Properties

Label 2368.2.a.bg
Level 23682368
Weight 22
Character orbit 2368.a
Self dual yes
Analytic conductor 18.90918.909
Analytic rank 11
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2368,2,Mod(1,2368)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2368.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2368, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: N N == 2368=2637 2368 = 2^{6} \cdot 37
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2368.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2,0,-5,0,-1,0,8,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 18.908575198618.9085751986
Analytic rank: 11
Dimension: 44
Coefficient field: 4.4.48389.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x42x38x2+3x+10 x^{4} - 2x^{3} - 8x^{2} + 3x + 10 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 296)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β11)q3+(β31)q5+(β3β2)q7+(β2+2)q9+(β21)q11+(β3+β2β11)q13+(2β3+β2β1)q15++(2β3β2β110)q99+O(q100) q + (\beta_1 - 1) q^{3} + (\beta_{3} - 1) q^{5} + (\beta_{3} - \beta_{2}) q^{7} + (\beta_{2} + 2) q^{9} + ( - \beta_{2} - 1) q^{11} + ( - \beta_{3} + \beta_{2} - \beta_1 - 1) q^{13} + ( - 2 \beta_{3} + \beta_{2} - \beta_1) q^{15}+ \cdots + (2 \beta_{3} - \beta_{2} - \beta_1 - 10) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q35q5q7+8q94q115q13+8q172q19q219q23+7q25+q277q29q31+3q33+12q354q3715q39+2q41+44q99+O(q100) 4 q - 2 q^{3} - 5 q^{5} - q^{7} + 8 q^{9} - 4 q^{11} - 5 q^{13} + 8 q^{17} - 2 q^{19} - q^{21} - 9 q^{23} + 7 q^{25} + q^{27} - 7 q^{29} - q^{31} + 3 q^{33} + 12 q^{35} - 4 q^{37} - 15 q^{39} + 2 q^{41}+ \cdots - 44 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x42x38x2+3x+10 x^{4} - 2x^{3} - 8x^{2} + 3x + 10 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν22ν4 \nu^{2} - 2\nu - 4 Copy content Toggle raw display
β3\beta_{3}== ν33ν24ν+5 \nu^{3} - 3\nu^{2} - 4\nu + 5 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+2β1+4 \beta_{2} + 2\beta _1 + 4 Copy content Toggle raw display
ν3\nu^{3}== β3+3β2+10β1+7 \beta_{3} + 3\beta_{2} + 10\beta _1 + 7 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−1.70606
−1.26726
1.23838
3.73494
0 −2.70606 0 −2.87345 0 −4.19623 0 4.32278 0
1.2 0 −2.26726 0 2.21602 0 3.07555 0 2.14048 0
1.3 0 0.238381 0 −3.65512 0 2.28805 0 −2.94317 0
1.4 0 2.73494 0 −0.687447 0 −2.16737 0 4.47992 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
3737 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2368.2.a.bg 4
4.b odd 2 1 2368.2.a.bh 4
8.b even 2 1 296.2.a.d 4
8.d odd 2 1 592.2.a.j 4
24.f even 2 1 5328.2.a.bp 4
24.h odd 2 1 2664.2.a.r 4
40.f even 2 1 7400.2.a.n 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
296.2.a.d 4 8.b even 2 1
592.2.a.j 4 8.d odd 2 1
2368.2.a.bg 4 1.a even 1 1 trivial
2368.2.a.bh 4 4.b odd 2 1
2664.2.a.r 4 24.h odd 2 1
5328.2.a.bp 4 24.f even 2 1
7400.2.a.n 4 40.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(2368))S_{2}^{\mathrm{new}}(\Gamma_0(2368)):

T34+2T338T3215T3+4 T_{3}^{4} + 2T_{3}^{3} - 8T_{3}^{2} - 15T_{3} + 4 Copy content Toggle raw display
T54+5T53T5226T516 T_{5}^{4} + 5T_{5}^{3} - T_{5}^{2} - 26T_{5} - 16 Copy content Toggle raw display
T74+T7318T724T7+64 T_{7}^{4} + T_{7}^{3} - 18T_{7}^{2} - 4T_{7} + 64 Copy content Toggle raw display
T114+4T11312T11263T1152 T_{11}^{4} + 4T_{11}^{3} - 12T_{11}^{2} - 63T_{11} - 52 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4+2T3++4 T^{4} + 2 T^{3} + \cdots + 4 Copy content Toggle raw display
55 T4+5T3+16 T^{4} + 5 T^{3} + \cdots - 16 Copy content Toggle raw display
77 T4+T3++64 T^{4} + T^{3} + \cdots + 64 Copy content Toggle raw display
1111 T4+4T3+52 T^{4} + 4 T^{3} + \cdots - 52 Copy content Toggle raw display
1313 T4+5T3+160 T^{4} + 5 T^{3} + \cdots - 160 Copy content Toggle raw display
1717 (T2)4 (T - 2)^{4} Copy content Toggle raw display
1919 T4+2T3++640 T^{4} + 2 T^{3} + \cdots + 640 Copy content Toggle raw display
2323 T4+9T3+472 T^{4} + 9 T^{3} + \cdots - 472 Copy content Toggle raw display
2929 T4+7T3++4 T^{4} + 7 T^{3} + \cdots + 4 Copy content Toggle raw display
3131 T4+T3++848 T^{4} + T^{3} + \cdots + 848 Copy content Toggle raw display
3737 (T+1)4 (T + 1)^{4} Copy content Toggle raw display
4141 T42T3+422 T^{4} - 2 T^{3} + \cdots - 422 Copy content Toggle raw display
4343 T4+6T3++128 T^{4} + 6 T^{3} + \cdots + 128 Copy content Toggle raw display
4747 T4+29T3+2336 T^{4} + 29 T^{3} + \cdots - 2336 Copy content Toggle raw display
5353 T45T3+8 T^{4} - 5 T^{3} + \cdots - 8 Copy content Toggle raw display
5959 T410T3++512 T^{4} - 10 T^{3} + \cdots + 512 Copy content Toggle raw display
6161 T4T3++664 T^{4} - T^{3} + \cdots + 664 Copy content Toggle raw display
6767 T4T3+16 T^{4} - T^{3} + \cdots - 16 Copy content Toggle raw display
7171 T4+17T3++6976 T^{4} + 17 T^{3} + \cdots + 6976 Copy content Toggle raw display
7373 T48T3++2938 T^{4} - 8 T^{3} + \cdots + 2938 Copy content Toggle raw display
7979 T415T3++17320 T^{4} - 15 T^{3} + \cdots + 17320 Copy content Toggle raw display
8383 T4+15T3++4160 T^{4} + 15 T^{3} + \cdots + 4160 Copy content Toggle raw display
8989 T4+20T3+3392 T^{4} + 20 T^{3} + \cdots - 3392 Copy content Toggle raw display
9797 T42T3+160 T^{4} - 2 T^{3} + \cdots - 160 Copy content Toggle raw display
show more
show less