| L(s) = 1 | + (1.22 + 1.22i)3-s + (−0.707 − 0.707i)5-s + (−0.707 + 0.707i)7-s + 1.99i·9-s + (−0.366 + 0.366i)11-s − 0.517·13-s − 1.73i·15-s + (−0.258 + 0.965i)17-s − 1.73·21-s + 1.00i·25-s + (−1.22 + 1.22i)27-s + (1.36 + 1.36i)29-s − 0.896·33-s + 1.00·35-s + (−0.633 − 0.633i)39-s + ⋯ |
| L(s) = 1 | + (1.22 + 1.22i)3-s + (−0.707 − 0.707i)5-s + (−0.707 + 0.707i)7-s + 1.99i·9-s + (−0.366 + 0.366i)11-s − 0.517·13-s − 1.73i·15-s + (−0.258 + 0.965i)17-s − 1.73·21-s + 1.00i·25-s + (−1.22 + 1.22i)27-s + (1.36 + 1.36i)29-s − 0.896·33-s + 1.00·35-s + (−0.633 − 0.633i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.602 - 0.798i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.602 - 0.798i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.220068110\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.220068110\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.707 + 0.707i)T \) |
| 7 | \( 1 + (0.707 - 0.707i)T \) |
| 17 | \( 1 + (0.258 - 0.965i)T \) |
| good | 3 | \( 1 + (-1.22 - 1.22i)T + iT^{2} \) |
| 11 | \( 1 + (0.366 - 0.366i)T - iT^{2} \) |
| 13 | \( 1 + 0.517T + T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 29 | \( 1 + (-1.36 - 1.36i)T + iT^{2} \) |
| 31 | \( 1 - iT^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 + iT^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + 1.93T + T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 + iT^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (1 + i)T + iT^{2} \) |
| 73 | \( 1 + (-1.41 - 1.41i)T + iT^{2} \) |
| 79 | \( 1 + (-1.36 + 1.36i)T - iT^{2} \) |
| 83 | \( 1 + 1.41iT - T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (-1.22 - 1.22i)T + iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.280765120622344010982960741123, −8.705558591939372249831419205939, −8.250939721494040909754329694512, −7.42468263465204250976993782884, −6.29927345186318462667179012646, −5.01992410232157990626405986980, −4.69146460852683310718788451745, −3.61661564296060043067415754270, −3.08582748298098975538635347689, −2.00600723895724675878598053835,
0.68180782603531714250485271104, 2.31815070290462142782795831097, 2.96357815618201921501448455663, 3.63151529668490785712575685864, 4.70645458338054150924543313148, 6.31297079397253671239987471371, 6.73509858330711399346907284098, 7.48505855301829413399456501429, 7.912846707495171074674490569523, 8.628632966070100157274209530172