gp: [N,k,chi] = [2368,2,Mod(1,2368)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2368.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2368, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [4,0,-2,0,-5,0,-1,0,8,0,-4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 − 2 x 3 − 8 x 2 + 3 x + 10 x^{4} - 2x^{3} - 8x^{2} + 3x + 10 x 4 − 2 x 3 − 8 x 2 + 3 x + 1 0
x^4 - 2*x^3 - 8*x^2 + 3*x + 10
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
ν 2 − 2 ν − 4 \nu^{2} - 2\nu - 4 ν 2 − 2 ν − 4
v^2 - 2*v - 4
β 3 \beta_{3} β 3 = = =
ν 3 − 3 ν 2 − 4 ν + 5 \nu^{3} - 3\nu^{2} - 4\nu + 5 ν 3 − 3 ν 2 − 4 ν + 5
v^3 - 3*v^2 - 4*v + 5
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 2 + 2 β 1 + 4 \beta_{2} + 2\beta _1 + 4 β 2 + 2 β 1 + 4
b2 + 2*b1 + 4
ν 3 \nu^{3} ν 3 = = =
β 3 + 3 β 2 + 10 β 1 + 7 \beta_{3} + 3\beta_{2} + 10\beta _1 + 7 β 3 + 3 β 2 + 1 0 β 1 + 7
b3 + 3*b2 + 10*b1 + 7
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
37 37 3 7
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 2368 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(2368)) S 2 n e w ( Γ 0 ( 2 3 6 8 ) ) :
T 3 4 + 2 T 3 3 − 8 T 3 2 − 15 T 3 + 4 T_{3}^{4} + 2T_{3}^{3} - 8T_{3}^{2} - 15T_{3} + 4 T 3 4 + 2 T 3 3 − 8 T 3 2 − 1 5 T 3 + 4
T3^4 + 2*T3^3 - 8*T3^2 - 15*T3 + 4
T 5 4 + 5 T 5 3 − T 5 2 − 26 T 5 − 16 T_{5}^{4} + 5T_{5}^{3} - T_{5}^{2} - 26T_{5} - 16 T 5 4 + 5 T 5 3 − T 5 2 − 2 6 T 5 − 1 6
T5^4 + 5*T5^3 - T5^2 - 26*T5 - 16
T 7 4 + T 7 3 − 18 T 7 2 − 4 T 7 + 64 T_{7}^{4} + T_{7}^{3} - 18T_{7}^{2} - 4T_{7} + 64 T 7 4 + T 7 3 − 1 8 T 7 2 − 4 T 7 + 6 4
T7^4 + T7^3 - 18*T7^2 - 4*T7 + 64
T 11 4 + 4 T 11 3 − 12 T 11 2 − 63 T 11 − 52 T_{11}^{4} + 4T_{11}^{3} - 12T_{11}^{2} - 63T_{11} - 52 T 1 1 4 + 4 T 1 1 3 − 1 2 T 1 1 2 − 6 3 T 1 1 − 5 2
T11^4 + 4*T11^3 - 12*T11^2 - 63*T11 - 52
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 T^{4} T 4
T^4
3 3 3
T 4 + 2 T 3 + ⋯ + 4 T^{4} + 2 T^{3} + \cdots + 4 T 4 + 2 T 3 + ⋯ + 4
T^4 + 2*T^3 - 8*T^2 - 15*T + 4
5 5 5
T 4 + 5 T 3 + ⋯ − 16 T^{4} + 5 T^{3} + \cdots - 16 T 4 + 5 T 3 + ⋯ − 1 6
T^4 + 5*T^3 - T^2 - 26*T - 16
7 7 7
T 4 + T 3 + ⋯ + 64 T^{4} + T^{3} + \cdots + 64 T 4 + T 3 + ⋯ + 6 4
T^4 + T^3 - 18*T^2 - 4*T + 64
11 11 1 1
T 4 + 4 T 3 + ⋯ − 52 T^{4} + 4 T^{3} + \cdots - 52 T 4 + 4 T 3 + ⋯ − 5 2
T^4 + 4*T^3 - 12*T^2 - 63*T - 52
13 13 1 3
T 4 + 5 T 3 + ⋯ − 160 T^{4} + 5 T^{3} + \cdots - 160 T 4 + 5 T 3 + ⋯ − 1 6 0
T^4 + 5*T^3 - 17*T^2 - 122*T - 160
17 17 1 7
( T − 2 ) 4 (T - 2)^{4} ( T − 2 ) 4
(T - 2)^4
19 19 1 9
T 4 + 2 T 3 + ⋯ + 640 T^{4} + 2 T^{3} + \cdots + 640 T 4 + 2 T 3 + ⋯ + 6 4 0
T^4 + 2*T^3 - 68*T^2 - 72*T + 640
23 23 2 3
T 4 + 9 T 3 + ⋯ − 472 T^{4} + 9 T^{3} + \cdots - 472 T 4 + 9 T 3 + ⋯ − 4 7 2
T^4 + 9*T^3 - 21*T^2 - 302*T - 472
29 29 2 9
T 4 + 7 T 3 + ⋯ + 4 T^{4} + 7 T^{3} + \cdots + 4 T 4 + 7 T 3 + ⋯ + 4
T^4 + 7*T^3 - 11*T^2 - 80*T + 4
31 31 3 1
T 4 + T 3 + ⋯ + 848 T^{4} + T^{3} + \cdots + 848 T 4 + T 3 + ⋯ + 8 4 8
T^4 + T^3 - 105*T^2 + 848
37 37 3 7
( T + 1 ) 4 (T + 1)^{4} ( T + 1 ) 4
(T + 1)^4
41 41 4 1
T 4 − 2 T 3 + ⋯ − 422 T^{4} - 2 T^{3} + \cdots - 422 T 4 − 2 T 3 + ⋯ − 4 2 2
T^4 - 2*T^3 - 82*T^2 + 371*T - 422
43 43 4 3
T 4 + 6 T 3 + ⋯ + 128 T^{4} + 6 T^{3} + \cdots + 128 T 4 + 6 T 3 + ⋯ + 1 2 8
T^4 + 6*T^3 - 28*T^2 - 48*T + 128
47 47 4 7
T 4 + 29 T 3 + ⋯ − 2336 T^{4} + 29 T^{3} + \cdots - 2336 T 4 + 2 9 T 3 + ⋯ − 2 3 3 6
T^4 + 29*T^3 + 246*T^2 + 316*T - 2336
53 53 5 3
T 4 − 5 T 3 + ⋯ − 8 T^{4} - 5 T^{3} + \cdots - 8 T 4 − 5 T 3 + ⋯ − 8
T^4 - 5*T^3 - 50*T^2 + 52*T - 8
59 59 5 9
T 4 − 10 T 3 + ⋯ + 512 T^{4} - 10 T^{3} + \cdots + 512 T 4 − 1 0 T 3 + ⋯ + 5 1 2
T^4 - 10*T^3 - 140*T^2 + 928*T + 512
61 61 6 1
T 4 − T 3 + ⋯ + 664 T^{4} - T^{3} + \cdots + 664 T 4 − T 3 + ⋯ + 6 6 4
T^4 - T^3 - 93*T^2 - 166*T + 664
67 67 6 7
T 4 − T 3 + ⋯ − 16 T^{4} - T^{3} + \cdots - 16 T 4 − T 3 + ⋯ − 1 6
T^4 - T^3 - 43*T^2 + 64*T - 16
71 71 7 1
T 4 + 17 T 3 + ⋯ + 6976 T^{4} + 17 T^{3} + \cdots + 6976 T 4 + 1 7 T 3 + ⋯ + 6 9 7 6
T^4 + 17*T^3 - 96*T^2 - 1436*T + 6976
73 73 7 3
T 4 − 8 T 3 + ⋯ + 2938 T^{4} - 8 T^{3} + \cdots + 2938 T 4 − 8 T 3 + ⋯ + 2 9 3 8
T^4 - 8*T^3 - 200*T^2 + 967*T + 2938
79 79 7 9
T 4 − 15 T 3 + ⋯ + 17320 T^{4} - 15 T^{3} + \cdots + 17320 T 4 − 1 5 T 3 + ⋯ + 1 7 3 2 0
T^4 - 15*T^3 - 209*T^2 + 1966*T + 17320
83 83 8 3
T 4 + 15 T 3 + ⋯ + 4160 T^{4} + 15 T^{3} + \cdots + 4160 T 4 + 1 5 T 3 + ⋯ + 4 1 6 0
T^4 + 15*T^3 - 128*T^2 - 1536*T + 4160
89 89 8 9
T 4 + 20 T 3 + ⋯ − 3392 T^{4} + 20 T^{3} + \cdots - 3392 T 4 + 2 0 T 3 + ⋯ − 3 3 9 2
T^4 + 20*T^3 + 44*T^2 - 848*T - 3392
97 97 9 7
T 4 − 2 T 3 + ⋯ − 160 T^{4} - 2 T^{3} + \cdots - 160 T 4 − 2 T 3 + ⋯ − 1 6 0
T^4 - 2*T^3 - 236*T^2 - 472*T - 160
show more
show less