Properties

Label 2366.4.a.q
Level $2366$
Weight $4$
Character orbit 2366.a
Self dual yes
Analytic conductor $139.599$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2366,4,Mod(1,2366)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2366, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2366.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2366 = 2 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2366.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-8,-7,16,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(139.598519074\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.8805372.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 33x^{2} - 12x + 162 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + (\beta_1 - 2) q^{3} + 4 q^{4} + ( - 3 \beta_{3} - \beta_1 - 1) q^{5} + ( - 2 \beta_1 + 4) q^{6} + 7 q^{7} - 8 q^{8} + (\beta_{2} - 2 \beta_1 - 7) q^{9} + (6 \beta_{3} + 2 \beta_1 + 2) q^{10}+ \cdots + (\beta_{3} - 14 \beta_{2} + 9 \beta_1 + 34) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{2} - 7 q^{3} + 16 q^{4} + q^{5} + 14 q^{6} + 28 q^{7} - 32 q^{8} - 29 q^{9} - 2 q^{10} + 15 q^{11} - 28 q^{12} - 56 q^{14} - 67 q^{15} + 64 q^{16} - 24 q^{17} + 58 q^{18} - 21 q^{19} + 4 q^{20}+ \cdots + 129 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 33x^{2} - 12x + 162 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 16 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - 4\nu^{2} - 18\nu + 36 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 16 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{3} + 4\beta_{2} + 26\beta _1 + 28 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.95915
−3.20283
2.11148
6.05051
−2.00000 −5.95915 4.00000 20.4534 11.9183 7.00000 −8.00000 8.51152 −40.9067
1.2 −2.00000 −5.20283 4.00000 −17.5606 10.4057 7.00000 −8.00000 0.0694513 35.1211
1.3 −2.00000 0.111479 4.00000 7.31483 −0.222959 7.00000 −8.00000 −26.9876 −14.6297
1.4 −2.00000 4.05051 4.00000 −9.20761 −8.10101 7.00000 −8.00000 −10.5934 18.4152
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2366.4.a.q 4
13.b even 2 1 2366.4.a.r 4
13.e even 6 2 182.4.g.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
182.4.g.a 8 13.e even 6 2
2366.4.a.q 4 1.a even 1 1 trivial
2366.4.a.r 4 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2366))\):

\( T_{3}^{4} + 7T_{3}^{3} - 15T_{3}^{2} - 124T_{3} + 14 \) Copy content Toggle raw display
\( T_{5}^{4} - T_{5}^{3} - 432T_{5}^{2} - 485T_{5} + 24191 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 7 T^{3} + \cdots + 14 \) Copy content Toggle raw display
$5$ \( T^{4} - T^{3} + \cdots + 24191 \) Copy content Toggle raw display
$7$ \( (T - 7)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} - 15 T^{3} + \cdots + 13446 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + 24 T^{3} + \cdots - 7187129 \) Copy content Toggle raw display
$19$ \( T^{4} + 21 T^{3} + \cdots + 28469644 \) Copy content Toggle raw display
$23$ \( T^{4} + 182 T^{3} + \cdots - 4156776 \) Copy content Toggle raw display
$29$ \( T^{4} - 133 T^{3} + \cdots + 223699827 \) Copy content Toggle raw display
$31$ \( T^{4} - 282 T^{3} + \cdots + 179629026 \) Copy content Toggle raw display
$37$ \( T^{4} + 730 T^{3} + \cdots + 28084048 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 1871392564 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 3840138794 \) Copy content Toggle raw display
$47$ \( T^{4} - 560 T^{3} + \cdots - 133698084 \) Copy content Toggle raw display
$53$ \( T^{4} + 106 T^{3} + \cdots - 651040857 \) Copy content Toggle raw display
$59$ \( T^{4} - 782 T^{3} + \cdots - 404652222 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 28026376196 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 3346141102 \) Copy content Toggle raw display
$71$ \( T^{4} - 82 T^{3} + \cdots + 668493488 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 14950934748 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 123778925184 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 784513099818 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 76052207484 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 276884336612 \) Copy content Toggle raw display
show more
show less