Defining parameters
| Level: | \( N \) | \(=\) | \( 2368 = 2^{6} \cdot 37 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2368.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 36 \) | ||
| Sturm bound: | \(608\) | ||
| Trace bound: | \(11\) | ||
| Distinguishing \(T_p\): | \(3\), \(5\), \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2368))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 316 | 72 | 244 |
| Cusp forms | 293 | 72 | 221 |
| Eisenstein series | 23 | 0 | 23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(37\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(76\) | \(17\) | \(59\) | \(71\) | \(17\) | \(54\) | \(5\) | \(0\) | \(5\) | |||
| \(+\) | \(-\) | \(-\) | \(80\) | \(19\) | \(61\) | \(74\) | \(19\) | \(55\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(-\) | \(82\) | \(19\) | \(63\) | \(76\) | \(19\) | \(57\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(+\) | \(78\) | \(17\) | \(61\) | \(72\) | \(17\) | \(55\) | \(6\) | \(0\) | \(6\) | |||
| Plus space | \(+\) | \(154\) | \(34\) | \(120\) | \(143\) | \(34\) | \(109\) | \(11\) | \(0\) | \(11\) | ||||
| Minus space | \(-\) | \(162\) | \(38\) | \(124\) | \(150\) | \(38\) | \(112\) | \(12\) | \(0\) | \(12\) | ||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2368))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2368))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(2368)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(37))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(74))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(148))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(296))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(592))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1184))\)\(^{\oplus 2}\)