Properties

Label 2366.4.a.bi.1.9
Level $2366$
Weight $4$
Character 2366.1
Self dual yes
Analytic conductor $139.599$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2366,4,Mod(1,2366)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2366.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2366, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2366 = 2 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2366.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,-30,-5,60,26] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(139.598519074\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 5 x^{14} - 272 x^{13} + 1126 x^{12} + 29249 x^{11} - 95770 x^{10} - 1588299 x^{9} + \cdots - 13037372712 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 7\cdot 13^{4} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(-2.45772\) of defining polynomial
Character \(\chi\) \(=\) 2366.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +2.45772 q^{3} +4.00000 q^{4} +21.4663 q^{5} -4.91545 q^{6} +7.00000 q^{7} -8.00000 q^{8} -20.9596 q^{9} -42.9327 q^{10} -42.1847 q^{11} +9.83090 q^{12} -14.0000 q^{14} +52.7583 q^{15} +16.0000 q^{16} +45.1263 q^{17} +41.9192 q^{18} -16.3522 q^{19} +85.8653 q^{20} +17.2041 q^{21} +84.3694 q^{22} +98.1670 q^{23} -19.6618 q^{24} +335.803 q^{25} -117.871 q^{27} +28.0000 q^{28} -43.2528 q^{29} -105.517 q^{30} +92.9766 q^{31} -32.0000 q^{32} -103.678 q^{33} -90.2526 q^{34} +150.264 q^{35} -83.8384 q^{36} -77.6622 q^{37} +32.7043 q^{38} -171.731 q^{40} -453.446 q^{41} -34.4081 q^{42} -43.8052 q^{43} -168.739 q^{44} -449.925 q^{45} -196.334 q^{46} +487.388 q^{47} +39.3236 q^{48} +49.0000 q^{49} -671.606 q^{50} +110.908 q^{51} -428.977 q^{53} +235.743 q^{54} -905.551 q^{55} -56.0000 q^{56} -40.1891 q^{57} +86.5057 q^{58} +514.832 q^{59} +211.033 q^{60} +623.552 q^{61} -185.953 q^{62} -146.717 q^{63} +64.0000 q^{64} +207.357 q^{66} +775.921 q^{67} +180.505 q^{68} +241.267 q^{69} -300.529 q^{70} +37.4567 q^{71} +167.677 q^{72} +426.048 q^{73} +155.324 q^{74} +825.312 q^{75} -65.4086 q^{76} -295.293 q^{77} +656.199 q^{79} +343.461 q^{80} +276.213 q^{81} +906.891 q^{82} +1430.27 q^{83} +68.8163 q^{84} +968.696 q^{85} +87.6103 q^{86} -106.304 q^{87} +337.478 q^{88} -527.502 q^{89} +899.851 q^{90} +392.668 q^{92} +228.511 q^{93} -974.776 q^{94} -351.021 q^{95} -78.6472 q^{96} -531.618 q^{97} -98.0000 q^{98} +884.175 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 30 q^{2} - 5 q^{3} + 60 q^{4} + 26 q^{5} + 10 q^{6} + 105 q^{7} - 120 q^{8} + 164 q^{9} - 52 q^{10} + 7 q^{11} - 20 q^{12} - 210 q^{14} + 86 q^{15} + 240 q^{16} + 16 q^{17} - 328 q^{18} + 511 q^{19}+ \cdots + 2790 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 2.45772 0.472989 0.236495 0.971633i \(-0.424001\pi\)
0.236495 + 0.971633i \(0.424001\pi\)
\(4\) 4.00000 0.500000
\(5\) 21.4663 1.92001 0.960003 0.279988i \(-0.0903306\pi\)
0.960003 + 0.279988i \(0.0903306\pi\)
\(6\) −4.91545 −0.334454
\(7\) 7.00000 0.377964
\(8\) −8.00000 −0.353553
\(9\) −20.9596 −0.776281
\(10\) −42.9327 −1.35765
\(11\) −42.1847 −1.15629 −0.578144 0.815935i \(-0.696223\pi\)
−0.578144 + 0.815935i \(0.696223\pi\)
\(12\) 9.83090 0.236495
\(13\) 0 0
\(14\) −14.0000 −0.267261
\(15\) 52.7583 0.908143
\(16\) 16.0000 0.250000
\(17\) 45.1263 0.643808 0.321904 0.946772i \(-0.395677\pi\)
0.321904 + 0.946772i \(0.395677\pi\)
\(18\) 41.9192 0.548914
\(19\) −16.3522 −0.197444 −0.0987222 0.995115i \(-0.531476\pi\)
−0.0987222 + 0.995115i \(0.531476\pi\)
\(20\) 85.8653 0.960003
\(21\) 17.2041 0.178773
\(22\) 84.3694 0.817619
\(23\) 98.1670 0.889967 0.444983 0.895539i \(-0.353210\pi\)
0.444983 + 0.895539i \(0.353210\pi\)
\(24\) −19.6618 −0.167227
\(25\) 335.803 2.68643
\(26\) 0 0
\(27\) −117.871 −0.840162
\(28\) 28.0000 0.188982
\(29\) −43.2528 −0.276960 −0.138480 0.990365i \(-0.544222\pi\)
−0.138480 + 0.990365i \(0.544222\pi\)
\(30\) −105.517 −0.642154
\(31\) 92.9766 0.538680 0.269340 0.963045i \(-0.413194\pi\)
0.269340 + 0.963045i \(0.413194\pi\)
\(32\) −32.0000 −0.176777
\(33\) −103.678 −0.546912
\(34\) −90.2526 −0.455241
\(35\) 150.264 0.725694
\(36\) −83.8384 −0.388141
\(37\) −77.6622 −0.345070 −0.172535 0.985003i \(-0.555196\pi\)
−0.172535 + 0.985003i \(0.555196\pi\)
\(38\) 32.7043 0.139614
\(39\) 0 0
\(40\) −171.731 −0.678825
\(41\) −453.446 −1.72723 −0.863614 0.504154i \(-0.831804\pi\)
−0.863614 + 0.504154i \(0.831804\pi\)
\(42\) −34.4081 −0.126412
\(43\) −43.8052 −0.155354 −0.0776770 0.996979i \(-0.524750\pi\)
−0.0776770 + 0.996979i \(0.524750\pi\)
\(44\) −168.739 −0.578144
\(45\) −449.925 −1.49047
\(46\) −196.334 −0.629301
\(47\) 487.388 1.51261 0.756307 0.654217i \(-0.227002\pi\)
0.756307 + 0.654217i \(0.227002\pi\)
\(48\) 39.3236 0.118247
\(49\) 49.0000 0.142857
\(50\) −671.606 −1.89959
\(51\) 110.908 0.304514
\(52\) 0 0
\(53\) −428.977 −1.11178 −0.555892 0.831254i \(-0.687623\pi\)
−0.555892 + 0.831254i \(0.687623\pi\)
\(54\) 235.743 0.594084
\(55\) −905.551 −2.22008
\(56\) −56.0000 −0.133631
\(57\) −40.1891 −0.0933890
\(58\) 86.5057 0.195841
\(59\) 514.832 1.13603 0.568013 0.823020i \(-0.307712\pi\)
0.568013 + 0.823020i \(0.307712\pi\)
\(60\) 211.033 0.454071
\(61\) 623.552 1.30881 0.654406 0.756143i \(-0.272919\pi\)
0.654406 + 0.756143i \(0.272919\pi\)
\(62\) −185.953 −0.380904
\(63\) −146.717 −0.293407
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 207.357 0.386725
\(67\) 775.921 1.41483 0.707417 0.706797i \(-0.249860\pi\)
0.707417 + 0.706797i \(0.249860\pi\)
\(68\) 180.505 0.321904
\(69\) 241.267 0.420945
\(70\) −300.529 −0.513143
\(71\) 37.4567 0.0626097 0.0313048 0.999510i \(-0.490034\pi\)
0.0313048 + 0.999510i \(0.490034\pi\)
\(72\) 167.677 0.274457
\(73\) 426.048 0.683085 0.341542 0.939866i \(-0.389051\pi\)
0.341542 + 0.939866i \(0.389051\pi\)
\(74\) 155.324 0.244001
\(75\) 825.312 1.27065
\(76\) −65.4086 −0.0987222
\(77\) −295.293 −0.437036
\(78\) 0 0
\(79\) 656.199 0.934533 0.467267 0.884116i \(-0.345239\pi\)
0.467267 + 0.884116i \(0.345239\pi\)
\(80\) 343.461 0.480002
\(81\) 276.213 0.378894
\(82\) 906.891 1.22133
\(83\) 1430.27 1.89148 0.945739 0.324928i \(-0.105340\pi\)
0.945739 + 0.324928i \(0.105340\pi\)
\(84\) 68.8163 0.0893866
\(85\) 968.696 1.23612
\(86\) 87.6103 0.109852
\(87\) −106.304 −0.130999
\(88\) 337.478 0.408810
\(89\) −527.502 −0.628260 −0.314130 0.949380i \(-0.601713\pi\)
−0.314130 + 0.949380i \(0.601713\pi\)
\(90\) 899.851 1.05392
\(91\) 0 0
\(92\) 392.668 0.444983
\(93\) 228.511 0.254790
\(94\) −974.776 −1.06958
\(95\) −351.021 −0.379094
\(96\) −78.6472 −0.0836135
\(97\) −531.618 −0.556470 −0.278235 0.960513i \(-0.589749\pi\)
−0.278235 + 0.960513i \(0.589749\pi\)
\(98\) −98.0000 −0.101015
\(99\) 884.175 0.897605
\(100\) 1343.21 1.34321
\(101\) −778.131 −0.766603 −0.383302 0.923623i \(-0.625213\pi\)
−0.383302 + 0.923623i \(0.625213\pi\)
\(102\) −221.816 −0.215324
\(103\) −2050.80 −1.96186 −0.980930 0.194362i \(-0.937736\pi\)
−0.980930 + 0.194362i \(0.937736\pi\)
\(104\) 0 0
\(105\) 369.308 0.343246
\(106\) 857.955 0.786150
\(107\) 471.187 0.425713 0.212857 0.977083i \(-0.431723\pi\)
0.212857 + 0.977083i \(0.431723\pi\)
\(108\) −471.486 −0.420081
\(109\) 2152.86 1.89180 0.945900 0.324457i \(-0.105182\pi\)
0.945900 + 0.324457i \(0.105182\pi\)
\(110\) 1811.10 1.56983
\(111\) −190.872 −0.163214
\(112\) 112.000 0.0944911
\(113\) 2054.43 1.71030 0.855152 0.518377i \(-0.173464\pi\)
0.855152 + 0.518377i \(0.173464\pi\)
\(114\) 80.3782 0.0660360
\(115\) 2107.28 1.70874
\(116\) −173.011 −0.138480
\(117\) 0 0
\(118\) −1029.66 −0.803291
\(119\) 315.884 0.243337
\(120\) −422.066 −0.321077
\(121\) 448.551 0.337003
\(122\) −1247.10 −0.925471
\(123\) −1114.44 −0.816960
\(124\) 371.906 0.269340
\(125\) 4525.17 3.23795
\(126\) 293.434 0.207470
\(127\) 2191.29 1.53107 0.765533 0.643397i \(-0.222475\pi\)
0.765533 + 0.643397i \(0.222475\pi\)
\(128\) −128.000 −0.0883883
\(129\) −107.661 −0.0734808
\(130\) 0 0
\(131\) −494.073 −0.329522 −0.164761 0.986334i \(-0.552685\pi\)
−0.164761 + 0.986334i \(0.552685\pi\)
\(132\) −414.714 −0.273456
\(133\) −114.465 −0.0746269
\(134\) −1551.84 −1.00044
\(135\) −2530.27 −1.61312
\(136\) −361.011 −0.227621
\(137\) 890.621 0.555408 0.277704 0.960667i \(-0.410427\pi\)
0.277704 + 0.960667i \(0.410427\pi\)
\(138\) −482.535 −0.297653
\(139\) −2416.47 −1.47455 −0.737275 0.675592i \(-0.763888\pi\)
−0.737275 + 0.675592i \(0.763888\pi\)
\(140\) 601.057 0.362847
\(141\) 1197.87 0.715450
\(142\) −74.9133 −0.0442717
\(143\) 0 0
\(144\) −335.353 −0.194070
\(145\) −928.480 −0.531766
\(146\) −852.097 −0.483014
\(147\) 120.428 0.0675699
\(148\) −310.649 −0.172535
\(149\) 1041.77 0.572787 0.286393 0.958112i \(-0.407544\pi\)
0.286393 + 0.958112i \(0.407544\pi\)
\(150\) −1650.62 −0.898486
\(151\) −135.121 −0.0728214 −0.0364107 0.999337i \(-0.511592\pi\)
−0.0364107 + 0.999337i \(0.511592\pi\)
\(152\) 130.817 0.0698071
\(153\) −945.829 −0.499776
\(154\) 590.586 0.309031
\(155\) 1995.87 1.03427
\(156\) 0 0
\(157\) 2020.86 1.02728 0.513638 0.858007i \(-0.328297\pi\)
0.513638 + 0.858007i \(0.328297\pi\)
\(158\) −1312.40 −0.660815
\(159\) −1054.31 −0.525862
\(160\) −686.922 −0.339412
\(161\) 687.169 0.336376
\(162\) −552.427 −0.267918
\(163\) 127.655 0.0613418 0.0306709 0.999530i \(-0.490236\pi\)
0.0306709 + 0.999530i \(0.490236\pi\)
\(164\) −1813.78 −0.863614
\(165\) −2225.59 −1.05007
\(166\) −2860.54 −1.33748
\(167\) 245.236 0.113634 0.0568171 0.998385i \(-0.481905\pi\)
0.0568171 + 0.998385i \(0.481905\pi\)
\(168\) −137.633 −0.0632058
\(169\) 0 0
\(170\) −1937.39 −0.874066
\(171\) 342.735 0.153272
\(172\) −175.221 −0.0776770
\(173\) 1019.24 0.447926 0.223963 0.974598i \(-0.428100\pi\)
0.223963 + 0.974598i \(0.428100\pi\)
\(174\) 212.607 0.0926305
\(175\) 2350.62 1.01537
\(176\) −674.956 −0.289072
\(177\) 1265.32 0.537328
\(178\) 1055.00 0.444247
\(179\) −2542.27 −1.06155 −0.530777 0.847512i \(-0.678100\pi\)
−0.530777 + 0.847512i \(0.678100\pi\)
\(180\) −1799.70 −0.745233
\(181\) −377.122 −0.154869 −0.0774344 0.996997i \(-0.524673\pi\)
−0.0774344 + 0.996997i \(0.524673\pi\)
\(182\) 0 0
\(183\) 1532.52 0.619054
\(184\) −785.336 −0.314651
\(185\) −1667.12 −0.662537
\(186\) −457.021 −0.180164
\(187\) −1903.64 −0.744428
\(188\) 1949.55 0.756307
\(189\) −825.100 −0.317551
\(190\) 702.042 0.268060
\(191\) −3337.17 −1.26424 −0.632118 0.774872i \(-0.717814\pi\)
−0.632118 + 0.774872i \(0.717814\pi\)
\(192\) 157.294 0.0591237
\(193\) 4056.26 1.51283 0.756414 0.654093i \(-0.226949\pi\)
0.756414 + 0.654093i \(0.226949\pi\)
\(194\) 1063.24 0.393484
\(195\) 0 0
\(196\) 196.000 0.0714286
\(197\) −292.748 −0.105875 −0.0529377 0.998598i \(-0.516858\pi\)
−0.0529377 + 0.998598i \(0.516858\pi\)
\(198\) −1768.35 −0.634703
\(199\) −1145.83 −0.408170 −0.204085 0.978953i \(-0.565422\pi\)
−0.204085 + 0.978953i \(0.565422\pi\)
\(200\) −2686.43 −0.949795
\(201\) 1907.00 0.669201
\(202\) 1556.26 0.542070
\(203\) −302.770 −0.104681
\(204\) 443.632 0.152257
\(205\) −9733.81 −3.31629
\(206\) 4101.60 1.38724
\(207\) −2057.54 −0.690864
\(208\) 0 0
\(209\) 689.811 0.228303
\(210\) −738.616 −0.242711
\(211\) −1319.06 −0.430368 −0.215184 0.976573i \(-0.569035\pi\)
−0.215184 + 0.976573i \(0.569035\pi\)
\(212\) −1715.91 −0.555892
\(213\) 92.0581 0.0296137
\(214\) −942.373 −0.301025
\(215\) −940.336 −0.298281
\(216\) 942.972 0.297042
\(217\) 650.836 0.203602
\(218\) −4305.71 −1.33771
\(219\) 1047.11 0.323092
\(220\) −3622.20 −1.11004
\(221\) 0 0
\(222\) 381.745 0.115410
\(223\) −2989.54 −0.897732 −0.448866 0.893599i \(-0.648172\pi\)
−0.448866 + 0.893599i \(0.648172\pi\)
\(224\) −224.000 −0.0668153
\(225\) −7038.30 −2.08542
\(226\) −4108.86 −1.20937
\(227\) −501.158 −0.146533 −0.0732666 0.997312i \(-0.523342\pi\)
−0.0732666 + 0.997312i \(0.523342\pi\)
\(228\) −160.756 −0.0466945
\(229\) 2554.56 0.737161 0.368581 0.929596i \(-0.379844\pi\)
0.368581 + 0.929596i \(0.379844\pi\)
\(230\) −4214.57 −1.20826
\(231\) −725.749 −0.206713
\(232\) 346.023 0.0979203
\(233\) 5111.50 1.43719 0.718596 0.695428i \(-0.244785\pi\)
0.718596 + 0.695428i \(0.244785\pi\)
\(234\) 0 0
\(235\) 10462.4 2.90423
\(236\) 2059.33 0.568013
\(237\) 1612.76 0.442024
\(238\) −631.769 −0.172065
\(239\) 2036.83 0.551261 0.275631 0.961264i \(-0.411113\pi\)
0.275631 + 0.961264i \(0.411113\pi\)
\(240\) 844.133 0.227036
\(241\) 7017.12 1.87557 0.937785 0.347218i \(-0.112874\pi\)
0.937785 + 0.347218i \(0.112874\pi\)
\(242\) −897.102 −0.238297
\(243\) 3861.39 1.01937
\(244\) 2494.21 0.654406
\(245\) 1051.85 0.274287
\(246\) 2228.89 0.577678
\(247\) 0 0
\(248\) −743.812 −0.190452
\(249\) 3515.21 0.894649
\(250\) −9050.34 −2.28958
\(251\) −3861.51 −0.971061 −0.485530 0.874220i \(-0.661374\pi\)
−0.485530 + 0.874220i \(0.661374\pi\)
\(252\) −586.869 −0.146703
\(253\) −4141.15 −1.02906
\(254\) −4382.58 −1.08263
\(255\) 2380.79 0.584670
\(256\) 256.000 0.0625000
\(257\) 5753.13 1.39638 0.698191 0.715911i \(-0.253989\pi\)
0.698191 + 0.715911i \(0.253989\pi\)
\(258\) 215.322 0.0519588
\(259\) −543.636 −0.130424
\(260\) 0 0
\(261\) 906.562 0.214999
\(262\) 988.145 0.233007
\(263\) −2550.19 −0.597914 −0.298957 0.954267i \(-0.596639\pi\)
−0.298957 + 0.954267i \(0.596639\pi\)
\(264\) 829.427 0.193363
\(265\) −9208.57 −2.13463
\(266\) 228.930 0.0527692
\(267\) −1296.45 −0.297160
\(268\) 3103.68 0.707417
\(269\) 2427.64 0.550244 0.275122 0.961409i \(-0.411282\pi\)
0.275122 + 0.961409i \(0.411282\pi\)
\(270\) 5060.53 1.14065
\(271\) 4742.34 1.06301 0.531506 0.847054i \(-0.321626\pi\)
0.531506 + 0.847054i \(0.321626\pi\)
\(272\) 722.021 0.160952
\(273\) 0 0
\(274\) −1781.24 −0.392733
\(275\) −14165.8 −3.10628
\(276\) 965.069 0.210472
\(277\) −4289.92 −0.930527 −0.465264 0.885172i \(-0.654040\pi\)
−0.465264 + 0.885172i \(0.654040\pi\)
\(278\) 4832.95 1.04266
\(279\) −1948.75 −0.418167
\(280\) −1202.11 −0.256572
\(281\) −8976.53 −1.90568 −0.952838 0.303481i \(-0.901851\pi\)
−0.952838 + 0.303481i \(0.901851\pi\)
\(282\) −2395.73 −0.505900
\(283\) 1172.18 0.246216 0.123108 0.992393i \(-0.460714\pi\)
0.123108 + 0.992393i \(0.460714\pi\)
\(284\) 149.827 0.0313048
\(285\) −862.712 −0.179308
\(286\) 0 0
\(287\) −3174.12 −0.652831
\(288\) 670.707 0.137228
\(289\) −2876.62 −0.585511
\(290\) 1856.96 0.376015
\(291\) −1306.57 −0.263205
\(292\) 1704.19 0.341542
\(293\) 7998.94 1.59489 0.797445 0.603391i \(-0.206184\pi\)
0.797445 + 0.603391i \(0.206184\pi\)
\(294\) −240.857 −0.0477791
\(295\) 11051.6 2.18118
\(296\) 621.298 0.122001
\(297\) 4972.37 0.971469
\(298\) −2083.54 −0.405021
\(299\) 0 0
\(300\) 3301.25 0.635325
\(301\) −306.636 −0.0587183
\(302\) 270.243 0.0514925
\(303\) −1912.43 −0.362595
\(304\) −261.635 −0.0493611
\(305\) 13385.4 2.51293
\(306\) 1891.66 0.353395
\(307\) 452.273 0.0840801 0.0420401 0.999116i \(-0.486614\pi\)
0.0420401 + 0.999116i \(0.486614\pi\)
\(308\) −1181.17 −0.218518
\(309\) −5040.31 −0.927938
\(310\) −3991.73 −0.731339
\(311\) −5183.89 −0.945182 −0.472591 0.881282i \(-0.656681\pi\)
−0.472591 + 0.881282i \(0.656681\pi\)
\(312\) 0 0
\(313\) 647.884 0.116999 0.0584993 0.998287i \(-0.481368\pi\)
0.0584993 + 0.998287i \(0.481368\pi\)
\(314\) −4041.73 −0.726394
\(315\) −3149.48 −0.563343
\(316\) 2624.80 0.467267
\(317\) −3184.41 −0.564209 −0.282104 0.959384i \(-0.591032\pi\)
−0.282104 + 0.959384i \(0.591032\pi\)
\(318\) 2108.62 0.371841
\(319\) 1824.61 0.320246
\(320\) 1373.84 0.240001
\(321\) 1158.05 0.201358
\(322\) −1374.34 −0.237854
\(323\) −737.913 −0.127116
\(324\) 1104.85 0.189447
\(325\) 0 0
\(326\) −255.310 −0.0433752
\(327\) 5291.13 0.894801
\(328\) 3627.57 0.610667
\(329\) 3411.72 0.571714
\(330\) 4451.19 0.742515
\(331\) −5002.48 −0.830699 −0.415349 0.909662i \(-0.636341\pi\)
−0.415349 + 0.909662i \(0.636341\pi\)
\(332\) 5721.08 0.945739
\(333\) 1627.77 0.267871
\(334\) −490.472 −0.0803515
\(335\) 16656.2 2.71649
\(336\) 275.265 0.0446933
\(337\) 10137.5 1.63865 0.819326 0.573328i \(-0.194348\pi\)
0.819326 + 0.573328i \(0.194348\pi\)
\(338\) 0 0
\(339\) 5049.22 0.808956
\(340\) 3874.79 0.618058
\(341\) −3922.19 −0.622870
\(342\) −685.469 −0.108380
\(343\) 343.000 0.0539949
\(344\) 350.441 0.0549259
\(345\) 5179.12 0.808216
\(346\) −2038.48 −0.316732
\(347\) 4889.20 0.756386 0.378193 0.925727i \(-0.376546\pi\)
0.378193 + 0.925727i \(0.376546\pi\)
\(348\) −425.214 −0.0654996
\(349\) −8318.72 −1.27591 −0.637953 0.770075i \(-0.720219\pi\)
−0.637953 + 0.770075i \(0.720219\pi\)
\(350\) −4701.25 −0.717978
\(351\) 0 0
\(352\) 1349.91 0.204405
\(353\) 8531.18 1.28631 0.643157 0.765734i \(-0.277624\pi\)
0.643157 + 0.765734i \(0.277624\pi\)
\(354\) −2530.63 −0.379948
\(355\) 804.057 0.120211
\(356\) −2110.01 −0.314130
\(357\) 776.356 0.115096
\(358\) 5084.54 0.750632
\(359\) 2441.03 0.358865 0.179433 0.983770i \(-0.442574\pi\)
0.179433 + 0.983770i \(0.442574\pi\)
\(360\) 3599.40 0.526959
\(361\) −6591.61 −0.961016
\(362\) 754.244 0.109509
\(363\) 1102.41 0.159399
\(364\) 0 0
\(365\) 9145.69 1.31153
\(366\) −3065.04 −0.437738
\(367\) −6458.62 −0.918630 −0.459315 0.888274i \(-0.651905\pi\)
−0.459315 + 0.888274i \(0.651905\pi\)
\(368\) 1570.67 0.222492
\(369\) 9504.04 1.34081
\(370\) 3334.25 0.468484
\(371\) −3002.84 −0.420215
\(372\) 914.043 0.127395
\(373\) −2554.93 −0.354662 −0.177331 0.984151i \(-0.556746\pi\)
−0.177331 + 0.984151i \(0.556746\pi\)
\(374\) 3807.28 0.526390
\(375\) 11121.6 1.53151
\(376\) −3899.11 −0.534790
\(377\) 0 0
\(378\) 1650.20 0.224543
\(379\) −12454.6 −1.68799 −0.843995 0.536350i \(-0.819803\pi\)
−0.843995 + 0.536350i \(0.819803\pi\)
\(380\) −1404.08 −0.189547
\(381\) 5385.58 0.724178
\(382\) 6674.34 0.893950
\(383\) 7870.26 1.05000 0.525002 0.851101i \(-0.324064\pi\)
0.525002 + 0.851101i \(0.324064\pi\)
\(384\) −314.589 −0.0418067
\(385\) −6338.86 −0.839112
\(386\) −8112.52 −1.06973
\(387\) 918.138 0.120598
\(388\) −2126.47 −0.278235
\(389\) −2670.80 −0.348111 −0.174055 0.984736i \(-0.555687\pi\)
−0.174055 + 0.984736i \(0.555687\pi\)
\(390\) 0 0
\(391\) 4429.91 0.572968
\(392\) −392.000 −0.0505076
\(393\) −1214.29 −0.155860
\(394\) 585.497 0.0748652
\(395\) 14086.2 1.79431
\(396\) 3536.70 0.448802
\(397\) −82.9973 −0.0104925 −0.00524624 0.999986i \(-0.501670\pi\)
−0.00524624 + 0.999986i \(0.501670\pi\)
\(398\) 2291.66 0.288619
\(399\) −281.324 −0.0352977
\(400\) 5372.85 0.671606
\(401\) −11691.1 −1.45592 −0.727962 0.685617i \(-0.759532\pi\)
−0.727962 + 0.685617i \(0.759532\pi\)
\(402\) −3814.00 −0.473196
\(403\) 0 0
\(404\) −3112.52 −0.383302
\(405\) 5929.29 0.727478
\(406\) 605.540 0.0740208
\(407\) 3276.16 0.399000
\(408\) −887.264 −0.107662
\(409\) −5383.51 −0.650850 −0.325425 0.945568i \(-0.605507\pi\)
−0.325425 + 0.945568i \(0.605507\pi\)
\(410\) 19467.6 2.34497
\(411\) 2188.90 0.262702
\(412\) −8203.21 −0.980930
\(413\) 3603.83 0.429377
\(414\) 4115.08 0.488515
\(415\) 30702.7 3.63165
\(416\) 0 0
\(417\) −5939.02 −0.697447
\(418\) −1379.62 −0.161434
\(419\) −13286.9 −1.54918 −0.774591 0.632462i \(-0.782044\pi\)
−0.774591 + 0.632462i \(0.782044\pi\)
\(420\) 1477.23 0.171623
\(421\) −663.627 −0.0768247 −0.0384123 0.999262i \(-0.512230\pi\)
−0.0384123 + 0.999262i \(0.512230\pi\)
\(422\) 2638.12 0.304316
\(423\) −10215.5 −1.17421
\(424\) 3431.82 0.393075
\(425\) 15153.6 1.72954
\(426\) −184.116 −0.0209401
\(427\) 4364.86 0.494685
\(428\) 1884.75 0.212857
\(429\) 0 0
\(430\) 1880.67 0.210916
\(431\) −9952.09 −1.11224 −0.556120 0.831102i \(-0.687711\pi\)
−0.556120 + 0.831102i \(0.687711\pi\)
\(432\) −1885.94 −0.210040
\(433\) 2926.23 0.324771 0.162385 0.986727i \(-0.448081\pi\)
0.162385 + 0.986727i \(0.448081\pi\)
\(434\) −1301.67 −0.143968
\(435\) −2281.95 −0.251520
\(436\) 8611.43 0.945900
\(437\) −1605.24 −0.175719
\(438\) −2094.22 −0.228460
\(439\) 6927.49 0.753146 0.376573 0.926387i \(-0.377102\pi\)
0.376573 + 0.926387i \(0.377102\pi\)
\(440\) 7244.41 0.784917
\(441\) −1027.02 −0.110897
\(442\) 0 0
\(443\) −15063.1 −1.61551 −0.807753 0.589521i \(-0.799316\pi\)
−0.807753 + 0.589521i \(0.799316\pi\)
\(444\) −763.489 −0.0816072
\(445\) −11323.5 −1.20626
\(446\) 5979.07 0.634792
\(447\) 2560.39 0.270922
\(448\) 448.000 0.0472456
\(449\) 11134.3 1.17029 0.585144 0.810929i \(-0.301038\pi\)
0.585144 + 0.810929i \(0.301038\pi\)
\(450\) 14076.6 1.47462
\(451\) 19128.5 1.99717
\(452\) 8217.72 0.855152
\(453\) −332.091 −0.0344437
\(454\) 1002.32 0.103615
\(455\) 0 0
\(456\) 321.513 0.0330180
\(457\) −18478.7 −1.89146 −0.945730 0.324953i \(-0.894651\pi\)
−0.945730 + 0.324953i \(0.894651\pi\)
\(458\) −5109.11 −0.521252
\(459\) −5319.10 −0.540903
\(460\) 8429.14 0.854371
\(461\) −7470.13 −0.754704 −0.377352 0.926070i \(-0.623165\pi\)
−0.377352 + 0.926070i \(0.623165\pi\)
\(462\) 1451.50 0.146168
\(463\) 14194.1 1.42474 0.712369 0.701805i \(-0.247622\pi\)
0.712369 + 0.701805i \(0.247622\pi\)
\(464\) −692.046 −0.0692401
\(465\) 4905.29 0.489198
\(466\) −10223.0 −1.01625
\(467\) 9488.66 0.940220 0.470110 0.882608i \(-0.344214\pi\)
0.470110 + 0.882608i \(0.344214\pi\)
\(468\) 0 0
\(469\) 5431.45 0.534757
\(470\) −20924.9 −2.05360
\(471\) 4966.72 0.485891
\(472\) −4118.66 −0.401646
\(473\) 1847.91 0.179634
\(474\) −3225.51 −0.312558
\(475\) −5491.11 −0.530420
\(476\) 1263.54 0.121668
\(477\) 8991.19 0.863057
\(478\) −4073.66 −0.389801
\(479\) 5262.47 0.501980 0.250990 0.967990i \(-0.419244\pi\)
0.250990 + 0.967990i \(0.419244\pi\)
\(480\) −1688.27 −0.160538
\(481\) 0 0
\(482\) −14034.2 −1.32623
\(483\) 1688.87 0.159102
\(484\) 1794.20 0.168501
\(485\) −11411.9 −1.06843
\(486\) −7722.77 −0.720807
\(487\) −8449.29 −0.786188 −0.393094 0.919498i \(-0.628595\pi\)
−0.393094 + 0.919498i \(0.628595\pi\)
\(488\) −4988.41 −0.462735
\(489\) 313.741 0.0290140
\(490\) −2103.70 −0.193950
\(491\) 7096.25 0.652239 0.326120 0.945329i \(-0.394259\pi\)
0.326120 + 0.945329i \(0.394259\pi\)
\(492\) −4457.78 −0.408480
\(493\) −1951.84 −0.178309
\(494\) 0 0
\(495\) 18980.0 1.72341
\(496\) 1487.62 0.134670
\(497\) 262.197 0.0236642
\(498\) −7030.42 −0.632612
\(499\) −21196.7 −1.90159 −0.950795 0.309820i \(-0.899731\pi\)
−0.950795 + 0.309820i \(0.899731\pi\)
\(500\) 18100.7 1.61897
\(501\) 602.722 0.0537478
\(502\) 7723.02 0.686644
\(503\) −1101.11 −0.0976061 −0.0488031 0.998808i \(-0.515541\pi\)
−0.0488031 + 0.998808i \(0.515541\pi\)
\(504\) 1173.74 0.103735
\(505\) −16703.6 −1.47188
\(506\) 8282.29 0.727654
\(507\) 0 0
\(508\) 8765.15 0.765533
\(509\) 16000.9 1.39338 0.696688 0.717374i \(-0.254656\pi\)
0.696688 + 0.717374i \(0.254656\pi\)
\(510\) −4761.58 −0.413424
\(511\) 2982.34 0.258182
\(512\) −512.000 −0.0441942
\(513\) 1927.45 0.165885
\(514\) −11506.3 −0.987391
\(515\) −44023.2 −3.76678
\(516\) −430.644 −0.0367404
\(517\) −20560.3 −1.74902
\(518\) 1087.27 0.0922238
\(519\) 2505.01 0.211864
\(520\) 0 0
\(521\) −12150.4 −1.02172 −0.510861 0.859664i \(-0.670673\pi\)
−0.510861 + 0.859664i \(0.670673\pi\)
\(522\) −1813.12 −0.152027
\(523\) 7856.36 0.656854 0.328427 0.944529i \(-0.393481\pi\)
0.328427 + 0.944529i \(0.393481\pi\)
\(524\) −1976.29 −0.164761
\(525\) 5777.18 0.480261
\(526\) 5100.37 0.422789
\(527\) 4195.69 0.346807
\(528\) −1658.85 −0.136728
\(529\) −2530.24 −0.207960
\(530\) 18417.1 1.50941
\(531\) −10790.7 −0.881875
\(532\) −457.860 −0.0373135
\(533\) 0 0
\(534\) 2592.91 0.210124
\(535\) 10114.6 0.817373
\(536\) −6207.37 −0.500219
\(537\) −6248.19 −0.502103
\(538\) −4855.28 −0.389081
\(539\) −2067.05 −0.165184
\(540\) −10121.1 −0.806558
\(541\) 13035.7 1.03595 0.517976 0.855395i \(-0.326686\pi\)
0.517976 + 0.855395i \(0.326686\pi\)
\(542\) −9484.67 −0.751663
\(543\) −926.862 −0.0732513
\(544\) −1444.04 −0.113810
\(545\) 46213.9 3.63227
\(546\) 0 0
\(547\) −21225.0 −1.65908 −0.829540 0.558448i \(-0.811397\pi\)
−0.829540 + 0.558448i \(0.811397\pi\)
\(548\) 3562.48 0.277704
\(549\) −13069.4 −1.01601
\(550\) 28331.5 2.19647
\(551\) 707.277 0.0546843
\(552\) −1930.14 −0.148826
\(553\) 4593.39 0.353220
\(554\) 8579.83 0.657982
\(555\) −4097.33 −0.313373
\(556\) −9665.89 −0.737275
\(557\) 19654.1 1.49510 0.747552 0.664203i \(-0.231229\pi\)
0.747552 + 0.664203i \(0.231229\pi\)
\(558\) 3897.50 0.295689
\(559\) 0 0
\(560\) 2404.23 0.181424
\(561\) −4678.63 −0.352106
\(562\) 17953.1 1.34752
\(563\) −12386.7 −0.927240 −0.463620 0.886034i \(-0.653450\pi\)
−0.463620 + 0.886034i \(0.653450\pi\)
\(564\) 4791.46 0.357725
\(565\) 44101.0 3.28380
\(566\) −2344.37 −0.174101
\(567\) 1933.49 0.143208
\(568\) −299.653 −0.0221359
\(569\) −957.883 −0.0705739 −0.0352869 0.999377i \(-0.511235\pi\)
−0.0352869 + 0.999377i \(0.511235\pi\)
\(570\) 1725.42 0.126790
\(571\) 2533.56 0.185685 0.0928424 0.995681i \(-0.470405\pi\)
0.0928424 + 0.995681i \(0.470405\pi\)
\(572\) 0 0
\(573\) −8201.84 −0.597970
\(574\) 6348.24 0.461621
\(575\) 32964.8 2.39083
\(576\) −1341.41 −0.0970351
\(577\) 20857.3 1.50485 0.752426 0.658677i \(-0.228884\pi\)
0.752426 + 0.658677i \(0.228884\pi\)
\(578\) 5753.23 0.414019
\(579\) 9969.17 0.715552
\(580\) −3713.92 −0.265883
\(581\) 10011.9 0.714911
\(582\) 2613.14 0.186114
\(583\) 18096.3 1.28554
\(584\) −3408.39 −0.241507
\(585\) 0 0
\(586\) −15997.9 −1.12776
\(587\) −11074.0 −0.778656 −0.389328 0.921099i \(-0.627293\pi\)
−0.389328 + 0.921099i \(0.627293\pi\)
\(588\) 481.714 0.0337849
\(589\) −1520.37 −0.106359
\(590\) −22103.1 −1.54232
\(591\) −719.495 −0.0500779
\(592\) −1242.60 −0.0862675
\(593\) −16008.7 −1.10860 −0.554298 0.832318i \(-0.687013\pi\)
−0.554298 + 0.832318i \(0.687013\pi\)
\(594\) −9944.75 −0.686933
\(595\) 6780.87 0.467208
\(596\) 4167.09 0.286393
\(597\) −2816.13 −0.193060
\(598\) 0 0
\(599\) −11262.6 −0.768242 −0.384121 0.923283i \(-0.625495\pi\)
−0.384121 + 0.923283i \(0.625495\pi\)
\(600\) −6602.49 −0.449243
\(601\) −4326.39 −0.293639 −0.146820 0.989163i \(-0.546904\pi\)
−0.146820 + 0.989163i \(0.546904\pi\)
\(602\) 613.272 0.0415201
\(603\) −16263.0 −1.09831
\(604\) −540.486 −0.0364107
\(605\) 9628.74 0.647048
\(606\) 3824.86 0.256393
\(607\) −19610.4 −1.31130 −0.655652 0.755063i \(-0.727606\pi\)
−0.655652 + 0.755063i \(0.727606\pi\)
\(608\) 523.269 0.0349036
\(609\) −744.125 −0.0495131
\(610\) −26770.7 −1.77691
\(611\) 0 0
\(612\) −3783.32 −0.249888
\(613\) 24741.6 1.63019 0.815093 0.579331i \(-0.196686\pi\)
0.815093 + 0.579331i \(0.196686\pi\)
\(614\) −904.546 −0.0594536
\(615\) −23923.0 −1.56857
\(616\) 2362.34 0.154516
\(617\) 21446.0 1.39933 0.699664 0.714472i \(-0.253333\pi\)
0.699664 + 0.714472i \(0.253333\pi\)
\(618\) 10080.6 0.656152
\(619\) 883.388 0.0573609 0.0286804 0.999589i \(-0.490869\pi\)
0.0286804 + 0.999589i \(0.490869\pi\)
\(620\) 7983.46 0.517135
\(621\) −11571.1 −0.747716
\(622\) 10367.8 0.668344
\(623\) −3692.52 −0.237460
\(624\) 0 0
\(625\) 55163.4 3.53046
\(626\) −1295.77 −0.0827305
\(627\) 1695.37 0.107985
\(628\) 8083.45 0.513638
\(629\) −3504.61 −0.222159
\(630\) 6298.96 0.398344
\(631\) 17489.2 1.10339 0.551693 0.834048i \(-0.313982\pi\)
0.551693 + 0.834048i \(0.313982\pi\)
\(632\) −5249.59 −0.330407
\(633\) −3241.88 −0.203560
\(634\) 6368.82 0.398956
\(635\) 47038.9 2.93966
\(636\) −4217.23 −0.262931
\(637\) 0 0
\(638\) −3649.22 −0.226448
\(639\) −785.076 −0.0486027
\(640\) −2747.69 −0.169706
\(641\) 16602.4 1.02302 0.511511 0.859277i \(-0.329086\pi\)
0.511511 + 0.859277i \(0.329086\pi\)
\(642\) −2316.09 −0.142382
\(643\) 922.835 0.0565989 0.0282994 0.999599i \(-0.490991\pi\)
0.0282994 + 0.999599i \(0.490991\pi\)
\(644\) 2748.68 0.168188
\(645\) −2311.09 −0.141084
\(646\) 1475.83 0.0898848
\(647\) 15242.5 0.926191 0.463095 0.886308i \(-0.346739\pi\)
0.463095 + 0.886308i \(0.346739\pi\)
\(648\) −2209.71 −0.133959
\(649\) −21718.1 −1.31357
\(650\) 0 0
\(651\) 1599.58 0.0963015
\(652\) 510.620 0.0306709
\(653\) 23977.3 1.43691 0.718456 0.695572i \(-0.244849\pi\)
0.718456 + 0.695572i \(0.244849\pi\)
\(654\) −10582.3 −0.632720
\(655\) −10605.9 −0.632684
\(656\) −7255.13 −0.431807
\(657\) −8929.80 −0.530266
\(658\) −6823.43 −0.404263
\(659\) −7234.38 −0.427635 −0.213817 0.976874i \(-0.568590\pi\)
−0.213817 + 0.976874i \(0.568590\pi\)
\(660\) −8902.38 −0.525037
\(661\) 21957.7 1.29207 0.646033 0.763310i \(-0.276427\pi\)
0.646033 + 0.763310i \(0.276427\pi\)
\(662\) 10005.0 0.587393
\(663\) 0 0
\(664\) −11442.2 −0.668738
\(665\) −2457.15 −0.143284
\(666\) −3255.54 −0.189414
\(667\) −4246.00 −0.246485
\(668\) 980.943 0.0568171
\(669\) −7347.46 −0.424617
\(670\) −33312.3 −1.92085
\(671\) −26304.3 −1.51337
\(672\) −550.530 −0.0316029
\(673\) 3433.58 0.196664 0.0983319 0.995154i \(-0.468649\pi\)
0.0983319 + 0.995154i \(0.468649\pi\)
\(674\) −20275.0 −1.15870
\(675\) −39581.6 −2.25703
\(676\) 0 0
\(677\) 19403.6 1.10154 0.550770 0.834657i \(-0.314334\pi\)
0.550770 + 0.834657i \(0.314334\pi\)
\(678\) −10098.4 −0.572018
\(679\) −3721.33 −0.210326
\(680\) −7749.57 −0.437033
\(681\) −1231.71 −0.0693086
\(682\) 7844.38 0.440435
\(683\) −13088.9 −0.733286 −0.366643 0.930362i \(-0.619493\pi\)
−0.366643 + 0.930362i \(0.619493\pi\)
\(684\) 1370.94 0.0766362
\(685\) 19118.4 1.06639
\(686\) −686.000 −0.0381802
\(687\) 6278.40 0.348669
\(688\) −700.882 −0.0388385
\(689\) 0 0
\(690\) −10358.2 −0.571495
\(691\) 29138.8 1.60418 0.802092 0.597200i \(-0.203720\pi\)
0.802092 + 0.597200i \(0.203720\pi\)
\(692\) 4076.95 0.223963
\(693\) 6189.22 0.339263
\(694\) −9778.40 −0.534846
\(695\) −51872.8 −2.83115
\(696\) 850.429 0.0463152
\(697\) −20462.3 −1.11200
\(698\) 16637.4 0.902202
\(699\) 12562.7 0.679776
\(700\) 9402.49 0.507687
\(701\) −231.696 −0.0124836 −0.00624182 0.999981i \(-0.501987\pi\)
−0.00624182 + 0.999981i \(0.501987\pi\)
\(702\) 0 0
\(703\) 1269.94 0.0681321
\(704\) −2699.82 −0.144536
\(705\) 25713.8 1.37367
\(706\) −17062.4 −0.909562
\(707\) −5446.92 −0.289749
\(708\) 5061.26 0.268664
\(709\) −5259.46 −0.278594 −0.139297 0.990251i \(-0.544484\pi\)
−0.139297 + 0.990251i \(0.544484\pi\)
\(710\) −1608.11 −0.0850020
\(711\) −13753.7 −0.725461
\(712\) 4220.02 0.222123
\(713\) 9127.23 0.479407
\(714\) −1552.71 −0.0813849
\(715\) 0 0
\(716\) −10169.1 −0.530777
\(717\) 5005.96 0.260741
\(718\) −4882.06 −0.253756
\(719\) −29001.7 −1.50428 −0.752141 0.659002i \(-0.770979\pi\)
−0.752141 + 0.659002i \(0.770979\pi\)
\(720\) −7198.81 −0.372616
\(721\) −14355.6 −0.741513
\(722\) 13183.2 0.679541
\(723\) 17246.1 0.887124
\(724\) −1508.49 −0.0774344
\(725\) −14524.4 −0.744034
\(726\) −2204.83 −0.112712
\(727\) 25032.2 1.27702 0.638510 0.769613i \(-0.279551\pi\)
0.638510 + 0.769613i \(0.279551\pi\)
\(728\) 0 0
\(729\) 2032.46 0.103259
\(730\) −18291.4 −0.927390
\(731\) −1976.77 −0.100018
\(732\) 6130.07 0.309527
\(733\) 13976.2 0.704261 0.352130 0.935951i \(-0.385457\pi\)
0.352130 + 0.935951i \(0.385457\pi\)
\(734\) 12917.2 0.649569
\(735\) 2585.16 0.129735
\(736\) −3141.34 −0.157325
\(737\) −32732.0 −1.63596
\(738\) −19008.1 −0.948099
\(739\) 14790.5 0.736234 0.368117 0.929779i \(-0.380003\pi\)
0.368117 + 0.929779i \(0.380003\pi\)
\(740\) −6668.49 −0.331268
\(741\) 0 0
\(742\) 6005.68 0.297137
\(743\) 2705.94 0.133609 0.0668044 0.997766i \(-0.478720\pi\)
0.0668044 + 0.997766i \(0.478720\pi\)
\(744\) −1828.09 −0.0900818
\(745\) 22363.0 1.09975
\(746\) 5109.85 0.250784
\(747\) −29977.9 −1.46832
\(748\) −7614.57 −0.372214
\(749\) 3298.31 0.160905
\(750\) −22243.2 −1.08294
\(751\) −12594.2 −0.611944 −0.305972 0.952041i \(-0.598981\pi\)
−0.305972 + 0.952041i \(0.598981\pi\)
\(752\) 7798.21 0.378154
\(753\) −9490.52 −0.459301
\(754\) 0 0
\(755\) −2900.56 −0.139818
\(756\) −3300.40 −0.158776
\(757\) −9734.02 −0.467357 −0.233678 0.972314i \(-0.575076\pi\)
−0.233678 + 0.972314i \(0.575076\pi\)
\(758\) 24909.1 1.19359
\(759\) −10177.8 −0.486733
\(760\) 2808.17 0.134030
\(761\) −16203.7 −0.771857 −0.385928 0.922529i \(-0.626119\pi\)
−0.385928 + 0.922529i \(0.626119\pi\)
\(762\) −10771.2 −0.512071
\(763\) 15070.0 0.715033
\(764\) −13348.7 −0.632118
\(765\) −20303.5 −0.959574
\(766\) −15740.5 −0.742465
\(767\) 0 0
\(768\) 629.177 0.0295618
\(769\) 39079.8 1.83258 0.916289 0.400517i \(-0.131170\pi\)
0.916289 + 0.400517i \(0.131170\pi\)
\(770\) 12677.7 0.593342
\(771\) 14139.6 0.660474
\(772\) 16225.0 0.756414
\(773\) −10840.4 −0.504400 −0.252200 0.967675i \(-0.581154\pi\)
−0.252200 + 0.967675i \(0.581154\pi\)
\(774\) −1836.28 −0.0852759
\(775\) 31221.8 1.44712
\(776\) 4252.94 0.196742
\(777\) −1336.11 −0.0616892
\(778\) 5341.61 0.246151
\(779\) 7414.82 0.341031
\(780\) 0 0
\(781\) −1580.10 −0.0723949
\(782\) −8859.83 −0.405149
\(783\) 5098.28 0.232692
\(784\) 784.000 0.0357143
\(785\) 43380.5 1.97238
\(786\) 2428.59 0.110210
\(787\) 19016.4 0.861323 0.430662 0.902513i \(-0.358280\pi\)
0.430662 + 0.902513i \(0.358280\pi\)
\(788\) −1170.99 −0.0529377
\(789\) −6267.66 −0.282807
\(790\) −28172.4 −1.26877
\(791\) 14381.0 0.646434
\(792\) −7073.40 −0.317351
\(793\) 0 0
\(794\) 165.995 0.00741930
\(795\) −22632.1 −1.00966
\(796\) −4583.32 −0.204085
\(797\) 14170.2 0.629779 0.314889 0.949128i \(-0.398033\pi\)
0.314889 + 0.949128i \(0.398033\pi\)
\(798\) 562.647 0.0249593
\(799\) 21994.0 0.973834
\(800\) −10745.7 −0.474897
\(801\) 11056.2 0.487706
\(802\) 23382.2 1.02949
\(803\) −17972.7 −0.789843
\(804\) 7628.00 0.334600
\(805\) 14751.0 0.645844
\(806\) 0 0
\(807\) 5966.46 0.260260
\(808\) 6225.05 0.271035
\(809\) 31986.6 1.39010 0.695049 0.718962i \(-0.255383\pi\)
0.695049 + 0.718962i \(0.255383\pi\)
\(810\) −11858.6 −0.514405
\(811\) −16119.2 −0.697929 −0.348964 0.937136i \(-0.613467\pi\)
−0.348964 + 0.937136i \(0.613467\pi\)
\(812\) −1211.08 −0.0523406
\(813\) 11655.4 0.502793
\(814\) −6552.32 −0.282136
\(815\) 2740.29 0.117777
\(816\) 1774.53 0.0761286
\(817\) 716.309 0.0306738
\(818\) 10767.0 0.460220
\(819\) 0 0
\(820\) −38935.3 −1.65814
\(821\) −17781.8 −0.755894 −0.377947 0.925827i \(-0.623370\pi\)
−0.377947 + 0.925827i \(0.623370\pi\)
\(822\) −4377.80 −0.185758
\(823\) −45323.4 −1.91965 −0.959826 0.280596i \(-0.909468\pi\)
−0.959826 + 0.280596i \(0.909468\pi\)
\(824\) 16406.4 0.693622
\(825\) −34815.5 −1.46924
\(826\) −7207.65 −0.303615
\(827\) −20084.2 −0.844495 −0.422248 0.906481i \(-0.638759\pi\)
−0.422248 + 0.906481i \(0.638759\pi\)
\(828\) −8230.16 −0.345432
\(829\) −29869.7 −1.25141 −0.625705 0.780060i \(-0.715188\pi\)
−0.625705 + 0.780060i \(0.715188\pi\)
\(830\) −61405.3 −2.56796
\(831\) −10543.4 −0.440129
\(832\) 0 0
\(833\) 2211.19 0.0919726
\(834\) 11878.0 0.493169
\(835\) 5264.31 0.218178
\(836\) 2759.24 0.114151
\(837\) −10959.3 −0.452578
\(838\) 26573.8 1.09544
\(839\) 14416.0 0.593200 0.296600 0.955002i \(-0.404147\pi\)
0.296600 + 0.955002i \(0.404147\pi\)
\(840\) −2954.47 −0.121356
\(841\) −22518.2 −0.923293
\(842\) 1327.25 0.0543232
\(843\) −22061.8 −0.901364
\(844\) −5276.23 −0.215184
\(845\) 0 0
\(846\) 20430.9 0.830295
\(847\) 3139.86 0.127375
\(848\) −6863.64 −0.277946
\(849\) 2880.90 0.116457
\(850\) −30307.1 −1.22297
\(851\) −7623.87 −0.307101
\(852\) 368.233 0.0148069
\(853\) 31303.7 1.25653 0.628264 0.778000i \(-0.283766\pi\)
0.628264 + 0.778000i \(0.283766\pi\)
\(854\) −8729.72 −0.349795
\(855\) 7357.25 0.294284
\(856\) −3769.49 −0.150512
\(857\) −10963.9 −0.437014 −0.218507 0.975835i \(-0.570119\pi\)
−0.218507 + 0.975835i \(0.570119\pi\)
\(858\) 0 0
\(859\) −14414.7 −0.572555 −0.286277 0.958147i \(-0.592418\pi\)
−0.286277 + 0.958147i \(0.592418\pi\)
\(860\) −3761.34 −0.149140
\(861\) −7801.11 −0.308782
\(862\) 19904.2 0.786472
\(863\) 21754.8 0.858103 0.429051 0.903280i \(-0.358848\pi\)
0.429051 + 0.903280i \(0.358848\pi\)
\(864\) 3771.89 0.148521
\(865\) 21879.3 0.860022
\(866\) −5852.47 −0.229648
\(867\) −7069.93 −0.276940
\(868\) 2603.34 0.101801
\(869\) −27681.6 −1.08059
\(870\) 4563.89 0.177851
\(871\) 0 0
\(872\) −17222.9 −0.668853
\(873\) 11142.5 0.431978
\(874\) 3210.48 0.124252
\(875\) 31676.2 1.22383
\(876\) 4188.44 0.161546
\(877\) −23486.3 −0.904306 −0.452153 0.891940i \(-0.649344\pi\)
−0.452153 + 0.891940i \(0.649344\pi\)
\(878\) −13855.0 −0.532555
\(879\) 19659.2 0.754366
\(880\) −14488.8 −0.555020
\(881\) 41012.9 1.56840 0.784199 0.620509i \(-0.213074\pi\)
0.784199 + 0.620509i \(0.213074\pi\)
\(882\) 2054.04 0.0784162
\(883\) −9316.41 −0.355065 −0.177532 0.984115i \(-0.556811\pi\)
−0.177532 + 0.984115i \(0.556811\pi\)
\(884\) 0 0
\(885\) 27161.7 1.03167
\(886\) 30126.2 1.14234
\(887\) 37008.3 1.40092 0.700460 0.713692i \(-0.252978\pi\)
0.700460 + 0.713692i \(0.252978\pi\)
\(888\) 1526.98 0.0577050
\(889\) 15339.0 0.578689
\(890\) 22647.1 0.852957
\(891\) −11652.0 −0.438110
\(892\) −11958.1 −0.448866
\(893\) −7969.85 −0.298657
\(894\) −5120.77 −0.191571
\(895\) −54573.2 −2.03819
\(896\) −896.000 −0.0334077
\(897\) 0 0
\(898\) −22268.6 −0.827519
\(899\) −4021.50 −0.149193
\(900\) −28153.2 −1.04271
\(901\) −19358.2 −0.715776
\(902\) −38257.0 −1.41221
\(903\) −753.627 −0.0277731
\(904\) −16435.4 −0.604684
\(905\) −8095.42 −0.297349
\(906\) 664.183 0.0243554
\(907\) 2918.81 0.106855 0.0534276 0.998572i \(-0.482985\pi\)
0.0534276 + 0.998572i \(0.482985\pi\)
\(908\) −2004.63 −0.0732666
\(909\) 16309.3 0.595100
\(910\) 0 0
\(911\) −39007.3 −1.41863 −0.709314 0.704893i \(-0.750995\pi\)
−0.709314 + 0.704893i \(0.750995\pi\)
\(912\) −643.025 −0.0233473
\(913\) −60335.6 −2.18709
\(914\) 36957.4 1.33746
\(915\) 32897.5 1.18859
\(916\) 10218.2 0.368581
\(917\) −3458.51 −0.124547
\(918\) 10638.2 0.382476
\(919\) 43324.9 1.55512 0.777561 0.628807i \(-0.216457\pi\)
0.777561 + 0.628807i \(0.216457\pi\)
\(920\) −16858.3 −0.604131
\(921\) 1111.56 0.0397690
\(922\) 14940.3 0.533656
\(923\) 0 0
\(924\) −2903.00 −0.103357
\(925\) −26079.2 −0.927005
\(926\) −28388.1 −1.00744
\(927\) 42984.0 1.52295
\(928\) 1384.09 0.0489601
\(929\) −55772.3 −1.96968 −0.984838 0.173478i \(-0.944499\pi\)
−0.984838 + 0.173478i \(0.944499\pi\)
\(930\) −9810.57 −0.345915
\(931\) −801.256 −0.0282063
\(932\) 20446.0 0.718596
\(933\) −12740.6 −0.447061
\(934\) −18977.3 −0.664836
\(935\) −40864.2 −1.42931
\(936\) 0 0
\(937\) 12478.6 0.435067 0.217534 0.976053i \(-0.430199\pi\)
0.217534 + 0.976053i \(0.430199\pi\)
\(938\) −10862.9 −0.378130
\(939\) 1592.32 0.0553391
\(940\) 41849.7 1.45211
\(941\) −19838.5 −0.687267 −0.343633 0.939104i \(-0.611658\pi\)
−0.343633 + 0.939104i \(0.611658\pi\)
\(942\) −9933.45 −0.343577
\(943\) −44513.4 −1.53717
\(944\) 8237.32 0.284006
\(945\) −17711.9 −0.609701
\(946\) −3695.82 −0.127020
\(947\) 12942.0 0.444096 0.222048 0.975036i \(-0.428726\pi\)
0.222048 + 0.975036i \(0.428726\pi\)
\(948\) 6451.02 0.221012
\(949\) 0 0
\(950\) 10982.2 0.375063
\(951\) −7826.40 −0.266865
\(952\) −2527.07 −0.0860325
\(953\) −52682.6 −1.79072 −0.895361 0.445342i \(-0.853082\pi\)
−0.895361 + 0.445342i \(0.853082\pi\)
\(954\) −17982.4 −0.610274
\(955\) −71636.8 −2.42734
\(956\) 8147.31 0.275631
\(957\) 4484.39 0.151473
\(958\) −10524.9 −0.354954
\(959\) 6234.35 0.209924
\(960\) 3376.53 0.113518
\(961\) −21146.4 −0.709824
\(962\) 0 0
\(963\) −9875.88 −0.330473
\(964\) 28068.5 0.937785
\(965\) 87073.0 2.90464
\(966\) −3377.74 −0.112502
\(967\) 26795.2 0.891082 0.445541 0.895262i \(-0.353011\pi\)
0.445541 + 0.895262i \(0.353011\pi\)
\(968\) −3588.41 −0.119149
\(969\) −1813.59 −0.0601246
\(970\) 22823.8 0.755492
\(971\) 26952.3 0.890772 0.445386 0.895339i \(-0.353066\pi\)
0.445386 + 0.895339i \(0.353066\pi\)
\(972\) 15445.5 0.509687
\(973\) −16915.3 −0.557328
\(974\) 16898.6 0.555919
\(975\) 0 0
\(976\) 9976.82 0.327203
\(977\) 7690.39 0.251830 0.125915 0.992041i \(-0.459813\pi\)
0.125915 + 0.992041i \(0.459813\pi\)
\(978\) −627.482 −0.0205160
\(979\) 22252.5 0.726449
\(980\) 4207.40 0.137143
\(981\) −45123.0 −1.46857
\(982\) −14192.5 −0.461203
\(983\) −24910.0 −0.808245 −0.404123 0.914705i \(-0.632423\pi\)
−0.404123 + 0.914705i \(0.632423\pi\)
\(984\) 8915.56 0.288839
\(985\) −6284.23 −0.203281
\(986\) 3903.68 0.126084
\(987\) 8385.06 0.270415
\(988\) 0 0
\(989\) −4300.22 −0.138260
\(990\) −37960.0 −1.21863
\(991\) 35112.3 1.12551 0.562754 0.826625i \(-0.309742\pi\)
0.562754 + 0.826625i \(0.309742\pi\)
\(992\) −2975.25 −0.0952261
\(993\) −12294.7 −0.392912
\(994\) −524.393 −0.0167331
\(995\) −24596.8 −0.783688
\(996\) 14060.8 0.447324
\(997\) 6660.43 0.211573 0.105786 0.994389i \(-0.466264\pi\)
0.105786 + 0.994389i \(0.466264\pi\)
\(998\) 42393.4 1.34463
\(999\) 9154.16 0.289915
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2366.4.a.bi.1.9 15
13.12 even 2 2366.4.a.bk.1.9 yes 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2366.4.a.bi.1.9 15 1.1 even 1 trivial
2366.4.a.bk.1.9 yes 15 13.12 even 2