Properties

Label 2366.2.d.r.337.8
Level $2366$
Weight $2$
Character 2366.337
Analytic conductor $18.893$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2366,2,Mod(337,2366)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2366, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2366.337"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2366 = 2 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2366.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,4,-12,0,0,0,0,12,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.8926051182\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 39 x^{10} - 140 x^{9} + 460 x^{8} - 1066 x^{7} + 2127 x^{6} - 3172 x^{5} + \cdots + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.8
Root \(0.500000 - 1.73154i\) of defining polynomial
Character \(\chi\) \(=\) 2366.337
Dual form 2366.2.d.r.337.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -0.865515 q^{3} -1.00000 q^{4} -3.71131i q^{5} -0.865515i q^{6} -1.00000i q^{7} -1.00000i q^{8} -2.25088 q^{9} +3.71131 q^{10} +5.77486i q^{11} +0.865515 q^{12} +1.00000 q^{14} +3.21220i q^{15} +1.00000 q^{16} +0.212197 q^{17} -2.25088i q^{18} +2.13714i q^{19} +3.71131i q^{20} +0.865515i q^{21} -5.77486 q^{22} -2.47940 q^{23} +0.865515i q^{24} -8.77384 q^{25} +4.54472 q^{27} +1.00000i q^{28} -0.0985660 q^{29} -3.21220 q^{30} +2.31076i q^{31} +1.00000i q^{32} -4.99823i q^{33} +0.212197i q^{34} -3.71131 q^{35} +2.25088 q^{36} -7.87343i q^{37} -2.13714 q^{38} -3.71131 q^{40} -7.52119i q^{41} -0.865515 q^{42} -4.57973 q^{43} -5.77486i q^{44} +8.35373i q^{45} -2.47940i q^{46} +9.15570i q^{47} -0.865515 q^{48} -1.00000 q^{49} -8.77384i q^{50} -0.183660 q^{51} +12.0948 q^{53} +4.54472i q^{54} +21.4323 q^{55} -1.00000 q^{56} -1.84972i q^{57} -0.0985660i q^{58} -0.231914i q^{59} -3.21220i q^{60} +8.03211 q^{61} -2.31076 q^{62} +2.25088i q^{63} -1.00000 q^{64} +4.99823 q^{66} +12.9700i q^{67} -0.212197 q^{68} +2.14596 q^{69} -3.71131i q^{70} +7.36377i q^{71} +2.25088i q^{72} +5.60414i q^{73} +7.87343 q^{74} +7.59389 q^{75} -2.13714i q^{76} +5.77486 q^{77} -9.19749 q^{79} -3.71131i q^{80} +2.81913 q^{81} +7.52119 q^{82} +3.17186i q^{83} -0.865515i q^{84} -0.787529i q^{85} -4.57973i q^{86} +0.0853103 q^{87} +5.77486 q^{88} +11.8167i q^{89} -8.35373 q^{90} +2.47940 q^{92} -2.00000i q^{93} -9.15570 q^{94} +7.93158 q^{95} -0.865515i q^{96} +14.0819i q^{97} -1.00000i q^{98} -12.9985i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{3} - 12 q^{4} + 12 q^{9} + 4 q^{10} - 4 q^{12} + 12 q^{14} + 12 q^{16} - 8 q^{17} + 4 q^{22} + 12 q^{23} - 24 q^{25} + 40 q^{27} + 20 q^{29} - 28 q^{30} - 4 q^{35} - 12 q^{36} + 8 q^{38} - 4 q^{40}+ \cdots - 64 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2366\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(2199\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) −0.865515 −0.499705 −0.249853 0.968284i \(-0.580382\pi\)
−0.249853 + 0.968284i \(0.580382\pi\)
\(4\) −1.00000 −0.500000
\(5\) − 3.71131i − 1.65975i −0.557950 0.829875i \(-0.688412\pi\)
0.557950 0.829875i \(-0.311588\pi\)
\(6\) − 0.865515i − 0.353345i
\(7\) − 1.00000i − 0.377964i
\(8\) − 1.00000i − 0.353553i
\(9\) −2.25088 −0.750295
\(10\) 3.71131 1.17362
\(11\) 5.77486i 1.74119i 0.492003 + 0.870594i \(0.336265\pi\)
−0.492003 + 0.870594i \(0.663735\pi\)
\(12\) 0.865515 0.249853
\(13\) 0 0
\(14\) 1.00000 0.267261
\(15\) 3.21220i 0.829386i
\(16\) 1.00000 0.250000
\(17\) 0.212197 0.0514653 0.0257327 0.999669i \(-0.491808\pi\)
0.0257327 + 0.999669i \(0.491808\pi\)
\(18\) − 2.25088i − 0.530538i
\(19\) 2.13714i 0.490293i 0.969486 + 0.245146i \(0.0788360\pi\)
−0.969486 + 0.245146i \(0.921164\pi\)
\(20\) 3.71131i 0.829875i
\(21\) 0.865515i 0.188871i
\(22\) −5.77486 −1.23121
\(23\) −2.47940 −0.516990 −0.258495 0.966013i \(-0.583227\pi\)
−0.258495 + 0.966013i \(0.583227\pi\)
\(24\) 0.865515i 0.176673i
\(25\) −8.77384 −1.75477
\(26\) 0 0
\(27\) 4.54472 0.874632
\(28\) 1.00000i 0.188982i
\(29\) −0.0985660 −0.0183032 −0.00915162 0.999958i \(-0.502913\pi\)
−0.00915162 + 0.999958i \(0.502913\pi\)
\(30\) −3.21220 −0.586464
\(31\) 2.31076i 0.415025i 0.978232 + 0.207513i \(0.0665368\pi\)
−0.978232 + 0.207513i \(0.933463\pi\)
\(32\) 1.00000i 0.176777i
\(33\) − 4.99823i − 0.870080i
\(34\) 0.212197i 0.0363915i
\(35\) −3.71131 −0.627326
\(36\) 2.25088 0.375147
\(37\) − 7.87343i − 1.29438i −0.762327 0.647192i \(-0.775943\pi\)
0.762327 0.647192i \(-0.224057\pi\)
\(38\) −2.13714 −0.346689
\(39\) 0 0
\(40\) −3.71131 −0.586810
\(41\) − 7.52119i − 1.17461i −0.809365 0.587306i \(-0.800188\pi\)
0.809365 0.587306i \(-0.199812\pi\)
\(42\) −0.865515 −0.133552
\(43\) −4.57973 −0.698403 −0.349201 0.937048i \(-0.613547\pi\)
−0.349201 + 0.937048i \(0.613547\pi\)
\(44\) − 5.77486i − 0.870594i
\(45\) 8.35373i 1.24530i
\(46\) − 2.47940i − 0.365567i
\(47\) 9.15570i 1.33550i 0.744388 + 0.667748i \(0.232742\pi\)
−0.744388 + 0.667748i \(0.767258\pi\)
\(48\) −0.865515 −0.124926
\(49\) −1.00000 −0.142857
\(50\) − 8.77384i − 1.24081i
\(51\) −0.183660 −0.0257175
\(52\) 0 0
\(53\) 12.0948 1.66135 0.830674 0.556759i \(-0.187955\pi\)
0.830674 + 0.556759i \(0.187955\pi\)
\(54\) 4.54472i 0.618458i
\(55\) 21.4323 2.88993
\(56\) −1.00000 −0.133631
\(57\) − 1.84972i − 0.245002i
\(58\) − 0.0985660i − 0.0129423i
\(59\) − 0.231914i − 0.0301926i −0.999886 0.0150963i \(-0.995195\pi\)
0.999886 0.0150963i \(-0.00480549\pi\)
\(60\) − 3.21220i − 0.414693i
\(61\) 8.03211 1.02841 0.514203 0.857668i \(-0.328088\pi\)
0.514203 + 0.857668i \(0.328088\pi\)
\(62\) −2.31076 −0.293467
\(63\) 2.25088i 0.283585i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 4.99823 0.615240
\(67\) 12.9700i 1.58454i 0.610172 + 0.792269i \(0.291100\pi\)
−0.610172 + 0.792269i \(0.708900\pi\)
\(68\) −0.212197 −0.0257327
\(69\) 2.14596 0.258343
\(70\) − 3.71131i − 0.443587i
\(71\) 7.36377i 0.873918i 0.899481 + 0.436959i \(0.143945\pi\)
−0.899481 + 0.436959i \(0.856055\pi\)
\(72\) 2.25088i 0.265269i
\(73\) 5.60414i 0.655915i 0.944692 + 0.327958i \(0.106360\pi\)
−0.944692 + 0.327958i \(0.893640\pi\)
\(74\) 7.87343 0.915268
\(75\) 7.59389 0.876867
\(76\) − 2.13714i − 0.245146i
\(77\) 5.77486 0.658107
\(78\) 0 0
\(79\) −9.19749 −1.03480 −0.517399 0.855744i \(-0.673100\pi\)
−0.517399 + 0.855744i \(0.673100\pi\)
\(80\) − 3.71131i − 0.414937i
\(81\) 2.81913 0.313237
\(82\) 7.52119 0.830577
\(83\) 3.17186i 0.348157i 0.984732 + 0.174078i \(0.0556946\pi\)
−0.984732 + 0.174078i \(0.944305\pi\)
\(84\) − 0.865515i − 0.0944354i
\(85\) − 0.787529i − 0.0854196i
\(86\) − 4.57973i − 0.493845i
\(87\) 0.0853103 0.00914623
\(88\) 5.77486 0.615603
\(89\) 11.8167i 1.25256i 0.779597 + 0.626282i \(0.215424\pi\)
−0.779597 + 0.626282i \(0.784576\pi\)
\(90\) −8.35373 −0.880561
\(91\) 0 0
\(92\) 2.47940 0.258495
\(93\) − 2.00000i − 0.207390i
\(94\) −9.15570 −0.944338
\(95\) 7.93158 0.813763
\(96\) − 0.865515i − 0.0883363i
\(97\) 14.0819i 1.42980i 0.699229 + 0.714898i \(0.253527\pi\)
−0.699229 + 0.714898i \(0.746473\pi\)
\(98\) − 1.00000i − 0.101015i
\(99\) − 12.9985i − 1.30640i
\(100\) 8.77384 0.877384
\(101\) 6.15243 0.612190 0.306095 0.952001i \(-0.400977\pi\)
0.306095 + 0.952001i \(0.400977\pi\)
\(102\) − 0.183660i − 0.0181850i
\(103\) 19.3491 1.90652 0.953260 0.302152i \(-0.0977050\pi\)
0.953260 + 0.302152i \(0.0977050\pi\)
\(104\) 0 0
\(105\) 3.21220 0.313478
\(106\) 12.0948i 1.17475i
\(107\) 11.6501 1.12626 0.563130 0.826368i \(-0.309597\pi\)
0.563130 + 0.826368i \(0.309597\pi\)
\(108\) −4.54472 −0.437316
\(109\) − 5.73307i − 0.549129i −0.961569 0.274564i \(-0.911466\pi\)
0.961569 0.274564i \(-0.0885336\pi\)
\(110\) 21.4323i 2.04349i
\(111\) 6.81457i 0.646811i
\(112\) − 1.00000i − 0.0944911i
\(113\) 16.5194 1.55402 0.777008 0.629490i \(-0.216736\pi\)
0.777008 + 0.629490i \(0.216736\pi\)
\(114\) 1.84972 0.173243
\(115\) 9.20183i 0.858075i
\(116\) 0.0985660 0.00915162
\(117\) 0 0
\(118\) 0.231914 0.0213494
\(119\) − 0.212197i − 0.0194521i
\(120\) 3.21220 0.293232
\(121\) −22.3491 −2.03173
\(122\) 8.03211i 0.727193i
\(123\) 6.50970i 0.586960i
\(124\) − 2.31076i − 0.207513i
\(125\) 14.0059i 1.25273i
\(126\) −2.25088 −0.200525
\(127\) 11.7884 1.04605 0.523025 0.852317i \(-0.324803\pi\)
0.523025 + 0.852317i \(0.324803\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) 3.96383 0.348996
\(130\) 0 0
\(131\) −5.12859 −0.448087 −0.224043 0.974579i \(-0.571926\pi\)
−0.224043 + 0.974579i \(0.571926\pi\)
\(132\) 4.99823i 0.435040i
\(133\) 2.13714 0.185313
\(134\) −12.9700 −1.12044
\(135\) − 16.8669i − 1.45167i
\(136\) − 0.212197i − 0.0181957i
\(137\) − 9.39328i − 0.802522i −0.915964 0.401261i \(-0.868572\pi\)
0.915964 0.401261i \(-0.131428\pi\)
\(138\) 2.14596i 0.182676i
\(139\) 15.1413 1.28427 0.642133 0.766594i \(-0.278050\pi\)
0.642133 + 0.766594i \(0.278050\pi\)
\(140\) 3.71131 0.313663
\(141\) − 7.92439i − 0.667354i
\(142\) −7.36377 −0.617954
\(143\) 0 0
\(144\) −2.25088 −0.187574
\(145\) 0.365809i 0.0303788i
\(146\) −5.60414 −0.463802
\(147\) 0.865515 0.0713865
\(148\) 7.87343i 0.647192i
\(149\) − 20.6027i − 1.68784i −0.536470 0.843919i \(-0.680243\pi\)
0.536470 0.843919i \(-0.319757\pi\)
\(150\) 7.59389i 0.620039i
\(151\) 11.9407i 0.971721i 0.874036 + 0.485861i \(0.161494\pi\)
−0.874036 + 0.485861i \(0.838506\pi\)
\(152\) 2.13714 0.173345
\(153\) −0.477631 −0.0386142
\(154\) 5.77486i 0.465352i
\(155\) 8.57596 0.688838
\(156\) 0 0
\(157\) 9.34022 0.745431 0.372715 0.927946i \(-0.378427\pi\)
0.372715 + 0.927946i \(0.378427\pi\)
\(158\) − 9.19749i − 0.731713i
\(159\) −10.4682 −0.830185
\(160\) 3.71131 0.293405
\(161\) 2.47940i 0.195404i
\(162\) 2.81913i 0.221492i
\(163\) 4.47730i 0.350689i 0.984507 + 0.175345i \(0.0561040\pi\)
−0.984507 + 0.175345i \(0.943896\pi\)
\(164\) 7.52119i 0.587306i
\(165\) −18.5500 −1.44412
\(166\) −3.17186 −0.246184
\(167\) − 14.7068i − 1.13805i −0.822321 0.569025i \(-0.807321\pi\)
0.822321 0.569025i \(-0.192679\pi\)
\(168\) 0.865515 0.0667759
\(169\) 0 0
\(170\) 0.787529 0.0604008
\(171\) − 4.81045i − 0.367864i
\(172\) 4.57973 0.349201
\(173\) −13.7657 −1.04659 −0.523294 0.852152i \(-0.675297\pi\)
−0.523294 + 0.852152i \(0.675297\pi\)
\(174\) 0.0853103i 0.00646736i
\(175\) 8.77384i 0.663240i
\(176\) 5.77486i 0.435297i
\(177\) 0.200725i 0.0150874i
\(178\) −11.8167 −0.885696
\(179\) −15.2787 −1.14198 −0.570992 0.820955i \(-0.693441\pi\)
−0.570992 + 0.820955i \(0.693441\pi\)
\(180\) − 8.35373i − 0.622651i
\(181\) −1.66748 −0.123943 −0.0619713 0.998078i \(-0.519739\pi\)
−0.0619713 + 0.998078i \(0.519739\pi\)
\(182\) 0 0
\(183\) −6.95191 −0.513900
\(184\) 2.47940i 0.182784i
\(185\) −29.2208 −2.14835
\(186\) 2.00000 0.146647
\(187\) 1.22541i 0.0896108i
\(188\) − 9.15570i − 0.667748i
\(189\) − 4.54472i − 0.330580i
\(190\) 7.93158i 0.575418i
\(191\) 0.120976 0.00875351 0.00437676 0.999990i \(-0.498607\pi\)
0.00437676 + 0.999990i \(0.498607\pi\)
\(192\) 0.865515 0.0624632
\(193\) 2.75550i 0.198345i 0.995070 + 0.0991725i \(0.0316196\pi\)
−0.995070 + 0.0991725i \(0.968380\pi\)
\(194\) −14.0819 −1.01102
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 15.1253i 1.07764i 0.842422 + 0.538818i \(0.181129\pi\)
−0.842422 + 0.538818i \(0.818871\pi\)
\(198\) 12.9985 0.923767
\(199\) −5.30640 −0.376161 −0.188080 0.982154i \(-0.560227\pi\)
−0.188080 + 0.982154i \(0.560227\pi\)
\(200\) 8.77384i 0.620404i
\(201\) − 11.2257i − 0.791802i
\(202\) 6.15243i 0.432884i
\(203\) 0.0985660i 0.00691798i
\(204\) 0.183660 0.0128587
\(205\) −27.9135 −1.94956
\(206\) 19.3491i 1.34811i
\(207\) 5.58084 0.387895
\(208\) 0 0
\(209\) −12.3417 −0.853691
\(210\) 3.21220i 0.221663i
\(211\) 17.8982 1.23216 0.616081 0.787682i \(-0.288719\pi\)
0.616081 + 0.787682i \(0.288719\pi\)
\(212\) −12.0948 −0.830674
\(213\) − 6.37345i − 0.436702i
\(214\) 11.6501i 0.796386i
\(215\) 16.9968i 1.15917i
\(216\) − 4.54472i − 0.309229i
\(217\) 2.31076 0.156865
\(218\) 5.73307 0.388293
\(219\) − 4.85047i − 0.327764i
\(220\) −21.4323 −1.44497
\(221\) 0 0
\(222\) −6.81457 −0.457364
\(223\) 16.4385i 1.10080i 0.834900 + 0.550402i \(0.185525\pi\)
−0.834900 + 0.550402i \(0.814475\pi\)
\(224\) 1.00000 0.0668153
\(225\) 19.7489 1.31659
\(226\) 16.5194i 1.09886i
\(227\) − 5.63095i − 0.373739i −0.982385 0.186870i \(-0.940166\pi\)
0.982385 0.186870i \(-0.0598342\pi\)
\(228\) 1.84972i 0.122501i
\(229\) 27.7225i 1.83196i 0.401228 + 0.915978i \(0.368584\pi\)
−0.401228 + 0.915978i \(0.631416\pi\)
\(230\) −9.20183 −0.606750
\(231\) −4.99823 −0.328860
\(232\) 0.0985660i 0.00647117i
\(233\) −20.1104 −1.31747 −0.658737 0.752374i \(-0.728909\pi\)
−0.658737 + 0.752374i \(0.728909\pi\)
\(234\) 0 0
\(235\) 33.9797 2.21659
\(236\) 0.231914i 0.0150963i
\(237\) 7.96057 0.517094
\(238\) 0.212197 0.0137547
\(239\) 6.62968i 0.428838i 0.976742 + 0.214419i \(0.0687858\pi\)
−0.976742 + 0.214419i \(0.931214\pi\)
\(240\) 3.21220i 0.207346i
\(241\) 1.61687i 0.104151i 0.998643 + 0.0520757i \(0.0165837\pi\)
−0.998643 + 0.0520757i \(0.983416\pi\)
\(242\) − 22.3491i − 1.43665i
\(243\) −16.0742 −1.03116
\(244\) −8.03211 −0.514203
\(245\) 3.71131i 0.237107i
\(246\) −6.50970 −0.415044
\(247\) 0 0
\(248\) 2.31076 0.146734
\(249\) − 2.74529i − 0.173976i
\(250\) −14.0059 −0.885812
\(251\) −0.507011 −0.0320023 −0.0160011 0.999872i \(-0.505094\pi\)
−0.0160011 + 0.999872i \(0.505094\pi\)
\(252\) − 2.25088i − 0.141792i
\(253\) − 14.3182i − 0.900177i
\(254\) 11.7884i 0.739670i
\(255\) 0.681619i 0.0426846i
\(256\) 1.00000 0.0625000
\(257\) 9.64063 0.601366 0.300683 0.953724i \(-0.402785\pi\)
0.300683 + 0.953724i \(0.402785\pi\)
\(258\) 3.96383i 0.246777i
\(259\) −7.87343 −0.489231
\(260\) 0 0
\(261\) 0.221861 0.0137328
\(262\) − 5.12859i − 0.316845i
\(263\) −7.34617 −0.452985 −0.226492 0.974013i \(-0.572726\pi\)
−0.226492 + 0.974013i \(0.572726\pi\)
\(264\) −4.99823 −0.307620
\(265\) − 44.8876i − 2.75742i
\(266\) 2.13714i 0.131036i
\(267\) − 10.2275i − 0.625912i
\(268\) − 12.9700i − 0.792269i
\(269\) 22.3541 1.36295 0.681476 0.731841i \(-0.261338\pi\)
0.681476 + 0.731841i \(0.261338\pi\)
\(270\) 16.8669 1.02649
\(271\) 9.61740i 0.584215i 0.956385 + 0.292108i \(0.0943566\pi\)
−0.956385 + 0.292108i \(0.905643\pi\)
\(272\) 0.212197 0.0128663
\(273\) 0 0
\(274\) 9.39328 0.567469
\(275\) − 50.6678i − 3.05538i
\(276\) −2.14596 −0.129171
\(277\) −10.1789 −0.611590 −0.305795 0.952097i \(-0.598922\pi\)
−0.305795 + 0.952097i \(0.598922\pi\)
\(278\) 15.1413i 0.908113i
\(279\) − 5.20126i − 0.311391i
\(280\) 3.71131i 0.221793i
\(281\) 14.1692i 0.845265i 0.906301 + 0.422633i \(0.138894\pi\)
−0.906301 + 0.422633i \(0.861106\pi\)
\(282\) 7.92439 0.471891
\(283\) −18.9326 −1.12543 −0.562714 0.826652i \(-0.690243\pi\)
−0.562714 + 0.826652i \(0.690243\pi\)
\(284\) − 7.36377i − 0.436959i
\(285\) −6.86490 −0.406642
\(286\) 0 0
\(287\) −7.52119 −0.443962
\(288\) − 2.25088i − 0.132635i
\(289\) −16.9550 −0.997351
\(290\) −0.365809 −0.0214811
\(291\) − 12.1881i − 0.714477i
\(292\) − 5.60414i − 0.327958i
\(293\) 3.65982i 0.213809i 0.994269 + 0.106905i \(0.0340939\pi\)
−0.994269 + 0.106905i \(0.965906\pi\)
\(294\) 0.865515i 0.0504779i
\(295\) −0.860706 −0.0501122
\(296\) −7.87343 −0.457634
\(297\) 26.2451i 1.52290i
\(298\) 20.6027 1.19348
\(299\) 0 0
\(300\) −7.59389 −0.438434
\(301\) 4.57973i 0.263971i
\(302\) −11.9407 −0.687111
\(303\) −5.32502 −0.305915
\(304\) 2.13714i 0.122573i
\(305\) − 29.8097i − 1.70690i
\(306\) − 0.477631i − 0.0273043i
\(307\) − 19.6987i − 1.12426i −0.827048 0.562132i \(-0.809981\pi\)
0.827048 0.562132i \(-0.190019\pi\)
\(308\) −5.77486 −0.329053
\(309\) −16.7469 −0.952698
\(310\) 8.57596i 0.487082i
\(311\) 16.9685 0.962195 0.481098 0.876667i \(-0.340238\pi\)
0.481098 + 0.876667i \(0.340238\pi\)
\(312\) 0 0
\(313\) −4.53794 −0.256500 −0.128250 0.991742i \(-0.540936\pi\)
−0.128250 + 0.991742i \(0.540936\pi\)
\(314\) 9.34022i 0.527099i
\(315\) 8.35373 0.470680
\(316\) 9.19749 0.517399
\(317\) 29.1866i 1.63928i 0.572877 + 0.819641i \(0.305827\pi\)
−0.572877 + 0.819641i \(0.694173\pi\)
\(318\) − 10.4682i − 0.587029i
\(319\) − 0.569205i − 0.0318694i
\(320\) 3.71131i 0.207469i
\(321\) −10.0834 −0.562798
\(322\) −2.47940 −0.138171
\(323\) 0.453494i 0.0252331i
\(324\) −2.81913 −0.156618
\(325\) 0 0
\(326\) −4.47730 −0.247975
\(327\) 4.96206i 0.274403i
\(328\) −7.52119 −0.415288
\(329\) 9.15570 0.504770
\(330\) − 18.5500i − 1.02114i
\(331\) 4.80542i 0.264130i 0.991241 + 0.132065i \(0.0421607\pi\)
−0.991241 + 0.132065i \(0.957839\pi\)
\(332\) − 3.17186i − 0.174078i
\(333\) 17.7222i 0.971169i
\(334\) 14.7068 0.804722
\(335\) 48.1357 2.62994
\(336\) 0.865515i 0.0472177i
\(337\) 17.7312 0.965883 0.482941 0.875653i \(-0.339568\pi\)
0.482941 + 0.875653i \(0.339568\pi\)
\(338\) 0 0
\(339\) −14.2978 −0.776550
\(340\) 0.787529i 0.0427098i
\(341\) −13.3443 −0.722637
\(342\) 4.81045 0.260119
\(343\) 1.00000i 0.0539949i
\(344\) 4.57973i 0.246923i
\(345\) − 7.96432i − 0.428784i
\(346\) − 13.7657i − 0.740049i
\(347\) −16.7048 −0.896760 −0.448380 0.893843i \(-0.647999\pi\)
−0.448380 + 0.893843i \(0.647999\pi\)
\(348\) −0.0853103 −0.00457311
\(349\) − 0.0200475i − 0.00107312i −1.00000 0.000536559i \(-0.999829\pi\)
1.00000 0.000536559i \(-0.000170792\pi\)
\(350\) −8.77384 −0.468982
\(351\) 0 0
\(352\) −5.77486 −0.307801
\(353\) − 29.8258i − 1.58747i −0.608265 0.793734i \(-0.708134\pi\)
0.608265 0.793734i \(-0.291866\pi\)
\(354\) −0.200725 −0.0106684
\(355\) 27.3292 1.45049
\(356\) − 11.8167i − 0.626282i
\(357\) 0.183660i 0.00972030i
\(358\) − 15.2787i − 0.807505i
\(359\) − 18.3351i − 0.967687i −0.875154 0.483844i \(-0.839240\pi\)
0.875154 0.483844i \(-0.160760\pi\)
\(360\) 8.35373 0.440280
\(361\) 14.4326 0.759613
\(362\) − 1.66748i − 0.0876407i
\(363\) 19.3434 1.01527
\(364\) 0 0
\(365\) 20.7987 1.08866
\(366\) − 6.95191i − 0.363382i
\(367\) 1.34485 0.0702007 0.0351004 0.999384i \(-0.488825\pi\)
0.0351004 + 0.999384i \(0.488825\pi\)
\(368\) −2.47940 −0.129248
\(369\) 16.9293i 0.881306i
\(370\) − 29.2208i − 1.51912i
\(371\) − 12.0948i − 0.627931i
\(372\) 2.00000i 0.103695i
\(373\) −11.0715 −0.573261 −0.286630 0.958041i \(-0.592535\pi\)
−0.286630 + 0.958041i \(0.592535\pi\)
\(374\) −1.22541 −0.0633644
\(375\) − 12.1223i − 0.625994i
\(376\) 9.15570 0.472169
\(377\) 0 0
\(378\) 4.54472 0.233755
\(379\) − 16.8105i − 0.863495i −0.901995 0.431747i \(-0.857897\pi\)
0.901995 0.431747i \(-0.142103\pi\)
\(380\) −7.93158 −0.406882
\(381\) −10.2030 −0.522717
\(382\) 0.120976i 0.00618967i
\(383\) 16.5771i 0.847051i 0.905884 + 0.423525i \(0.139208\pi\)
−0.905884 + 0.423525i \(0.860792\pi\)
\(384\) 0.865515i 0.0441681i
\(385\) − 21.4323i − 1.09229i
\(386\) −2.75550 −0.140251
\(387\) 10.3084 0.524008
\(388\) − 14.0819i − 0.714898i
\(389\) −1.17013 −0.0593280 −0.0296640 0.999560i \(-0.509444\pi\)
−0.0296640 + 0.999560i \(0.509444\pi\)
\(390\) 0 0
\(391\) −0.526121 −0.0266071
\(392\) 1.00000i 0.0505076i
\(393\) 4.43887 0.223911
\(394\) −15.1253 −0.762003
\(395\) 34.1348i 1.71751i
\(396\) 12.9985i 0.653202i
\(397\) 26.1975i 1.31481i 0.753536 + 0.657406i \(0.228346\pi\)
−0.753536 + 0.657406i \(0.771654\pi\)
\(398\) − 5.30640i − 0.265986i
\(399\) −1.84972 −0.0926020
\(400\) −8.77384 −0.438692
\(401\) 11.3687i 0.567726i 0.958865 + 0.283863i \(0.0916162\pi\)
−0.958865 + 0.283863i \(0.908384\pi\)
\(402\) 11.2257 0.559888
\(403\) 0 0
\(404\) −6.15243 −0.306095
\(405\) − 10.4627i − 0.519894i
\(406\) −0.0985660 −0.00489175
\(407\) 45.4680 2.25376
\(408\) 0.183660i 0.00909251i
\(409\) − 23.3314i − 1.15366i −0.816863 0.576832i \(-0.804289\pi\)
0.816863 0.576832i \(-0.195711\pi\)
\(410\) − 27.9135i − 1.37855i
\(411\) 8.13003i 0.401025i
\(412\) −19.3491 −0.953260
\(413\) −0.231914 −0.0114117
\(414\) 5.58084i 0.274283i
\(415\) 11.7718 0.577853
\(416\) 0 0
\(417\) −13.1050 −0.641754
\(418\) − 12.3417i − 0.603651i
\(419\) −12.6680 −0.618875 −0.309437 0.950920i \(-0.600141\pi\)
−0.309437 + 0.950920i \(0.600141\pi\)
\(420\) −3.21220 −0.156739
\(421\) 27.6625i 1.34819i 0.738646 + 0.674094i \(0.235466\pi\)
−0.738646 + 0.674094i \(0.764534\pi\)
\(422\) 17.8982i 0.871271i
\(423\) − 20.6084i − 1.00202i
\(424\) − 12.0948i − 0.587375i
\(425\) −1.86178 −0.0903098
\(426\) 6.37345 0.308795
\(427\) − 8.03211i − 0.388701i
\(428\) −11.6501 −0.563130
\(429\) 0 0
\(430\) −16.9968 −0.819660
\(431\) − 6.41393i − 0.308948i −0.987997 0.154474i \(-0.950632\pi\)
0.987997 0.154474i \(-0.0493683\pi\)
\(432\) 4.54472 0.218658
\(433\) 0.0650270 0.00312500 0.00156250 0.999999i \(-0.499503\pi\)
0.00156250 + 0.999999i \(0.499503\pi\)
\(434\) 2.31076i 0.110920i
\(435\) − 0.316613i − 0.0151804i
\(436\) 5.73307i 0.274564i
\(437\) − 5.29881i − 0.253477i
\(438\) 4.85047 0.231764
\(439\) −36.7778 −1.75531 −0.877655 0.479294i \(-0.840893\pi\)
−0.877655 + 0.479294i \(0.840893\pi\)
\(440\) − 21.4323i − 1.02175i
\(441\) 2.25088 0.107185
\(442\) 0 0
\(443\) −8.46383 −0.402129 −0.201064 0.979578i \(-0.564440\pi\)
−0.201064 + 0.979578i \(0.564440\pi\)
\(444\) − 6.81457i − 0.323405i
\(445\) 43.8553 2.07894
\(446\) −16.4385 −0.778385
\(447\) 17.8319i 0.843422i
\(448\) 1.00000i 0.0472456i
\(449\) − 22.6303i − 1.06799i −0.845488 0.533995i \(-0.820690\pi\)
0.845488 0.533995i \(-0.179310\pi\)
\(450\) 19.7489i 0.930972i
\(451\) 43.4339 2.04522
\(452\) −16.5194 −0.777008
\(453\) − 10.3349i − 0.485574i
\(454\) 5.63095 0.264274
\(455\) 0 0
\(456\) −1.84972 −0.0866213
\(457\) 16.3170i 0.763278i 0.924311 + 0.381639i \(0.124640\pi\)
−0.924311 + 0.381639i \(0.875360\pi\)
\(458\) −27.7225 −1.29539
\(459\) 0.964376 0.0450132
\(460\) − 9.20183i − 0.429037i
\(461\) 19.2778i 0.897858i 0.893567 + 0.448929i \(0.148194\pi\)
−0.893567 + 0.448929i \(0.851806\pi\)
\(462\) − 4.99823i − 0.232539i
\(463\) − 2.70218i − 0.125581i −0.998027 0.0627904i \(-0.980000\pi\)
0.998027 0.0627904i \(-0.0200000\pi\)
\(464\) −0.0985660 −0.00457581
\(465\) −7.42263 −0.344216
\(466\) − 20.1104i − 0.931594i
\(467\) −18.3906 −0.851014 −0.425507 0.904955i \(-0.639904\pi\)
−0.425507 + 0.904955i \(0.639904\pi\)
\(468\) 0 0
\(469\) 12.9700 0.598899
\(470\) 33.9797i 1.56736i
\(471\) −8.08410 −0.372496
\(472\) −0.231914 −0.0106747
\(473\) − 26.4473i − 1.21605i
\(474\) 7.96057i 0.365641i
\(475\) − 18.7509i − 0.860350i
\(476\) 0.212197i 0.00972603i
\(477\) −27.2240 −1.24650
\(478\) −6.62968 −0.303234
\(479\) − 40.8708i − 1.86743i −0.358012 0.933717i \(-0.616545\pi\)
0.358012 0.933717i \(-0.383455\pi\)
\(480\) −3.21220 −0.146616
\(481\) 0 0
\(482\) −1.61687 −0.0736462
\(483\) − 2.14596i − 0.0976444i
\(484\) 22.3491 1.01587
\(485\) 52.2622 2.37310
\(486\) − 16.0742i − 0.729138i
\(487\) 17.6293i 0.798861i 0.916764 + 0.399430i \(0.130792\pi\)
−0.916764 + 0.399430i \(0.869208\pi\)
\(488\) − 8.03211i − 0.363597i
\(489\) − 3.87517i − 0.175241i
\(490\) −3.71131 −0.167660
\(491\) 18.8599 0.851137 0.425569 0.904926i \(-0.360074\pi\)
0.425569 + 0.904926i \(0.360074\pi\)
\(492\) − 6.50970i − 0.293480i
\(493\) −0.0209154 −0.000941982 0
\(494\) 0 0
\(495\) −48.2417 −2.16830
\(496\) 2.31076i 0.103756i
\(497\) 7.36377 0.330310
\(498\) 2.74529 0.123019
\(499\) 2.10742i 0.0943410i 0.998887 + 0.0471705i \(0.0150204\pi\)
−0.998887 + 0.0471705i \(0.984980\pi\)
\(500\) − 14.0059i − 0.626364i
\(501\) 12.7290i 0.568689i
\(502\) − 0.507011i − 0.0226290i
\(503\) 21.7884 0.971498 0.485749 0.874098i \(-0.338547\pi\)
0.485749 + 0.874098i \(0.338547\pi\)
\(504\) 2.25088 0.100262
\(505\) − 22.8336i − 1.01608i
\(506\) 14.3182 0.636521
\(507\) 0 0
\(508\) −11.7884 −0.523025
\(509\) 12.1977i 0.540655i 0.962768 + 0.270328i \(0.0871321\pi\)
−0.962768 + 0.270328i \(0.912868\pi\)
\(510\) −0.681619 −0.0301826
\(511\) 5.60414 0.247913
\(512\) 1.00000i 0.0441942i
\(513\) 9.71268i 0.428826i
\(514\) 9.64063i 0.425230i
\(515\) − 71.8104i − 3.16435i
\(516\) −3.96383 −0.174498
\(517\) −52.8729 −2.32535
\(518\) − 7.87343i − 0.345939i
\(519\) 11.9144 0.522986
\(520\) 0 0
\(521\) −26.9765 −1.18186 −0.590932 0.806722i \(-0.701240\pi\)
−0.590932 + 0.806722i \(0.701240\pi\)
\(522\) 0.221861i 0.00971057i
\(523\) −3.75365 −0.164136 −0.0820679 0.996627i \(-0.526152\pi\)
−0.0820679 + 0.996627i \(0.526152\pi\)
\(524\) 5.12859 0.224043
\(525\) − 7.59389i − 0.331425i
\(526\) − 7.34617i − 0.320308i
\(527\) 0.490337i 0.0213594i
\(528\) − 4.99823i − 0.217520i
\(529\) −16.8526 −0.732721
\(530\) 44.8876 1.94979
\(531\) 0.522012i 0.0226534i
\(532\) −2.13714 −0.0926566
\(533\) 0 0
\(534\) 10.2275 0.442587
\(535\) − 43.2372i − 1.86931i
\(536\) 12.9700 0.560219
\(537\) 13.2240 0.570656
\(538\) 22.3541i 0.963752i
\(539\) − 5.77486i − 0.248741i
\(540\) 16.8669i 0.725835i
\(541\) − 0.0135705i 0 0.000583440i −1.00000 0.000291720i \(-0.999907\pi\)
1.00000 0.000291720i \(-9.28574e-5\pi\)
\(542\) −9.61740 −0.413103
\(543\) 1.44323 0.0619348
\(544\) 0.212197i 0.00909787i
\(545\) −21.2772 −0.911416
\(546\) 0 0
\(547\) −9.66115 −0.413081 −0.206540 0.978438i \(-0.566220\pi\)
−0.206540 + 0.978438i \(0.566220\pi\)
\(548\) 9.39328i 0.401261i
\(549\) −18.0793 −0.771608
\(550\) 50.6678 2.16048
\(551\) − 0.210649i − 0.00897395i
\(552\) − 2.14596i − 0.0913380i
\(553\) 9.19749i 0.391117i
\(554\) − 10.1789i − 0.432460i
\(555\) 25.2910 1.07354
\(556\) −15.1413 −0.642133
\(557\) 24.9582i 1.05751i 0.848773 + 0.528757i \(0.177342\pi\)
−0.848773 + 0.528757i \(0.822658\pi\)
\(558\) 5.20126 0.220187
\(559\) 0 0
\(560\) −3.71131 −0.156832
\(561\) − 1.06061i − 0.0447790i
\(562\) −14.1692 −0.597693
\(563\) −15.8994 −0.670080 −0.335040 0.942204i \(-0.608750\pi\)
−0.335040 + 0.942204i \(0.608750\pi\)
\(564\) 7.92439i 0.333677i
\(565\) − 61.3088i − 2.57928i
\(566\) − 18.9326i − 0.795798i
\(567\) − 2.81913i − 0.118392i
\(568\) 7.36377 0.308977
\(569\) 17.9093 0.750797 0.375398 0.926864i \(-0.377506\pi\)
0.375398 + 0.926864i \(0.377506\pi\)
\(570\) − 6.86490i − 0.287539i
\(571\) −12.5123 −0.523623 −0.261812 0.965119i \(-0.584320\pi\)
−0.261812 + 0.965119i \(0.584320\pi\)
\(572\) 0 0
\(573\) −0.104707 −0.00437418
\(574\) − 7.52119i − 0.313928i
\(575\) 21.7539 0.907199
\(576\) 2.25088 0.0937868
\(577\) 22.0910i 0.919662i 0.888007 + 0.459831i \(0.152090\pi\)
−0.888007 + 0.459831i \(0.847910\pi\)
\(578\) − 16.9550i − 0.705234i
\(579\) − 2.38492i − 0.0991141i
\(580\) − 0.365809i − 0.0151894i
\(581\) 3.17186 0.131591
\(582\) 12.1881 0.505211
\(583\) 69.8458i 2.89272i
\(584\) 5.60414 0.231901
\(585\) 0 0
\(586\) −3.65982 −0.151186
\(587\) 21.1319i 0.872205i 0.899897 + 0.436102i \(0.143641\pi\)
−0.899897 + 0.436102i \(0.856359\pi\)
\(588\) −0.865515 −0.0356932
\(589\) −4.93842 −0.203484
\(590\) − 0.860706i − 0.0354347i
\(591\) − 13.0912i − 0.538500i
\(592\) − 7.87343i − 0.323596i
\(593\) − 8.95493i − 0.367735i −0.982951 0.183867i \(-0.941138\pi\)
0.982951 0.183867i \(-0.0588617\pi\)
\(594\) −26.2451 −1.07685
\(595\) −0.787529 −0.0322856
\(596\) 20.6027i 0.843919i
\(597\) 4.59277 0.187970
\(598\) 0 0
\(599\) 41.7996 1.70788 0.853942 0.520368i \(-0.174205\pi\)
0.853942 + 0.520368i \(0.174205\pi\)
\(600\) − 7.59389i − 0.310019i
\(601\) 15.2896 0.623676 0.311838 0.950135i \(-0.399055\pi\)
0.311838 + 0.950135i \(0.399055\pi\)
\(602\) −4.57973 −0.186656
\(603\) − 29.1940i − 1.18887i
\(604\) − 11.9407i − 0.485861i
\(605\) 82.9444i 3.37217i
\(606\) − 5.32502i − 0.216314i
\(607\) 14.6087 0.592948 0.296474 0.955041i \(-0.404189\pi\)
0.296474 + 0.955041i \(0.404189\pi\)
\(608\) −2.13714 −0.0866723
\(609\) − 0.0853103i − 0.00345695i
\(610\) 29.8097 1.20696
\(611\) 0 0
\(612\) 0.477631 0.0193071
\(613\) 39.2163i 1.58393i 0.610566 + 0.791965i \(0.290942\pi\)
−0.610566 + 0.791965i \(0.709058\pi\)
\(614\) 19.6987 0.794975
\(615\) 24.1595 0.974207
\(616\) − 5.77486i − 0.232676i
\(617\) 9.35868i 0.376766i 0.982096 + 0.188383i \(0.0603247\pi\)
−0.982096 + 0.188383i \(0.939675\pi\)
\(618\) − 16.7469i − 0.673659i
\(619\) 43.7075i 1.75675i 0.477970 + 0.878376i \(0.341373\pi\)
−0.477970 + 0.878376i \(0.658627\pi\)
\(620\) −8.57596 −0.344419
\(621\) −11.2682 −0.452176
\(622\) 16.9685i 0.680375i
\(623\) 11.8167 0.473424
\(624\) 0 0
\(625\) 8.11112 0.324445
\(626\) − 4.53794i − 0.181373i
\(627\) 10.6819 0.426594
\(628\) −9.34022 −0.372715
\(629\) − 1.67072i − 0.0666159i
\(630\) 8.35373i 0.332821i
\(631\) − 20.7957i − 0.827864i −0.910308 0.413932i \(-0.864155\pi\)
0.910308 0.413932i \(-0.135845\pi\)
\(632\) 9.19749i 0.365857i
\(633\) −15.4912 −0.615718
\(634\) −29.1866 −1.15915
\(635\) − 43.7504i − 1.73618i
\(636\) 10.4682 0.415092
\(637\) 0 0
\(638\) 0.569205 0.0225350
\(639\) − 16.5750i − 0.655696i
\(640\) −3.71131 −0.146703
\(641\) 7.23795 0.285882 0.142941 0.989731i \(-0.454344\pi\)
0.142941 + 0.989731i \(0.454344\pi\)
\(642\) − 10.0834i − 0.397958i
\(643\) 40.1718i 1.58422i 0.610377 + 0.792111i \(0.291018\pi\)
−0.610377 + 0.792111i \(0.708982\pi\)
\(644\) − 2.47940i − 0.0977020i
\(645\) − 14.7110i − 0.579245i
\(646\) −0.453494 −0.0178425
\(647\) −14.5512 −0.572068 −0.286034 0.958220i \(-0.592337\pi\)
−0.286034 + 0.958220i \(0.592337\pi\)
\(648\) − 2.81913i − 0.110746i
\(649\) 1.33927 0.0525710
\(650\) 0 0
\(651\) −2.00000 −0.0783862
\(652\) − 4.47730i − 0.175345i
\(653\) −49.7267 −1.94596 −0.972978 0.230896i \(-0.925834\pi\)
−0.972978 + 0.230896i \(0.925834\pi\)
\(654\) −4.96206 −0.194032
\(655\) 19.0338i 0.743712i
\(656\) − 7.52119i − 0.293653i
\(657\) − 12.6143i − 0.492130i
\(658\) 9.15570i 0.356926i
\(659\) −31.5977 −1.23087 −0.615436 0.788187i \(-0.711020\pi\)
−0.615436 + 0.788187i \(0.711020\pi\)
\(660\) 18.5500 0.722058
\(661\) 24.8712i 0.967379i 0.875240 + 0.483689i \(0.160704\pi\)
−0.875240 + 0.483689i \(0.839296\pi\)
\(662\) −4.80542 −0.186768
\(663\) 0 0
\(664\) 3.17186 0.123092
\(665\) − 7.93158i − 0.307574i
\(666\) −17.7222 −0.686720
\(667\) 0.244384 0.00946260
\(668\) 14.7068i 0.569025i
\(669\) − 14.2278i − 0.550077i
\(670\) 48.1357i 1.85964i
\(671\) 46.3843i 1.79065i
\(672\) −0.865515 −0.0333880
\(673\) 21.6490 0.834508 0.417254 0.908790i \(-0.362993\pi\)
0.417254 + 0.908790i \(0.362993\pi\)
\(674\) 17.7312i 0.682982i
\(675\) −39.8747 −1.53478
\(676\) 0 0
\(677\) 14.3935 0.553187 0.276594 0.960987i \(-0.410794\pi\)
0.276594 + 0.960987i \(0.410794\pi\)
\(678\) − 14.2978i − 0.549104i
\(679\) 14.0819 0.540412
\(680\) −0.787529 −0.0302004
\(681\) 4.87367i 0.186759i
\(682\) − 13.3443i − 0.510981i
\(683\) − 42.3738i − 1.62139i −0.585471 0.810694i \(-0.699090\pi\)
0.585471 0.810694i \(-0.300910\pi\)
\(684\) 4.81045i 0.183932i
\(685\) −34.8614 −1.33199
\(686\) −1.00000 −0.0381802
\(687\) − 23.9943i − 0.915438i
\(688\) −4.57973 −0.174601
\(689\) 0 0
\(690\) 7.96432 0.303196
\(691\) 22.9382i 0.872610i 0.899799 + 0.436305i \(0.143713\pi\)
−0.899799 + 0.436305i \(0.856287\pi\)
\(692\) 13.7657 0.523294
\(693\) −12.9985 −0.493774
\(694\) − 16.7048i − 0.634105i
\(695\) − 56.1940i − 2.13156i
\(696\) − 0.0853103i − 0.00323368i
\(697\) − 1.59597i − 0.0604518i
\(698\) 0.0200475 0.000758808 0
\(699\) 17.4058 0.658348
\(700\) − 8.77384i − 0.331620i
\(701\) 1.70699 0.0644723 0.0322361 0.999480i \(-0.489737\pi\)
0.0322361 + 0.999480i \(0.489737\pi\)
\(702\) 0 0
\(703\) 16.8266 0.634627
\(704\) − 5.77486i − 0.217648i
\(705\) −29.4099 −1.10764
\(706\) 29.8258 1.12251
\(707\) − 6.15243i − 0.231386i
\(708\) − 0.200725i − 0.00754371i
\(709\) − 18.2131i − 0.684009i −0.939698 0.342005i \(-0.888894\pi\)
0.939698 0.342005i \(-0.111106\pi\)
\(710\) 27.3292i 1.02565i
\(711\) 20.7025 0.776404
\(712\) 11.8167 0.442848
\(713\) − 5.72930i − 0.214564i
\(714\) −0.183660 −0.00687329
\(715\) 0 0
\(716\) 15.2787 0.570992
\(717\) − 5.73808i − 0.214293i
\(718\) 18.3351 0.684258
\(719\) −3.58214 −0.133591 −0.0667956 0.997767i \(-0.521278\pi\)
−0.0667956 + 0.997767i \(0.521278\pi\)
\(720\) 8.35373i 0.311325i
\(721\) − 19.3491i − 0.720597i
\(722\) 14.4326i 0.537128i
\(723\) − 1.39942i − 0.0520450i
\(724\) 1.66748 0.0619713
\(725\) 0.864802 0.0321180
\(726\) 19.3434i 0.717903i
\(727\) 3.21747 0.119329 0.0596647 0.998218i \(-0.480997\pi\)
0.0596647 + 0.998218i \(0.480997\pi\)
\(728\) 0 0
\(729\) 5.45503 0.202038
\(730\) 20.7987i 0.769796i
\(731\) −0.971806 −0.0359435
\(732\) 6.95191 0.256950
\(733\) − 4.79233i − 0.177009i −0.996076 0.0885043i \(-0.971791\pi\)
0.996076 0.0885043i \(-0.0282087\pi\)
\(734\) 1.34485i 0.0496394i
\(735\) − 3.21220i − 0.118484i
\(736\) − 2.47940i − 0.0913919i
\(737\) −74.9000 −2.75898
\(738\) −16.9293 −0.623177
\(739\) − 11.1989i − 0.411958i −0.978556 0.205979i \(-0.933962\pi\)
0.978556 0.205979i \(-0.0660379\pi\)
\(740\) 29.2208 1.07418
\(741\) 0 0
\(742\) 12.0948 0.444014
\(743\) 38.2570i 1.40351i 0.712417 + 0.701757i \(0.247601\pi\)
−0.712417 + 0.701757i \(0.752399\pi\)
\(744\) −2.00000 −0.0733236
\(745\) −76.4630 −2.80139
\(746\) − 11.0715i − 0.405357i
\(747\) − 7.13948i − 0.261220i
\(748\) − 1.22541i − 0.0448054i
\(749\) − 11.6501i − 0.425686i
\(750\) 12.1223 0.442645
\(751\) 1.84025 0.0671517 0.0335758 0.999436i \(-0.489310\pi\)
0.0335758 + 0.999436i \(0.489310\pi\)
\(752\) 9.15570i 0.333874i
\(753\) 0.438826 0.0159917
\(754\) 0 0
\(755\) 44.3157 1.61281
\(756\) 4.54472i 0.165290i
\(757\) −21.1921 −0.770241 −0.385120 0.922866i \(-0.625840\pi\)
−0.385120 + 0.922866i \(0.625840\pi\)
\(758\) 16.8105 0.610583
\(759\) 12.3926i 0.449823i
\(760\) − 7.93158i − 0.287709i
\(761\) − 14.1313i − 0.512260i −0.966642 0.256130i \(-0.917553\pi\)
0.966642 0.256130i \(-0.0824475\pi\)
\(762\) − 10.2030i − 0.369617i
\(763\) −5.73307 −0.207551
\(764\) −0.120976 −0.00437676
\(765\) 1.77264i 0.0640898i
\(766\) −16.5771 −0.598955
\(767\) 0 0
\(768\) −0.865515 −0.0312316
\(769\) 30.6249i 1.10436i 0.833725 + 0.552181i \(0.186204\pi\)
−0.833725 + 0.552181i \(0.813796\pi\)
\(770\) 21.4323 0.772368
\(771\) −8.34411 −0.300506
\(772\) − 2.75550i − 0.0991725i
\(773\) − 9.79479i − 0.352294i −0.984364 0.176147i \(-0.943637\pi\)
0.984364 0.176147i \(-0.0563634\pi\)
\(774\) 10.3084i 0.370529i
\(775\) − 20.2743i − 0.728273i
\(776\) 14.0819 0.505509
\(777\) 6.81457 0.244471
\(778\) − 1.17013i − 0.0419512i
\(779\) 16.0738 0.575904
\(780\) 0 0
\(781\) −42.5248 −1.52166
\(782\) − 0.526121i − 0.0188140i
\(783\) −0.447955 −0.0160086
\(784\) −1.00000 −0.0357143
\(785\) − 34.6645i − 1.23723i
\(786\) 4.43887i 0.158329i
\(787\) 20.6305i 0.735397i 0.929945 + 0.367699i \(0.119854\pi\)
−0.929945 + 0.367699i \(0.880146\pi\)
\(788\) − 15.1253i − 0.538818i
\(789\) 6.35822 0.226359
\(790\) −34.1348 −1.21446
\(791\) − 16.5194i − 0.587363i
\(792\) −12.9985 −0.461883
\(793\) 0 0
\(794\) −26.1975 −0.929713
\(795\) 38.8509i 1.37790i
\(796\) 5.30640 0.188080
\(797\) −7.77168 −0.275287 −0.137643 0.990482i \(-0.543953\pi\)
−0.137643 + 0.990482i \(0.543953\pi\)
\(798\) − 1.84972i − 0.0654795i
\(799\) 1.94281i 0.0687317i
\(800\) − 8.77384i − 0.310202i
\(801\) − 26.5979i − 0.939791i
\(802\) −11.3687 −0.401443
\(803\) −32.3632 −1.14207
\(804\) 11.2257i 0.395901i
\(805\) 9.20183 0.324322
\(806\) 0 0
\(807\) −19.3478 −0.681074
\(808\) − 6.15243i − 0.216442i
\(809\) 42.5430 1.49573 0.747866 0.663850i \(-0.231078\pi\)
0.747866 + 0.663850i \(0.231078\pi\)
\(810\) 10.4627 0.367621
\(811\) 22.1131i 0.776494i 0.921555 + 0.388247i \(0.126919\pi\)
−0.921555 + 0.388247i \(0.873081\pi\)
\(812\) − 0.0985660i − 0.00345899i
\(813\) − 8.32400i − 0.291936i
\(814\) 45.4680i 1.59365i
\(815\) 16.6167 0.582056
\(816\) −0.183660 −0.00642937
\(817\) − 9.78752i − 0.342422i
\(818\) 23.3314 0.815763
\(819\) 0 0
\(820\) 27.9135 0.974782
\(821\) − 24.3549i − 0.849992i −0.905195 0.424996i \(-0.860275\pi\)
0.905195 0.424996i \(-0.139725\pi\)
\(822\) −8.13003 −0.283567
\(823\) 4.75914 0.165893 0.0829465 0.996554i \(-0.473567\pi\)
0.0829465 + 0.996554i \(0.473567\pi\)
\(824\) − 19.3491i − 0.674056i
\(825\) 43.8537i 1.52679i
\(826\) − 0.231914i − 0.00806932i
\(827\) − 7.00333i − 0.243530i −0.992559 0.121765i \(-0.961145\pi\)
0.992559 0.121765i \(-0.0388554\pi\)
\(828\) −5.58084 −0.193948
\(829\) 5.75238 0.199788 0.0998941 0.994998i \(-0.468150\pi\)
0.0998941 + 0.994998i \(0.468150\pi\)
\(830\) 11.7718i 0.408604i
\(831\) 8.80998 0.305615
\(832\) 0 0
\(833\) −0.212197 −0.00735219
\(834\) − 13.1050i − 0.453789i
\(835\) −54.5817 −1.88888
\(836\) 12.3417 0.426846
\(837\) 10.5018i 0.362994i
\(838\) − 12.6680i − 0.437610i
\(839\) − 41.2070i − 1.42262i −0.702877 0.711311i \(-0.748102\pi\)
0.702877 0.711311i \(-0.251898\pi\)
\(840\) − 3.21220i − 0.110831i
\(841\) −28.9903 −0.999665
\(842\) −27.6625 −0.953312
\(843\) − 12.2637i − 0.422384i
\(844\) −17.8982 −0.616081
\(845\) 0 0
\(846\) 20.6084 0.708532
\(847\) 22.3491i 0.767923i
\(848\) 12.0948 0.415337
\(849\) 16.3865 0.562382
\(850\) − 1.86178i − 0.0638586i
\(851\) 19.5214i 0.669184i
\(852\) 6.37345i 0.218351i
\(853\) 2.38939i 0.0818113i 0.999163 + 0.0409056i \(0.0130243\pi\)
−0.999163 + 0.0409056i \(0.986976\pi\)
\(854\) 8.03211 0.274853
\(855\) −17.8531 −0.610562
\(856\) − 11.6501i − 0.398193i
\(857\) −13.8037 −0.471526 −0.235763 0.971811i \(-0.575759\pi\)
−0.235763 + 0.971811i \(0.575759\pi\)
\(858\) 0 0
\(859\) −37.7276 −1.28725 −0.643624 0.765342i \(-0.722570\pi\)
−0.643624 + 0.765342i \(0.722570\pi\)
\(860\) − 16.9968i − 0.579587i
\(861\) 6.50970 0.221850
\(862\) 6.41393 0.218459
\(863\) − 25.5180i − 0.868643i −0.900758 0.434322i \(-0.856988\pi\)
0.900758 0.434322i \(-0.143012\pi\)
\(864\) 4.54472i 0.154614i
\(865\) 51.0889i 1.73707i
\(866\) 0.0650270i 0.00220971i
\(867\) 14.6748 0.498382
\(868\) −2.31076 −0.0784324
\(869\) − 53.1143i − 1.80178i
\(870\) 0.316613 0.0107342
\(871\) 0 0
\(872\) −5.73307 −0.194146
\(873\) − 31.6966i − 1.07277i
\(874\) 5.29881 0.179235
\(875\) 14.0059 0.473486
\(876\) 4.85047i 0.163882i
\(877\) 12.4391i 0.420039i 0.977697 + 0.210019i \(0.0673527\pi\)
−0.977697 + 0.210019i \(0.932647\pi\)
\(878\) − 36.7778i − 1.24119i
\(879\) − 3.16763i − 0.106842i
\(880\) 21.4323 0.722484
\(881\) 22.5419 0.759457 0.379728 0.925098i \(-0.376017\pi\)
0.379728 + 0.925098i \(0.376017\pi\)
\(882\) 2.25088i 0.0757912i
\(883\) −15.1548 −0.509998 −0.254999 0.966941i \(-0.582075\pi\)
−0.254999 + 0.966941i \(0.582075\pi\)
\(884\) 0 0
\(885\) 0.744954 0.0250413
\(886\) − 8.46383i − 0.284348i
\(887\) 41.7749 1.40266 0.701332 0.712835i \(-0.252589\pi\)
0.701332 + 0.712835i \(0.252589\pi\)
\(888\) 6.81457 0.228682
\(889\) − 11.7884i − 0.395370i
\(890\) 43.8553i 1.47003i
\(891\) 16.2801i 0.545404i
\(892\) − 16.4385i − 0.550402i
\(893\) −19.5670 −0.654784
\(894\) −17.8319 −0.596389
\(895\) 56.7041i 1.89541i
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) 22.6303 0.755183
\(899\) − 0.227763i − 0.00759631i
\(900\) −19.7489 −0.658297
\(901\) 2.56648 0.0855018
\(902\) 43.4339i 1.44619i
\(903\) − 3.96383i − 0.131908i
\(904\) − 16.5194i − 0.549428i
\(905\) 6.18853i 0.205714i
\(906\) 10.3349 0.343353
\(907\) −4.28751 −0.142365 −0.0711823 0.997463i \(-0.522677\pi\)
−0.0711823 + 0.997463i \(0.522677\pi\)
\(908\) 5.63095i 0.186870i
\(909\) −13.8484 −0.459323
\(910\) 0 0
\(911\) −3.87618 −0.128423 −0.0642117 0.997936i \(-0.520453\pi\)
−0.0642117 + 0.997936i \(0.520453\pi\)
\(912\) − 1.84972i − 0.0612505i
\(913\) −18.3171 −0.606206
\(914\) −16.3170 −0.539719
\(915\) 25.8007i 0.852945i
\(916\) − 27.7225i − 0.915978i
\(917\) 5.12859i 0.169361i
\(918\) 0.964376i 0.0318291i
\(919\) 45.9047 1.51426 0.757129 0.653266i \(-0.226601\pi\)
0.757129 + 0.653266i \(0.226601\pi\)
\(920\) 9.20183 0.303375
\(921\) 17.0495i 0.561801i
\(922\) −19.2778 −0.634882
\(923\) 0 0
\(924\) 4.99823 0.164430
\(925\) 69.0802i 2.27134i
\(926\) 2.70218 0.0887990
\(927\) −43.5525 −1.43045
\(928\) − 0.0985660i − 0.00323559i
\(929\) 9.83612i 0.322713i 0.986896 + 0.161356i \(0.0515869\pi\)
−0.986896 + 0.161356i \(0.948413\pi\)
\(930\) − 7.42263i − 0.243397i
\(931\) − 2.13714i − 0.0700418i
\(932\) 20.1104 0.658737
\(933\) −14.6865 −0.480814
\(934\) − 18.3906i − 0.601758i
\(935\) 4.54788 0.148731
\(936\) 0 0
\(937\) 21.5135 0.702815 0.351407 0.936223i \(-0.385703\pi\)
0.351407 + 0.936223i \(0.385703\pi\)
\(938\) 12.9700i 0.423485i
\(939\) 3.92766 0.128174
\(940\) −33.9797 −1.10829
\(941\) − 6.41845i − 0.209236i −0.994513 0.104618i \(-0.966638\pi\)
0.994513 0.104618i \(-0.0333619\pi\)
\(942\) − 8.08410i − 0.263394i
\(943\) 18.6480i 0.607264i
\(944\) − 0.231914i − 0.00754816i
\(945\) −16.8669 −0.548679
\(946\) 26.4473 0.859877
\(947\) − 7.57266i − 0.246078i −0.992402 0.123039i \(-0.960736\pi\)
0.992402 0.123039i \(-0.0392641\pi\)
\(948\) −7.96057 −0.258547
\(949\) 0 0
\(950\) 18.7509 0.608360
\(951\) − 25.2614i − 0.819158i
\(952\) −0.212197 −0.00687734
\(953\) 35.8044 1.15982 0.579909 0.814681i \(-0.303088\pi\)
0.579909 + 0.814681i \(0.303088\pi\)
\(954\) − 27.2240i − 0.881409i
\(955\) − 0.448980i − 0.0145286i
\(956\) − 6.62968i − 0.214419i
\(957\) 0.492656i 0.0159253i
\(958\) 40.8708 1.32048
\(959\) −9.39328 −0.303325
\(960\) − 3.21220i − 0.103673i
\(961\) 25.6604 0.827754
\(962\) 0 0
\(963\) −26.2231 −0.845027
\(964\) − 1.61687i − 0.0520757i
\(965\) 10.2265 0.329203
\(966\) 2.14596 0.0690450
\(967\) 32.3876i 1.04152i 0.853704 + 0.520758i \(0.174351\pi\)
−0.853704 + 0.520758i \(0.825649\pi\)
\(968\) 22.3491i 0.718326i
\(969\) − 0.392506i − 0.0126091i
\(970\) 52.2622i 1.67804i
\(971\) 34.4065 1.10416 0.552079 0.833792i \(-0.313835\pi\)
0.552079 + 0.833792i \(0.313835\pi\)
\(972\) 16.0742 0.515579
\(973\) − 15.1413i − 0.485407i
\(974\) −17.6293 −0.564880
\(975\) 0 0
\(976\) 8.03211 0.257102
\(977\) − 23.1484i − 0.740583i −0.928916 0.370291i \(-0.879258\pi\)
0.928916 0.370291i \(-0.120742\pi\)
\(978\) 3.87517 0.123914
\(979\) −68.2396 −2.18095
\(980\) − 3.71131i − 0.118554i
\(981\) 12.9045i 0.412008i
\(982\) 18.8599i 0.601845i
\(983\) − 47.0579i − 1.50092i −0.660919 0.750458i \(-0.729833\pi\)
0.660919 0.750458i \(-0.270167\pi\)
\(984\) 6.50970 0.207522
\(985\) 56.1349 1.78861
\(986\) − 0.0209154i 0 0.000666082i
\(987\) −7.92439 −0.252236
\(988\) 0 0
\(989\) 11.3550 0.361068
\(990\) − 48.2417i − 1.53322i
\(991\) −11.9010 −0.378049 −0.189025 0.981972i \(-0.560533\pi\)
−0.189025 + 0.981972i \(0.560533\pi\)
\(992\) −2.31076 −0.0733668
\(993\) − 4.15916i − 0.131987i
\(994\) 7.36377i 0.233565i
\(995\) 19.6937i 0.624333i
\(996\) 2.74529i 0.0869879i
\(997\) 13.0143 0.412166 0.206083 0.978534i \(-0.433928\pi\)
0.206083 + 0.978534i \(0.433928\pi\)
\(998\) −2.10742 −0.0667092
\(999\) − 35.7825i − 1.13211i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2366.2.d.r.337.8 12
13.3 even 3 182.2.m.b.43.3 12
13.4 even 6 182.2.m.b.127.3 yes 12
13.5 odd 4 2366.2.a.bh.1.2 6
13.8 odd 4 2366.2.a.bf.1.2 6
13.12 even 2 inner 2366.2.d.r.337.2 12
39.17 odd 6 1638.2.bj.g.127.4 12
39.29 odd 6 1638.2.bj.g.1135.6 12
52.3 odd 6 1456.2.cc.d.225.2 12
52.43 odd 6 1456.2.cc.d.673.2 12
91.3 odd 6 1274.2.v.d.667.6 12
91.4 even 6 1274.2.o.d.569.3 12
91.16 even 3 1274.2.o.d.459.6 12
91.17 odd 6 1274.2.o.e.569.1 12
91.30 even 6 1274.2.v.e.361.4 12
91.55 odd 6 1274.2.m.c.589.1 12
91.68 odd 6 1274.2.o.e.459.4 12
91.69 odd 6 1274.2.m.c.491.1 12
91.81 even 3 1274.2.v.e.667.4 12
91.82 odd 6 1274.2.v.d.361.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.m.b.43.3 12 13.3 even 3
182.2.m.b.127.3 yes 12 13.4 even 6
1274.2.m.c.491.1 12 91.69 odd 6
1274.2.m.c.589.1 12 91.55 odd 6
1274.2.o.d.459.6 12 91.16 even 3
1274.2.o.d.569.3 12 91.4 even 6
1274.2.o.e.459.4 12 91.68 odd 6
1274.2.o.e.569.1 12 91.17 odd 6
1274.2.v.d.361.6 12 91.82 odd 6
1274.2.v.d.667.6 12 91.3 odd 6
1274.2.v.e.361.4 12 91.30 even 6
1274.2.v.e.667.4 12 91.81 even 3
1456.2.cc.d.225.2 12 52.3 odd 6
1456.2.cc.d.673.2 12 52.43 odd 6
1638.2.bj.g.127.4 12 39.17 odd 6
1638.2.bj.g.1135.6 12 39.29 odd 6
2366.2.a.bf.1.2 6 13.8 odd 4
2366.2.a.bh.1.2 6 13.5 odd 4
2366.2.d.r.337.2 12 13.12 even 2 inner
2366.2.d.r.337.8 12 1.1 even 1 trivial