Properties

Label 2380.1.bg.a
Level $2380$
Weight $1$
Character orbit 2380.bg
Analytic conductor $1.188$
Analytic rank $0$
Dimension $8$
Projective image $D_{12}$
CM discriminant -35
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2380,1,Mod(489,2380)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2380.489"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2380, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 2, 1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 2380 = 2^{2} \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2380.bg (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.18777473007\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{12}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{12} - \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + (\zeta_{24}^{11} + \zeta_{24}^{7}) q^{3} + \zeta_{24}^{9} q^{5} - \zeta_{24}^{3} q^{7} + ( - \zeta_{24}^{10} + \cdots - \zeta_{24}^{2}) q^{9} + (\zeta_{24}^{4} + \zeta_{24}^{2}) q^{11} + ( - \zeta_{24}^{11} + \zeta_{24}) q^{13} + \cdots + ( - \zeta_{24}^{10} - \zeta_{24}^{8} + \cdots + 1) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{11} + 4 q^{29} + 8 q^{35} - 12 q^{39} - 12 q^{51} - 4 q^{65} - 8 q^{71} + 4 q^{79} - 8 q^{81} - 4 q^{91} + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2380\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(1191\) \(1261\) \(1361\)
\(\chi(n)\) \(-1\) \(1\) \(-\zeta_{24}^{6}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
489.1
0.965926 0.258819i
0.258819 0.965926i
−0.258819 + 0.965926i
−0.965926 + 0.258819i
0.965926 + 0.258819i
0.258819 + 0.965926i
−0.258819 0.965926i
−0.965926 0.258819i
0 −1.22474 1.22474i 0 −0.707107 0.707107i 0 −0.707107 + 0.707107i 0 2.00000i 0
489.2 0 −1.22474 1.22474i 0 0.707107 + 0.707107i 0 0.707107 0.707107i 0 2.00000i 0
489.3 0 1.22474 + 1.22474i 0 −0.707107 0.707107i 0 −0.707107 + 0.707107i 0 2.00000i 0
489.4 0 1.22474 + 1.22474i 0 0.707107 + 0.707107i 0 0.707107 0.707107i 0 2.00000i 0
769.1 0 −1.22474 + 1.22474i 0 −0.707107 + 0.707107i 0 −0.707107 0.707107i 0 2.00000i 0
769.2 0 −1.22474 + 1.22474i 0 0.707107 0.707107i 0 0.707107 + 0.707107i 0 2.00000i 0
769.3 0 1.22474 1.22474i 0 −0.707107 + 0.707107i 0 −0.707107 0.707107i 0 2.00000i 0
769.4 0 1.22474 1.22474i 0 0.707107 0.707107i 0 0.707107 + 0.707107i 0 2.00000i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 489.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
35.c odd 2 1 CM by \(\Q(\sqrt{-35}) \)
5.b even 2 1 inner
7.b odd 2 1 inner
17.c even 4 1 inner
85.j even 4 1 inner
119.f odd 4 1 inner
595.u odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2380.1.bg.a 8
5.b even 2 1 inner 2380.1.bg.a 8
7.b odd 2 1 inner 2380.1.bg.a 8
17.c even 4 1 inner 2380.1.bg.a 8
35.c odd 2 1 CM 2380.1.bg.a 8
85.j even 4 1 inner 2380.1.bg.a 8
119.f odd 4 1 inner 2380.1.bg.a 8
595.u odd 4 1 inner 2380.1.bg.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2380.1.bg.a 8 1.a even 1 1 trivial
2380.1.bg.a 8 5.b even 2 1 inner
2380.1.bg.a 8 7.b odd 2 1 inner
2380.1.bg.a 8 17.c even 4 1 inner
2380.1.bg.a 8 35.c odd 2 1 CM
2380.1.bg.a 8 85.j even 4 1 inner
2380.1.bg.a 8 119.f odd 4 1 inner
2380.1.bg.a 8 595.u odd 4 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(2380, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{4} + 9)^{2} \) Copy content Toggle raw display
$5$ \( (T^{4} + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} + 1)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} - 2 T^{3} + 2 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} - 4 T^{2} + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{8} - T^{4} + 1 \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( T^{8} \) Copy content Toggle raw display
$29$ \( (T^{4} - 2 T^{3} + 2 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{8} \) Copy content Toggle raw display
$37$ \( T^{8} \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( T^{8} \) Copy content Toggle raw display
$47$ \( (T^{4} - 4 T^{2} + 1)^{2} \) Copy content Toggle raw display
$53$ \( T^{8} \) Copy content Toggle raw display
$59$ \( T^{8} \) Copy content Toggle raw display
$61$ \( T^{8} \) Copy content Toggle raw display
$67$ \( T^{8} \) Copy content Toggle raw display
$71$ \( (T^{2} + 2 T + 2)^{4} \) Copy content Toggle raw display
$73$ \( (T^{4} + 16)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} - 2 T^{3} + 2 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 2)^{4} \) Copy content Toggle raw display
$89$ \( T^{8} \) Copy content Toggle raw display
$97$ \( (T^{4} + 9)^{2} \) Copy content Toggle raw display
show more
show less