\)
−0.712092 + 0.702086i \(0.752252\pi\)
\(984\) 0 0
\(985\) 9.17157 0.292231
\(986\) 0 0
\(987\) 9.89949 0.315104
\(988\) 0 0
\(989\) 8.07107 + 8.07107i 0.256645 + 0.256645i
\(990\) 0 0
\(991\) 18.6985 + 18.6985i 0.593977 + 0.593977i 0.938703 0.344726i \(-0.112028\pi\)
−0.344726 + 0.938703i \(0.612028\pi\)
\(992\) 0 0
\(993\) 0.857864 0.857864i 0.0272235 0.0272235i
\(994\) 0 0
\(995\) 0.828427i 0.0262629i
\(996\) 0 0
\(997\) 28.1421 28.1421i 0.891270 0.891270i −0.103372 0.994643i \(-0.532963\pi\)
0.994643 + 0.103372i \(0.0329633\pi\)
\(998\) 0 0
\(999\) 26.3431 0.833460
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2380.2.be.a.421.1 4
17.4 even 4 inner 2380.2.be.a.701.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2380.2.be.a.421.1 4 1.1 even 1 trivial
2380.2.be.a.701.1 yes 4 17.4 even 4 inner