Properties

Label 2366.4.a.m
Level $2366$
Weight $4$
Character orbit 2366.a
Self dual yes
Analytic conductor $139.599$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2366,4,Mod(1,2366)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2366, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2366.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2366 = 2 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2366.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-6,-4,12,27] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(139.598519074\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.4596.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 11x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + (\beta_{2} - \beta_1 - 1) q^{3} + 4 q^{4} + ( - \beta_{2} - 3 \beta_1 + 10) q^{5} + ( - 2 \beta_{2} + 2 \beta_1 + 2) q^{6} - 7 q^{7} - 8 q^{8} + ( - \beta_{2} - 6 \beta_1 + 15) q^{9} + (2 \beta_{2} + 6 \beta_1 - 20) q^{10}+ \cdots + ( - 162 \beta_{2} - 37 \beta_1 + 477) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 6 q^{2} - 4 q^{3} + 12 q^{4} + 27 q^{5} + 8 q^{6} - 21 q^{7} - 24 q^{8} + 39 q^{9} - 54 q^{10} + 32 q^{11} - 16 q^{12} + 42 q^{14} - 20 q^{15} + 48 q^{16} - 132 q^{17} - 78 q^{18} + 27 q^{19} + 108 q^{20}+ \cdots + 1394 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 11x - 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 7 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.281995
3.96506
−2.68306
−2.00000 −7.07449 4.00000 17.2025 14.1490 −7.00000 −8.00000 23.0485 −34.4049
1.2 −2.00000 −4.17350 4.00000 −2.68672 8.34700 −7.00000 −8.00000 −9.58189 5.37344
1.3 −2.00000 7.24799 4.00000 12.4842 −14.4960 −7.00000 −8.00000 25.5334 −24.9685
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2366.4.a.m 3
13.b even 2 1 2366.4.a.o 3
13.d odd 4 2 182.4.d.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
182.4.d.b 6 13.d odd 4 2
2366.4.a.m 3 1.a even 1 1 trivial
2366.4.a.o 3 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2366))\):

\( T_{3}^{3} + 4T_{3}^{2} - 52T_{3} - 214 \) Copy content Toggle raw display
\( T_{5}^{3} - 27T_{5}^{2} + 135T_{5} + 577 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 4 T^{2} + \cdots - 214 \) Copy content Toggle raw display
$5$ \( T^{3} - 27 T^{2} + \cdots + 577 \) Copy content Toggle raw display
$7$ \( (T + 7)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} - 32 T^{2} + \cdots - 17682 \) Copy content Toggle raw display
$13$ \( T^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + 132 T^{2} + \cdots + 40102 \) Copy content Toggle raw display
$19$ \( T^{3} - 27 T^{2} + \cdots - 50833 \) Copy content Toggle raw display
$23$ \( T^{3} - 15 T^{2} + \cdots - 479241 \) Copy content Toggle raw display
$29$ \( T^{3} + 51 T^{2} + \cdots - 250047 \) Copy content Toggle raw display
$31$ \( T^{3} + 127 T^{2} + \cdots - 2275917 \) Copy content Toggle raw display
$37$ \( T^{3} - 344 T^{2} + \cdots + 6180402 \) Copy content Toggle raw display
$41$ \( T^{3} + 574 T^{2} + \cdots - 43093848 \) Copy content Toggle raw display
$43$ \( T^{3} + 681 T^{2} + \cdots + 545731 \) Copy content Toggle raw display
$47$ \( T^{3} - 29 T^{2} + \cdots - 14344291 \) Copy content Toggle raw display
$53$ \( T^{3} - 317 T^{2} + \cdots + 3443153 \) Copy content Toggle raw display
$59$ \( T^{3} + 606 T^{2} + \cdots - 220284 \) Copy content Toggle raw display
$61$ \( T^{3} + 1394 T^{2} + \cdots + 93701016 \) Copy content Toggle raw display
$67$ \( T^{3} + 1100 T^{2} + \cdots - 81648144 \) Copy content Toggle raw display
$71$ \( T^{3} - 1230 T^{2} + \cdots - 15788934 \) Copy content Toggle raw display
$73$ \( T^{3} - 435 T^{2} + \cdots - 23051117 \) Copy content Toggle raw display
$79$ \( T^{3} + 189 T^{2} + \cdots - 235809153 \) Copy content Toggle raw display
$83$ \( T^{3} - 751 T^{2} + \cdots - 102286083 \) Copy content Toggle raw display
$89$ \( T^{3} + 745 T^{2} + \cdots - 456544113 \) Copy content Toggle raw display
$97$ \( T^{3} + 1141 T^{2} + \cdots - 20359717 \) Copy content Toggle raw display
show more
show less