Properties

Label 1274.2.m.c.491.1
Level $1274$
Weight $2$
Character 1274.491
Analytic conductor $10.173$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1274,2,Mod(491,1274)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1274, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1274.491"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.m (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,2,6,0,-6,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1729412175\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 39 x^{10} - 140 x^{9} + 460 x^{8} - 1066 x^{7} + 2127 x^{6} - 3172 x^{5} + \cdots + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 491.1
Root \(0.500000 - 1.73154i\) of defining polynomial
Character \(\chi\) \(=\) 1274.491
Dual form 1274.2.m.c.589.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(-0.432757 - 0.749558i) q^{3} +(0.500000 - 0.866025i) q^{4} -3.71131i q^{5} +(0.749558 + 0.432757i) q^{6} +1.00000i q^{8} +(1.12544 - 1.94932i) q^{9} +(1.85566 + 3.21409i) q^{10} +(-5.00118 + 2.88743i) q^{11} -0.865515 q^{12} +(-2.87757 - 2.17246i) q^{13} +(-2.78184 + 1.60610i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(0.106098 - 0.183768i) q^{17} +2.25088i q^{18} +(-1.85081 - 1.06857i) q^{19} +(-3.21409 - 1.85566i) q^{20} +(2.88743 - 5.00118i) q^{22} +(1.23970 + 2.14722i) q^{23} +(0.749558 - 0.432757i) q^{24} -8.77384 q^{25} +(3.57828 + 0.442616i) q^{26} -4.54472 q^{27} +(0.0492830 + 0.0853606i) q^{29} +(1.60610 - 2.78184i) q^{30} +2.31076i q^{31} +(0.866025 + 0.500000i) q^{32} +(4.32860 + 2.49912i) q^{33} +0.212197i q^{34} +(-1.12544 - 1.94932i) q^{36} +(6.81859 - 3.93672i) q^{37} +2.13714 q^{38} +(-0.383091 + 3.09706i) q^{39} +3.71131 q^{40} +(-6.51354 + 3.76060i) q^{41} +(2.28987 - 3.96617i) q^{43} +5.77486i q^{44} +(-7.23455 - 4.17687i) q^{45} +(-2.14722 - 1.23970i) q^{46} +9.15570i q^{47} +(-0.432757 + 0.749558i) q^{48} +(7.59837 - 4.38692i) q^{50} -0.183660 q^{51} +(-3.32019 + 1.40582i) q^{52} +12.0948 q^{53} +(3.93584 - 2.27236i) q^{54} +(10.7162 + 18.5609i) q^{55} +1.84972i q^{57} +(-0.0853606 - 0.0492830i) q^{58} +(0.200843 + 0.115957i) q^{59} +3.21220i q^{60} +(4.01605 - 6.95601i) q^{61} +(-1.15538 - 2.00118i) q^{62} -1.00000 q^{64} +(-8.06267 + 10.6796i) q^{65} -4.99823 q^{66} +(-11.2323 + 6.48500i) q^{67} +(-0.106098 - 0.183768i) q^{68} +(1.07298 - 1.85845i) q^{69} +(6.37721 + 3.68188i) q^{71} +(1.94932 + 1.12544i) q^{72} +5.60414i q^{73} +(-3.93672 + 6.81859i) q^{74} +(3.79695 + 6.57650i) q^{75} +(-1.85081 + 1.06857i) q^{76} +(-1.21676 - 2.87367i) q^{78} -9.19749 q^{79} +(-3.21409 + 1.85566i) q^{80} +(-1.40956 - 2.44144i) q^{81} +(3.76060 - 6.51354i) q^{82} +3.17186i q^{83} +(-0.682021 - 0.393765i) q^{85} +4.57973i q^{86} +(0.0426552 - 0.0738809i) q^{87} +(-2.88743 - 5.00118i) q^{88} +(10.2335 - 5.90833i) q^{89} +8.35373 q^{90} +2.47940 q^{92} +(1.73205 - 1.00000i) q^{93} +(-4.57785 - 7.92907i) q^{94} +(-3.96579 + 6.86895i) q^{95} -0.865515i q^{96} +(-12.1952 - 7.04093i) q^{97} +12.9985i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{3} + 6 q^{4} - 6 q^{6} - 6 q^{9} + 2 q^{10} - 18 q^{11} + 4 q^{12} + 8 q^{13} - 6 q^{15} - 6 q^{16} - 4 q^{17} - 12 q^{19} - 2 q^{22} - 6 q^{23} - 6 q^{24} - 24 q^{25} + 14 q^{26} - 40 q^{27}+ \cdots - 60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1274\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) −0.432757 0.749558i −0.249853 0.432757i 0.713632 0.700521i \(-0.247049\pi\)
−0.963485 + 0.267763i \(0.913716\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 3.71131i 1.65975i −0.557950 0.829875i \(-0.688412\pi\)
0.557950 0.829875i \(-0.311588\pi\)
\(6\) 0.749558 + 0.432757i 0.306006 + 0.176673i
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) 1.12544 1.94932i 0.375147 0.649774i
\(10\) 1.85566 + 3.21409i 0.586810 + 1.01638i
\(11\) −5.00118 + 2.88743i −1.50791 + 0.870594i −0.507955 + 0.861384i \(0.669598\pi\)
−0.999958 + 0.00920984i \(0.997068\pi\)
\(12\) −0.865515 −0.249853
\(13\) −2.87757 2.17246i −0.798095 0.602531i
\(14\) 0 0
\(15\) −2.78184 + 1.60610i −0.718269 + 0.414693i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0.106098 0.183768i 0.0257327 0.0445703i −0.852872 0.522120i \(-0.825141\pi\)
0.878605 + 0.477549i \(0.158475\pi\)
\(18\) 2.25088i 0.530538i
\(19\) −1.85081 1.06857i −0.424606 0.245146i 0.272440 0.962173i \(-0.412169\pi\)
−0.697046 + 0.717026i \(0.745503\pi\)
\(20\) −3.21409 1.85566i −0.718693 0.414937i
\(21\) 0 0
\(22\) 2.88743 5.00118i 0.615603 1.06626i
\(23\) 1.23970 + 2.14722i 0.258495 + 0.447727i 0.965839 0.259143i \(-0.0834400\pi\)
−0.707344 + 0.706870i \(0.750107\pi\)
\(24\) 0.749558 0.432757i 0.153003 0.0883363i
\(25\) −8.77384 −1.75477
\(26\) 3.57828 + 0.442616i 0.701759 + 0.0868041i
\(27\) −4.54472 −0.874632
\(28\) 0 0
\(29\) 0.0492830 + 0.0853606i 0.00915162 + 0.0158511i 0.870565 0.492054i \(-0.163754\pi\)
−0.861413 + 0.507905i \(0.830420\pi\)
\(30\) 1.60610 2.78184i 0.293232 0.507893i
\(31\) 2.31076i 0.415025i 0.978232 + 0.207513i \(0.0665368\pi\)
−0.978232 + 0.207513i \(0.933463\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 4.32860 + 2.49912i 0.753512 + 0.435040i
\(34\) 0.212197i 0.0363915i
\(35\) 0 0
\(36\) −1.12544 1.94932i −0.187574 0.324887i
\(37\) 6.81859 3.93672i 1.12097 0.647192i 0.179321 0.983791i \(-0.442610\pi\)
0.941648 + 0.336599i \(0.109277\pi\)
\(38\) 2.13714 0.346689
\(39\) −0.383091 + 3.09706i −0.0613436 + 0.495926i
\(40\) 3.71131 0.586810
\(41\) −6.51354 + 3.76060i −1.01724 + 0.587306i −0.913305 0.407277i \(-0.866478\pi\)
−0.103940 + 0.994584i \(0.533145\pi\)
\(42\) 0 0
\(43\) 2.28987 3.96617i 0.349201 0.604835i −0.636906 0.770941i \(-0.719786\pi\)
0.986108 + 0.166107i \(0.0531196\pi\)
\(44\) 5.77486i 0.870594i
\(45\) −7.23455 4.17687i −1.07846 0.622651i
\(46\) −2.14722 1.23970i −0.316591 0.182784i
\(47\) 9.15570i 1.33550i 0.744388 + 0.667748i \(0.232742\pi\)
−0.744388 + 0.667748i \(0.767258\pi\)
\(48\) −0.432757 + 0.749558i −0.0624632 + 0.108189i
\(49\) 0 0
\(50\) 7.59837 4.38692i 1.07457 0.620404i
\(51\) −0.183660 −0.0257175
\(52\) −3.32019 + 1.40582i −0.460427 + 0.194953i
\(53\) 12.0948 1.66135 0.830674 0.556759i \(-0.187955\pi\)
0.830674 + 0.556759i \(0.187955\pi\)
\(54\) 3.93584 2.27236i 0.535600 0.309229i
\(55\) 10.7162 + 18.5609i 1.44497 + 2.50276i
\(56\) 0 0
\(57\) 1.84972i 0.245002i
\(58\) −0.0853606 0.0492830i −0.0112084 0.00647117i
\(59\) 0.200843 + 0.115957i 0.0261476 + 0.0150963i 0.513017 0.858379i \(-0.328528\pi\)
−0.486869 + 0.873475i \(0.661861\pi\)
\(60\) 3.21220i 0.414693i
\(61\) 4.01605 6.95601i 0.514203 0.890626i −0.485661 0.874147i \(-0.661421\pi\)
0.999864 0.0164787i \(-0.00524558\pi\)
\(62\) −1.15538 2.00118i −0.146734 0.254150i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −8.06267 + 10.6796i −1.00005 + 1.32464i
\(66\) −4.99823 −0.615240
\(67\) −11.2323 + 6.48500i −1.37225 + 0.792269i −0.991211 0.132291i \(-0.957767\pi\)
−0.381039 + 0.924559i \(0.624433\pi\)
\(68\) −0.106098 0.183768i −0.0128663 0.0222851i
\(69\) 1.07298 1.85845i 0.129171 0.223731i
\(70\) 0 0
\(71\) 6.37721 + 3.68188i 0.756836 + 0.436959i 0.828158 0.560494i \(-0.189389\pi\)
−0.0713229 + 0.997453i \(0.522722\pi\)
\(72\) 1.94932 + 1.12544i 0.229730 + 0.132635i
\(73\) 5.60414i 0.655915i 0.944692 + 0.327958i \(0.106360\pi\)
−0.944692 + 0.327958i \(0.893640\pi\)
\(74\) −3.93672 + 6.81859i −0.457634 + 0.792645i
\(75\) 3.79695 + 6.57650i 0.438434 + 0.759389i
\(76\) −1.85081 + 1.06857i −0.212303 + 0.122573i
\(77\) 0 0
\(78\) −1.21676 2.87367i −0.137771 0.325380i
\(79\) −9.19749 −1.03480 −0.517399 0.855744i \(-0.673100\pi\)
−0.517399 + 0.855744i \(0.673100\pi\)
\(80\) −3.21409 + 1.85566i −0.359346 + 0.207469i
\(81\) −1.40956 2.44144i −0.156618 0.271271i
\(82\) 3.76060 6.51354i 0.415288 0.719301i
\(83\) 3.17186i 0.348157i 0.984732 + 0.174078i \(0.0556946\pi\)
−0.984732 + 0.174078i \(0.944305\pi\)
\(84\) 0 0
\(85\) −0.682021 0.393765i −0.0739755 0.0427098i
\(86\) 4.57973i 0.493845i
\(87\) 0.0426552 0.0738809i 0.00457311 0.00792087i
\(88\) −2.88743 5.00118i −0.307801 0.533128i
\(89\) 10.2335 5.90833i 1.08475 0.626282i 0.152577 0.988292i \(-0.451243\pi\)
0.932174 + 0.362010i \(0.117909\pi\)
\(90\) 8.35373 0.880561
\(91\) 0 0
\(92\) 2.47940 0.258495
\(93\) 1.73205 1.00000i 0.179605 0.103695i
\(94\) −4.57785 7.92907i −0.472169 0.817821i
\(95\) −3.96579 + 6.86895i −0.406882 + 0.704740i
\(96\) 0.865515i 0.0883363i
\(97\) −12.1952 7.04093i −1.23824 0.714898i −0.269506 0.962999i \(-0.586860\pi\)
−0.968734 + 0.248101i \(0.920194\pi\)
\(98\) 0 0
\(99\) 12.9985i 1.30640i
\(100\) −4.38692 + 7.59837i −0.438692 + 0.759837i
\(101\) 3.07622 + 5.32816i 0.306095 + 0.530172i 0.977505 0.210914i \(-0.0676441\pi\)
−0.671410 + 0.741087i \(0.734311\pi\)
\(102\) 0.159054 0.0918298i 0.0157487 0.00909251i
\(103\) −19.3491 −1.90652 −0.953260 0.302152i \(-0.902295\pi\)
−0.953260 + 0.302152i \(0.902295\pi\)
\(104\) 2.17246 2.87757i 0.213027 0.282169i
\(105\) 0 0
\(106\) −10.4744 + 6.04740i −1.01736 + 0.587375i
\(107\) −5.82506 10.0893i −0.563130 0.975369i −0.997221 0.0745005i \(-0.976264\pi\)
0.434091 0.900869i \(-0.357070\pi\)
\(108\) −2.27236 + 3.93584i −0.218658 + 0.378727i
\(109\) 5.73307i 0.549129i 0.961569 + 0.274564i \(0.0885336\pi\)
−0.961569 + 0.274564i \(0.911466\pi\)
\(110\) −18.5609 10.7162i −1.76972 1.02175i
\(111\) −5.90159 3.40729i −0.560154 0.323405i
\(112\) 0 0
\(113\) −8.25971 + 14.3062i −0.777008 + 1.34582i 0.156650 + 0.987654i \(0.449930\pi\)
−0.933659 + 0.358164i \(0.883403\pi\)
\(114\) −0.924862 1.60191i −0.0866213 0.150032i
\(115\) 7.96901 4.60091i 0.743114 0.429037i
\(116\) 0.0985660 0.00915162
\(117\) −7.47336 + 3.16435i −0.690913 + 0.292544i
\(118\) −0.231914 −0.0213494
\(119\) 0 0
\(120\) −1.60610 2.78184i −0.146616 0.253946i
\(121\) 11.1745 19.3549i 1.01587 1.75953i
\(122\) 8.03211i 0.727193i
\(123\) 5.63757 + 3.25485i 0.508323 + 0.293480i
\(124\) 2.00118 + 1.15538i 0.179711 + 0.103756i
\(125\) 14.0059i 1.25273i
\(126\) 0 0
\(127\) −5.89420 10.2090i −0.523025 0.905907i −0.999641 0.0267947i \(-0.991470\pi\)
0.476616 0.879112i \(-0.341863\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) −3.96383 −0.348996
\(130\) 1.64269 13.2801i 0.144073 1.16474i
\(131\) 5.12859 0.448087 0.224043 0.974579i \(-0.428074\pi\)
0.224043 + 0.974579i \(0.428074\pi\)
\(132\) 4.32860 2.49912i 0.376756 0.217520i
\(133\) 0 0
\(134\) 6.48500 11.2323i 0.560219 0.970327i
\(135\) 16.8669i 1.45167i
\(136\) 0.183768 + 0.106098i 0.0157580 + 0.00909787i
\(137\) −8.13482 4.69664i −0.695005 0.401261i 0.110479 0.993878i \(-0.464761\pi\)
−0.805484 + 0.592617i \(0.798095\pi\)
\(138\) 2.14596i 0.182676i
\(139\) 7.57063 13.1127i 0.642133 1.11221i −0.342823 0.939400i \(-0.611383\pi\)
0.984956 0.172806i \(-0.0552835\pi\)
\(140\) 0 0
\(141\) 6.86273 3.96220i 0.577946 0.333677i
\(142\) −7.36377 −0.617954
\(143\) 20.6641 + 2.55605i 1.72802 + 0.213747i
\(144\) −2.25088 −0.187574
\(145\) 0.316800 0.182905i 0.0263088 0.0151894i
\(146\) −2.80207 4.85333i −0.231901 0.401664i
\(147\) 0 0
\(148\) 7.87343i 0.647192i
\(149\) −17.8425 10.3013i −1.46171 0.843919i −0.462620 0.886557i \(-0.653091\pi\)
−0.999091 + 0.0426374i \(0.986424\pi\)
\(150\) −6.57650 3.79695i −0.536969 0.310019i
\(151\) 11.9407i 0.971721i −0.874036 0.485861i \(-0.838506\pi\)
0.874036 0.485861i \(-0.161494\pi\)
\(152\) 1.06857 1.85081i 0.0866723 0.150121i
\(153\) −0.238815 0.413640i −0.0193071 0.0334408i
\(154\) 0 0
\(155\) 8.57596 0.688838
\(156\) 2.49058 + 1.88029i 0.199406 + 0.150544i
\(157\) −9.34022 −0.745431 −0.372715 0.927946i \(-0.621573\pi\)
−0.372715 + 0.927946i \(0.621573\pi\)
\(158\) 7.96526 4.59875i 0.633682 0.365857i
\(159\) −5.23411 9.06575i −0.415092 0.718961i
\(160\) 1.85566 3.21409i 0.146703 0.254096i
\(161\) 0 0
\(162\) 2.44144 + 1.40956i 0.191817 + 0.110746i
\(163\) 3.87746 + 2.23865i 0.303706 + 0.175345i 0.644106 0.764936i \(-0.277229\pi\)
−0.340401 + 0.940280i \(0.610563\pi\)
\(164\) 7.52119i 0.587306i
\(165\) 9.27500 16.0648i 0.722058 1.25064i
\(166\) −1.58593 2.74691i −0.123092 0.213202i
\(167\) −12.7365 + 7.35342i −0.985579 + 0.569025i −0.903950 0.427638i \(-0.859346\pi\)
−0.0816295 + 0.996663i \(0.526012\pi\)
\(168\) 0 0
\(169\) 3.56086 + 12.5028i 0.273912 + 0.961755i
\(170\) 0.787529 0.0604008
\(171\) −4.16597 + 2.40522i −0.318580 + 0.183932i
\(172\) −2.28987 3.96617i −0.174601 0.302417i
\(173\) −6.88286 + 11.9215i −0.523294 + 0.906372i 0.476339 + 0.879262i \(0.341964\pi\)
−0.999632 + 0.0271097i \(0.991370\pi\)
\(174\) 0.0853103i 0.00646736i
\(175\) 0 0
\(176\) 5.00118 + 2.88743i 0.376978 + 0.217648i
\(177\) 0.200725i 0.0150874i
\(178\) −5.90833 + 10.2335i −0.442848 + 0.767035i
\(179\) 7.63936 + 13.2318i 0.570992 + 0.988988i 0.996464 + 0.0840164i \(0.0267748\pi\)
−0.425472 + 0.904972i \(0.639892\pi\)
\(180\) −7.23455 + 4.17687i −0.539231 + 0.311325i
\(181\) 1.66748 0.123943 0.0619713 0.998078i \(-0.480261\pi\)
0.0619713 + 0.998078i \(0.480261\pi\)
\(182\) 0 0
\(183\) −6.95191 −0.513900
\(184\) −2.14722 + 1.23970i −0.158295 + 0.0913919i
\(185\) −14.6104 25.3059i −1.07418 1.86053i
\(186\) −1.00000 + 1.73205i −0.0733236 + 0.127000i
\(187\) 1.22541i 0.0896108i
\(188\) 7.92907 + 4.57785i 0.578287 + 0.333874i
\(189\) 0 0
\(190\) 7.93158i 0.575418i
\(191\) −0.0604880 + 0.104768i −0.00437676 + 0.00758076i −0.868205 0.496205i \(-0.834727\pi\)
0.863829 + 0.503786i \(0.168060\pi\)
\(192\) 0.432757 + 0.749558i 0.0312316 + 0.0540947i
\(193\) −2.38633 + 1.37775i −0.171772 + 0.0991725i −0.583421 0.812170i \(-0.698286\pi\)
0.411649 + 0.911342i \(0.364953\pi\)
\(194\) 14.0819 1.01102
\(195\) 11.4941 + 1.42177i 0.823113 + 0.101815i
\(196\) 0 0
\(197\) −13.0989 + 7.56267i −0.933260 + 0.538818i −0.887841 0.460150i \(-0.847796\pi\)
−0.0454187 + 0.998968i \(0.514462\pi\)
\(198\) −6.49927 11.2571i −0.461883 0.800005i
\(199\) −2.65320 + 4.59548i −0.188080 + 0.325765i −0.944610 0.328194i \(-0.893560\pi\)
0.756530 + 0.653959i \(0.226893\pi\)
\(200\) 8.77384i 0.620404i
\(201\) 9.72176 + 5.61286i 0.685720 + 0.395901i
\(202\) −5.32816 3.07622i −0.374888 0.216442i
\(203\) 0 0
\(204\) −0.0918298 + 0.159054i −0.00642937 + 0.0111360i
\(205\) 13.9567 + 24.1738i 0.974782 + 1.68837i
\(206\) 16.7568 9.67453i 1.16750 0.674056i
\(207\) 5.58084 0.387895
\(208\) −0.442616 + 3.57828i −0.0306899 + 0.248109i
\(209\) 12.3417 0.853691
\(210\) 0 0
\(211\) −8.94910 15.5003i −0.616081 1.06708i −0.990194 0.139701i \(-0.955386\pi\)
0.374112 0.927383i \(-0.377947\pi\)
\(212\) 6.04740 10.4744i 0.415337 0.719385i
\(213\) 6.37345i 0.436702i
\(214\) 10.0893 + 5.82506i 0.689690 + 0.398193i
\(215\) −14.7197 8.49841i −1.00387 0.579587i
\(216\) 4.54472i 0.309229i
\(217\) 0 0
\(218\) −2.86654 4.96499i −0.194146 0.336271i
\(219\) 4.20063 2.42524i 0.283852 0.163882i
\(220\) 21.4323 1.44497
\(221\) −0.704534 + 0.298312i −0.0473921 + 0.0200666i
\(222\) 6.81457 0.457364
\(223\) 14.2362 8.21925i 0.953324 0.550402i 0.0592118 0.998245i \(-0.481141\pi\)
0.894112 + 0.447844i \(0.147808\pi\)
\(224\) 0 0
\(225\) −9.87445 + 17.1031i −0.658297 + 1.14020i
\(226\) 16.5194i 1.09886i
\(227\) 4.87655 + 2.81547i 0.323668 + 0.186870i 0.653026 0.757335i \(-0.273499\pi\)
−0.329359 + 0.944205i \(0.606832\pi\)
\(228\) 1.60191 + 0.924862i 0.106089 + 0.0612505i
\(229\) 27.7225i 1.83196i 0.401228 + 0.915978i \(0.368584\pi\)
−0.401228 + 0.915978i \(0.631416\pi\)
\(230\) −4.60091 + 7.96901i −0.303375 + 0.525461i
\(231\) 0 0
\(232\) −0.0853606 + 0.0492830i −0.00560420 + 0.00323559i
\(233\) −20.1104 −1.31747 −0.658737 0.752374i \(-0.728909\pi\)
−0.658737 + 0.752374i \(0.728909\pi\)
\(234\) 4.88995 6.47708i 0.319666 0.423420i
\(235\) 33.9797 2.21659
\(236\) 0.200843 0.115957i 0.0130738 0.00754816i
\(237\) 3.98028 + 6.89405i 0.258547 + 0.447817i
\(238\) 0 0
\(239\) 6.62968i 0.428838i −0.976742 0.214419i \(-0.931214\pi\)
0.976742 0.214419i \(-0.0687858\pi\)
\(240\) 2.78184 + 1.60610i 0.179567 + 0.103673i
\(241\) −1.40025 0.808433i −0.0901978 0.0520757i 0.454223 0.890888i \(-0.349917\pi\)
−0.544420 + 0.838812i \(0.683250\pi\)
\(242\) 22.3491i 1.43665i
\(243\) −8.03708 + 13.9206i −0.515579 + 0.893009i
\(244\) −4.01605 6.95601i −0.257102 0.445313i
\(245\) 0 0
\(246\) −6.50970 −0.415044
\(247\) 3.00444 + 7.09570i 0.191168 + 0.451489i
\(248\) −2.31076 −0.146734
\(249\) 2.37749 1.37265i 0.150667 0.0869879i
\(250\) −7.00296 12.1295i −0.442906 0.767136i
\(251\) −0.253506 + 0.439085i −0.0160011 + 0.0277148i −0.873915 0.486079i \(-0.838427\pi\)
0.857914 + 0.513793i \(0.171760\pi\)
\(252\) 0 0
\(253\) −12.3999 7.15910i −0.779576 0.450089i
\(254\) 10.2090 + 5.89420i 0.640573 + 0.369835i
\(255\) 0.681619i 0.0426846i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 4.82032 + 8.34903i 0.300683 + 0.520798i 0.976291 0.216463i \(-0.0694520\pi\)
−0.675608 + 0.737261i \(0.736119\pi\)
\(258\) 3.43278 1.98191i 0.213715 0.123389i
\(259\) 0 0
\(260\) 5.21745 + 12.3223i 0.323573 + 0.764194i
\(261\) 0.221861 0.0137328
\(262\) −4.44149 + 2.56429i −0.274396 + 0.158423i
\(263\) 3.67309 + 6.36197i 0.226492 + 0.392296i 0.956766 0.290858i \(-0.0939409\pi\)
−0.730274 + 0.683155i \(0.760608\pi\)
\(264\) −2.49912 + 4.32860i −0.153810 + 0.266407i
\(265\) 44.8876i 2.75742i
\(266\) 0 0
\(267\) −8.85727 5.11375i −0.542056 0.312956i
\(268\) 12.9700i 0.792269i
\(269\) 11.1770 19.3592i 0.681476 1.18035i −0.293055 0.956096i \(-0.594672\pi\)
0.974530 0.224255i \(-0.0719949\pi\)
\(270\) −8.43344 14.6071i −0.513243 0.888962i
\(271\) 8.32891 4.80870i 0.505945 0.292108i −0.225220 0.974308i \(-0.572310\pi\)
0.731165 + 0.682200i \(0.238977\pi\)
\(272\) −0.212197 −0.0128663
\(273\) 0 0
\(274\) 9.39328 0.567469
\(275\) 43.8796 25.3339i 2.64604 1.52769i
\(276\) −1.07298 1.85845i −0.0645857 0.111866i
\(277\) 5.08945 8.81518i 0.305795 0.529653i −0.671643 0.740875i \(-0.734411\pi\)
0.977438 + 0.211222i \(0.0677444\pi\)
\(278\) 15.1413i 0.908113i
\(279\) 4.50442 + 2.60063i 0.269673 + 0.155696i
\(280\) 0 0
\(281\) 14.1692i 0.845265i −0.906301 0.422633i \(-0.861106\pi\)
0.906301 0.422633i \(-0.138894\pi\)
\(282\) −3.96220 + 6.86273i −0.235945 + 0.408669i
\(283\) −9.46631 16.3961i −0.562714 0.974649i −0.997258 0.0739986i \(-0.976424\pi\)
0.434545 0.900650i \(-0.356909\pi\)
\(284\) 6.37721 3.68188i 0.378418 0.218480i
\(285\) 6.86490 0.406642
\(286\) −19.1736 + 8.11844i −1.13376 + 0.480053i
\(287\) 0 0
\(288\) 1.94932 1.12544i 0.114865 0.0663173i
\(289\) 8.47749 + 14.6834i 0.498676 + 0.863732i
\(290\) −0.182905 + 0.316800i −0.0107405 + 0.0186031i
\(291\) 12.1881i 0.714477i
\(292\) 4.85333 + 2.80207i 0.284020 + 0.163979i
\(293\) −3.16950 1.82991i −0.185164 0.106905i 0.404553 0.914515i \(-0.367427\pi\)
−0.589717 + 0.807610i \(0.700761\pi\)
\(294\) 0 0
\(295\) 0.430353 0.745393i 0.0250561 0.0433985i
\(296\) 3.93672 + 6.81859i 0.228817 + 0.396323i
\(297\) 22.7290 13.1226i 1.31887 0.761449i
\(298\) 20.6027 1.19348
\(299\) 1.09742 8.87198i 0.0634655 0.513080i
\(300\) 7.59389 0.438434
\(301\) 0 0
\(302\) 5.97036 + 10.3410i 0.343555 + 0.595055i
\(303\) 2.66251 4.61161i 0.152957 0.264930i
\(304\) 2.13714i 0.122573i
\(305\) −25.8159 14.9048i −1.47822 0.853448i
\(306\) 0.413640 + 0.238815i 0.0236462 + 0.0136522i
\(307\) 19.6987i 1.12426i −0.827048 0.562132i \(-0.809981\pi\)
0.827048 0.562132i \(-0.190019\pi\)
\(308\) 0 0
\(309\) 8.37345 + 14.5032i 0.476349 + 0.825061i
\(310\) −7.42700 + 4.28798i −0.421825 + 0.243541i
\(311\) −16.9685 −0.962195 −0.481098 0.876667i \(-0.659762\pi\)
−0.481098 + 0.876667i \(0.659762\pi\)
\(312\) −3.09706 0.383091i −0.175336 0.0216882i
\(313\) 4.53794 0.256500 0.128250 0.991742i \(-0.459064\pi\)
0.128250 + 0.991742i \(0.459064\pi\)
\(314\) 8.08887 4.67011i 0.456481 0.263550i
\(315\) 0 0
\(316\) −4.59875 + 7.96526i −0.258700 + 0.448081i
\(317\) 29.1866i 1.63928i −0.572877 0.819641i \(-0.694173\pi\)
0.572877 0.819641i \(-0.305827\pi\)
\(318\) 9.06575 + 5.23411i 0.508382 + 0.293515i
\(319\) −0.492946 0.284603i −0.0275997 0.0159347i
\(320\) 3.71131i 0.207469i
\(321\) −5.04168 + 8.73244i −0.281399 + 0.487397i
\(322\) 0 0
\(323\) −0.392737 + 0.226747i −0.0218525 + 0.0126165i
\(324\) −2.81913 −0.156618
\(325\) 25.2474 + 19.0608i 1.40047 + 1.05730i
\(326\) −4.47730 −0.247975
\(327\) 4.29727 2.48103i 0.237640 0.137201i
\(328\) −3.76060 6.51354i −0.207644 0.359650i
\(329\) 0 0
\(330\) 18.5500i 1.02114i
\(331\) 4.16161 + 2.40271i 0.228743 + 0.132065i 0.609992 0.792408i \(-0.291173\pi\)
−0.381249 + 0.924472i \(0.624506\pi\)
\(332\) 2.74691 + 1.58593i 0.150756 + 0.0870392i
\(333\) 17.7222i 0.971169i
\(334\) 7.35342 12.7365i 0.402361 0.696910i
\(335\) 24.0679 + 41.6868i 1.31497 + 2.27759i
\(336\) 0 0
\(337\) 17.7312 0.965883 0.482941 0.875653i \(-0.339568\pi\)
0.482941 + 0.875653i \(0.339568\pi\)
\(338\) −9.33520 9.04732i −0.507768 0.492109i
\(339\) 14.2978 0.776550
\(340\) −0.682021 + 0.393765i −0.0369878 + 0.0213549i
\(341\) −6.67217 11.5565i −0.361318 0.625822i
\(342\) 2.40522 4.16597i 0.130060 0.225270i
\(343\) 0 0
\(344\) 3.96617 + 2.28987i 0.213841 + 0.123461i
\(345\) −6.89730 3.98216i −0.371338 0.214392i
\(346\) 13.7657i 0.740049i
\(347\) 8.35240 14.4668i 0.448380 0.776617i −0.549901 0.835230i \(-0.685334\pi\)
0.998281 + 0.0586128i \(0.0186677\pi\)
\(348\) −0.0426552 0.0738809i −0.00228656 0.00396043i
\(349\) −0.0173616 + 0.0100237i −0.000929347 + 0.000536559i −0.500465 0.865757i \(-0.666837\pi\)
0.499535 + 0.866294i \(0.333504\pi\)
\(350\) 0 0
\(351\) 13.0778 + 9.87321i 0.698039 + 0.526993i
\(352\) −5.77486 −0.307801
\(353\) −25.8299 + 14.9129i −1.37479 + 0.793734i −0.991526 0.129905i \(-0.958533\pi\)
−0.383262 + 0.923640i \(0.625199\pi\)
\(354\) 0.100363 + 0.173833i 0.00533421 + 0.00923912i
\(355\) 13.6646 23.6678i 0.725243 1.25616i
\(356\) 11.8167i 0.626282i
\(357\) 0 0
\(358\) −13.2318 7.63936i −0.699320 0.403753i
\(359\) 18.3351i 0.967687i 0.875154 + 0.483844i \(0.160760\pi\)
−0.875154 + 0.483844i \(0.839240\pi\)
\(360\) 4.17687 7.23455i 0.220140 0.381294i
\(361\) −7.21632 12.4990i −0.379806 0.657844i
\(362\) −1.44408 + 0.833739i −0.0758991 + 0.0438204i
\(363\) −19.3434 −1.01527
\(364\) 0 0
\(365\) 20.7987 1.08866
\(366\) 6.02053 3.47596i 0.314698 0.181691i
\(367\) 0.672426 + 1.16468i 0.0351004 + 0.0607956i 0.883042 0.469294i \(-0.155492\pi\)
−0.847942 + 0.530090i \(0.822158\pi\)
\(368\) 1.23970 2.14722i 0.0646238 0.111932i
\(369\) 16.9293i 0.881306i
\(370\) 25.3059 + 14.6104i 1.31559 + 0.759558i
\(371\) 0 0
\(372\) 2.00000i 0.103695i
\(373\) 5.53575 9.58821i 0.286630 0.496458i −0.686373 0.727250i \(-0.740798\pi\)
0.973003 + 0.230791i \(0.0741315\pi\)
\(374\) −0.612704 1.06124i −0.0316822 0.0548752i
\(375\) 10.4982 6.06116i 0.542127 0.312997i
\(376\) −9.15570 −0.472169
\(377\) 0.0436269 0.352697i 0.00224690 0.0181648i
\(378\) 0 0
\(379\) 14.5583 8.40523i 0.747808 0.431747i −0.0770930 0.997024i \(-0.524564\pi\)
0.824902 + 0.565276i \(0.191231\pi\)
\(380\) 3.96579 + 6.86895i 0.203441 + 0.352370i
\(381\) −5.10152 + 8.83608i −0.261359 + 0.452686i
\(382\) 0.120976i 0.00618967i
\(383\) −14.3562 8.28855i −0.733567 0.423525i 0.0861585 0.996281i \(-0.472541\pi\)
−0.819726 + 0.572756i \(0.805874\pi\)
\(384\) −0.749558 0.432757i −0.0382507 0.0220841i
\(385\) 0 0
\(386\) 1.37775 2.38633i 0.0701256 0.121461i
\(387\) −5.15422 8.92738i −0.262004 0.453804i
\(388\) −12.1952 + 7.04093i −0.619120 + 0.357449i
\(389\) −1.17013 −0.0593280 −0.0296640 0.999560i \(-0.509444\pi\)
−0.0296640 + 0.999560i \(0.509444\pi\)
\(390\) −10.6651 + 4.51578i −0.540049 + 0.228666i
\(391\) 0.526121 0.0266071
\(392\) 0 0
\(393\) −2.21944 3.84418i −0.111956 0.193913i
\(394\) 7.56267 13.0989i 0.381002 0.659914i
\(395\) 34.1348i 1.71751i
\(396\) 11.2571 + 6.49927i 0.565689 + 0.326601i
\(397\) −22.6877 13.0987i −1.13866 0.657406i −0.192562 0.981285i \(-0.561680\pi\)
−0.946099 + 0.323878i \(0.895013\pi\)
\(398\) 5.30640i 0.265986i
\(399\) 0 0
\(400\) 4.38692 + 7.59837i 0.219346 + 0.379919i
\(401\) −9.84559 + 5.68436i −0.491665 + 0.283863i −0.725265 0.688470i \(-0.758283\pi\)
0.233600 + 0.972333i \(0.424949\pi\)
\(402\) −11.2257 −0.559888
\(403\) 5.02003 6.64939i 0.250066 0.331230i
\(404\) 6.15243 0.306095
\(405\) −9.06094 + 5.23134i −0.450242 + 0.259947i
\(406\) 0 0
\(407\) −22.7340 + 39.3764i −1.12688 + 1.95182i
\(408\) 0.183660i 0.00909251i
\(409\) 20.2056 + 11.6657i 0.999102 + 0.576832i 0.907982 0.419008i \(-0.137622\pi\)
0.0911196 + 0.995840i \(0.470955\pi\)
\(410\) −24.1738 13.9567i −1.19386 0.689275i
\(411\) 8.13003i 0.401025i
\(412\) −9.67453 + 16.7568i −0.476630 + 0.825547i
\(413\) 0 0
\(414\) −4.83315 + 2.79042i −0.237536 + 0.137142i
\(415\) 11.7718 0.577853
\(416\) −1.40582 3.32019i −0.0689262 0.162786i
\(417\) −13.1050 −0.641754
\(418\) −10.6882 + 6.17084i −0.522777 + 0.301826i
\(419\) −6.33402 10.9709i −0.309437 0.535961i 0.668802 0.743441i \(-0.266807\pi\)
−0.978239 + 0.207479i \(0.933474\pi\)
\(420\) 0 0
\(421\) 27.6625i 1.34819i −0.738646 0.674094i \(-0.764534\pi\)
0.738646 0.674094i \(-0.235466\pi\)
\(422\) 15.5003 + 8.94910i 0.754543 + 0.435635i
\(423\) 17.8474 + 10.3042i 0.867771 + 0.501008i
\(424\) 12.0948i 0.587375i
\(425\) −0.930892 + 1.61235i −0.0451549 + 0.0782105i
\(426\) 3.18673 + 5.51957i 0.154397 + 0.267424i
\(427\) 0 0
\(428\) −11.6501 −0.563130
\(429\) −7.02663 16.5951i −0.339249 0.801218i
\(430\) 16.9968 0.819660
\(431\) 5.55462 3.20696i 0.267557 0.154474i −0.360220 0.932867i \(-0.617298\pi\)
0.627777 + 0.778393i \(0.283965\pi\)
\(432\) 2.27236 + 3.93584i 0.109329 + 0.189363i
\(433\) 0.0325135 0.0563150i 0.00156250 0.00270633i −0.865243 0.501353i \(-0.832836\pi\)
0.866806 + 0.498646i \(0.166169\pi\)
\(434\) 0 0
\(435\) −0.274195 0.158307i −0.0131467 0.00759022i
\(436\) 4.96499 + 2.86654i 0.237780 + 0.137282i
\(437\) 5.29881i 0.253477i
\(438\) −2.42524 + 4.20063i −0.115882 + 0.200714i
\(439\) −18.3889 31.8505i −0.877655 1.52014i −0.853908 0.520424i \(-0.825774\pi\)
−0.0237469 0.999718i \(-0.507560\pi\)
\(440\) −18.5609 + 10.7162i −0.884858 + 0.510873i
\(441\) 0 0
\(442\) 0.460989 0.610613i 0.0219270 0.0290439i
\(443\) −8.46383 −0.402129 −0.201064 0.979578i \(-0.564440\pi\)
−0.201064 + 0.979578i \(0.564440\pi\)
\(444\) −5.90159 + 3.40729i −0.280077 + 0.161703i
\(445\) −21.9277 37.9798i −1.03947 1.80042i
\(446\) −8.21925 + 14.2362i −0.389193 + 0.674102i
\(447\) 17.8319i 0.843422i
\(448\) 0 0
\(449\) −19.5984 11.3152i −0.924907 0.533995i −0.0397096 0.999211i \(-0.512643\pi\)
−0.885197 + 0.465216i \(0.845977\pi\)
\(450\) 19.7489i 0.930972i
\(451\) 21.7169 37.6148i 1.02261 1.77121i
\(452\) 8.25971 + 14.3062i 0.388504 + 0.672909i
\(453\) −8.95026 + 5.16743i −0.420520 + 0.242787i
\(454\) −5.63095 −0.264274
\(455\) 0 0
\(456\) −1.84972 −0.0866213
\(457\) −14.1310 + 8.15851i −0.661018 + 0.381639i −0.792665 0.609658i \(-0.791307\pi\)
0.131647 + 0.991297i \(0.457974\pi\)
\(458\) −13.8613 24.0084i −0.647694 1.12184i
\(459\) −0.482188 + 0.835174i −0.0225066 + 0.0389826i
\(460\) 9.20183i 0.429037i
\(461\) −16.6951 9.63892i −0.777568 0.448929i 0.0579996 0.998317i \(-0.481528\pi\)
−0.835568 + 0.549387i \(0.814861\pi\)
\(462\) 0 0
\(463\) 2.70218i 0.125581i 0.998027 + 0.0627904i \(0.0200000\pi\)
−0.998027 + 0.0627904i \(0.980000\pi\)
\(464\) 0.0492830 0.0853606i 0.00228791 0.00396277i
\(465\) −3.71131 6.42818i −0.172108 0.298100i
\(466\) 17.4161 10.0552i 0.806784 0.465797i
\(467\) 18.3906 0.851014 0.425507 0.904955i \(-0.360096\pi\)
0.425507 + 0.904955i \(0.360096\pi\)
\(468\) −0.996277 + 8.05429i −0.0460529 + 0.372310i
\(469\) 0 0
\(470\) −29.4272 + 16.9898i −1.35738 + 0.783682i
\(471\) 4.04205 + 7.00104i 0.186248 + 0.322591i
\(472\) −0.115957 + 0.200843i −0.00533735 + 0.00924457i
\(473\) 26.4473i 1.21605i
\(474\) −6.89405 3.98028i −0.316654 0.182820i
\(475\) 16.2388 + 9.37545i 0.745085 + 0.430175i
\(476\) 0 0
\(477\) 13.6120 23.5767i 0.623250 1.07950i
\(478\) 3.31484 + 5.74147i 0.151617 + 0.262609i
\(479\) −35.3951 + 20.4354i −1.61725 + 0.933717i −0.629617 + 0.776906i \(0.716788\pi\)
−0.987629 + 0.156811i \(0.949879\pi\)
\(480\) −3.21220 −0.146616
\(481\) −28.1733 3.48491i −1.28459 0.158898i
\(482\) 1.61687 0.0736462
\(483\) 0 0
\(484\) −11.1745 19.3549i −0.507933 0.879766i
\(485\) −26.1311 + 45.2604i −1.18655 + 2.05517i
\(486\) 16.0742i 0.729138i
\(487\) 15.2674 + 8.81466i 0.691834 + 0.399430i 0.804299 0.594225i \(-0.202541\pi\)
−0.112465 + 0.993656i \(0.535875\pi\)
\(488\) 6.95601 + 4.01605i 0.314884 + 0.181798i
\(489\) 3.87517i 0.175241i
\(490\) 0 0
\(491\) −9.42997 16.3332i −0.425569 0.737106i 0.570905 0.821016i \(-0.306593\pi\)
−0.996473 + 0.0839098i \(0.973259\pi\)
\(492\) 5.63757 3.25485i 0.254161 0.146740i
\(493\) 0.0209154 0.000941982
\(494\) −6.14977 4.64284i −0.276691 0.208891i
\(495\) 48.2417 2.16830
\(496\) 2.00118 1.15538i 0.0898556 0.0518782i
\(497\) 0 0
\(498\) −1.37265 + 2.37749i −0.0615097 + 0.106538i
\(499\) 2.10742i 0.0943410i −0.998887 0.0471705i \(-0.984980\pi\)
0.998887 0.0471705i \(-0.0150204\pi\)
\(500\) 12.1295 + 7.00296i 0.542447 + 0.313182i
\(501\) 11.0236 + 6.36449i 0.492499 + 0.284345i
\(502\) 0.507011i 0.0226290i
\(503\) 10.8942 18.8693i 0.485749 0.841342i −0.514117 0.857720i \(-0.671880\pi\)
0.999866 + 0.0163784i \(0.00521363\pi\)
\(504\) 0 0
\(505\) 19.7745 11.4168i 0.879953 0.508041i
\(506\) 14.3182 0.636521
\(507\) 7.83059 8.07976i 0.347769 0.358835i
\(508\) −11.7884 −0.523025
\(509\) 10.5636 6.09887i 0.468221 0.270328i −0.247273 0.968946i \(-0.579535\pi\)
0.715495 + 0.698618i \(0.246201\pi\)
\(510\) −0.340809 0.590299i −0.0150913 0.0261389i
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 8.41143 + 4.85634i 0.371374 + 0.214413i
\(514\) −8.34903 4.82032i −0.368260 0.212615i
\(515\) 71.8104i 3.16435i
\(516\) −1.98191 + 3.43278i −0.0872489 + 0.151120i
\(517\) −26.4365 45.7893i −1.16267 2.01381i
\(518\) 0 0
\(519\) 11.9144 0.522986
\(520\) −10.6796 8.06267i −0.468330 0.353571i
\(521\) 26.9765 1.18186 0.590932 0.806722i \(-0.298760\pi\)
0.590932 + 0.806722i \(0.298760\pi\)
\(522\) −0.192137 + 0.110930i −0.00840960 + 0.00485529i
\(523\) −1.87683 3.25076i −0.0820679 0.142146i 0.822070 0.569386i \(-0.192819\pi\)
−0.904138 + 0.427241i \(0.859486\pi\)
\(524\) 2.56429 4.44149i 0.112022 0.194027i
\(525\) 0 0
\(526\) −6.36197 3.67309i −0.277395 0.160154i
\(527\) 0.424644 + 0.245168i 0.0184978 + 0.0106797i
\(528\) 4.99823i 0.217520i
\(529\) 8.42629 14.5948i 0.366360 0.634555i
\(530\) 22.4438 + 38.8738i 0.974896 + 1.68857i
\(531\) 0.452075 0.261006i 0.0196184 0.0113267i
\(532\) 0 0
\(533\) 26.9129 + 3.32900i 1.16573 + 0.144195i
\(534\) 10.2275 0.442587
\(535\) −37.4445 + 21.6186i −1.61887 + 0.934654i
\(536\) −6.48500 11.2323i −0.280109 0.485163i
\(537\) 6.61198 11.4523i 0.285328 0.494203i
\(538\) 22.3541i 0.963752i
\(539\) 0 0
\(540\) 14.6071 + 8.43344i 0.628591 + 0.362917i
\(541\) 0.0135705i 0.000583440i 1.00000 0.000291720i \(9.28574e-5\pi\)
−1.00000 0.000291720i \(0.999907\pi\)
\(542\) −4.80870 + 8.32891i −0.206551 + 0.357757i
\(543\) −0.721614 1.24987i −0.0309674 0.0536371i
\(544\) 0.183768 0.106098i 0.00787899 0.00454894i
\(545\) 21.2772 0.911416
\(546\) 0 0
\(547\) −9.66115 −0.413081 −0.206540 0.978438i \(-0.566220\pi\)
−0.206540 + 0.978438i \(0.566220\pi\)
\(548\) −8.13482 + 4.69664i −0.347502 + 0.200631i
\(549\) −9.03967 15.6572i −0.385804 0.668232i
\(550\) −25.3339 + 43.8796i −1.08024 + 1.87103i
\(551\) 0.210649i 0.00897395i
\(552\) 1.85845 + 1.07298i 0.0791010 + 0.0456690i
\(553\) 0 0
\(554\) 10.1789i 0.432460i
\(555\) −12.6455 + 21.9027i −0.536772 + 0.929716i
\(556\) −7.57063 13.1127i −0.321066 0.556103i
\(557\) −21.6145 + 12.4791i −0.915834 + 0.528757i −0.882304 0.470680i \(-0.844008\pi\)
−0.0335307 + 0.999438i \(0.510675\pi\)
\(558\) −5.20126 −0.220187
\(559\) −15.2056 + 6.43830i −0.643128 + 0.272311i
\(560\) 0 0
\(561\) 0.918515 0.530305i 0.0387797 0.0223895i
\(562\) 7.08461 + 12.2709i 0.298846 + 0.517617i
\(563\) −7.94970 + 13.7693i −0.335040 + 0.580306i −0.983492 0.180949i \(-0.942083\pi\)
0.648453 + 0.761255i \(0.275416\pi\)
\(564\) 7.92439i 0.333677i
\(565\) 53.0949 + 30.6544i 2.23372 + 1.28964i
\(566\) 16.3961 + 9.46631i 0.689181 + 0.397899i
\(567\) 0 0
\(568\) −3.68188 + 6.37721i −0.154488 + 0.267582i
\(569\) −8.95465 15.5099i −0.375398 0.650209i 0.614988 0.788536i \(-0.289161\pi\)
−0.990387 + 0.138327i \(0.955827\pi\)
\(570\) −5.94518 + 3.43245i −0.249016 + 0.143770i
\(571\) −12.5123 −0.523623 −0.261812 0.965119i \(-0.584320\pi\)
−0.261812 + 0.965119i \(0.584320\pi\)
\(572\) 12.5456 16.6176i 0.524560 0.694817i
\(573\) 0.104707 0.00437418
\(574\) 0 0
\(575\) −10.8769 18.8394i −0.453599 0.785657i
\(576\) −1.12544 + 1.94932i −0.0468934 + 0.0812218i
\(577\) 22.0910i 0.919662i 0.888007 + 0.459831i \(0.152090\pi\)
−0.888007 + 0.459831i \(0.847910\pi\)
\(578\) −14.6834 8.47749i −0.610750 0.352617i
\(579\) 2.06540 + 1.19246i 0.0858353 + 0.0495570i
\(580\) 0.365809i 0.0151894i
\(581\) 0 0
\(582\) −6.09403 10.5552i −0.252606 0.437526i
\(583\) −60.4883 + 34.9229i −2.50517 + 1.44636i
\(584\) −5.60414 −0.231901
\(585\) 11.7439 + 27.7360i 0.485550 + 1.14674i
\(586\) 3.65982 0.151186
\(587\) 18.3007 10.5659i 0.755352 0.436102i −0.0722727 0.997385i \(-0.523025\pi\)
0.827624 + 0.561282i \(0.189692\pi\)
\(588\) 0 0
\(589\) 2.46921 4.27679i 0.101742 0.176222i
\(590\) 0.860706i 0.0354347i
\(591\) 11.3373 + 6.54560i 0.466355 + 0.269250i
\(592\) −6.81859 3.93672i −0.280242 0.161798i
\(593\) 8.95493i 0.367735i −0.982951 0.183867i \(-0.941138\pi\)
0.982951 0.183867i \(-0.0588617\pi\)
\(594\) −13.1226 + 22.7290i −0.538425 + 0.932580i
\(595\) 0 0
\(596\) −17.8425 + 10.3013i −0.730855 + 0.421960i
\(597\) 4.59277 0.187970
\(598\) 3.48560 + 8.23207i 0.142537 + 0.336635i
\(599\) 41.7996 1.70788 0.853942 0.520368i \(-0.174205\pi\)
0.853942 + 0.520368i \(0.174205\pi\)
\(600\) −6.57650 + 3.79695i −0.268485 + 0.155010i
\(601\) 7.64481 + 13.2412i 0.311838 + 0.540120i 0.978760 0.205008i \(-0.0657220\pi\)
−0.666922 + 0.745127i \(0.732389\pi\)
\(602\) 0 0
\(603\) 29.1940i 1.18887i
\(604\) −10.3410 5.97036i −0.420768 0.242930i
\(605\) −71.8319 41.4722i −2.92038 1.68608i
\(606\) 5.32502i 0.216314i
\(607\) 7.30434 12.6515i 0.296474 0.513508i −0.678853 0.734275i \(-0.737522\pi\)
0.975327 + 0.220766i \(0.0708558\pi\)
\(608\) −1.06857 1.85081i −0.0433362 0.0750604i
\(609\) 0 0
\(610\) 29.8097 1.20696
\(611\) 19.8904 26.3462i 0.804678 1.06585i
\(612\) −0.477631 −0.0193071
\(613\) −33.9623 + 19.6081i −1.37172 + 0.791965i −0.991145 0.132783i \(-0.957609\pi\)
−0.380579 + 0.924748i \(0.624275\pi\)
\(614\) 9.84935 + 17.0596i 0.397487 + 0.688468i
\(615\) 12.0798 20.9228i 0.487104 0.843688i
\(616\) 0 0
\(617\) 8.10486 + 4.67934i 0.326289 + 0.188383i 0.654192 0.756328i \(-0.273009\pi\)
−0.327903 + 0.944711i \(0.606342\pi\)
\(618\) −14.5032 8.37345i −0.583406 0.336830i
\(619\) 43.7075i 1.75675i 0.477970 + 0.878376i \(0.341373\pi\)
−0.477970 + 0.878376i \(0.658627\pi\)
\(620\) 4.28798 7.42700i 0.172210 0.298276i
\(621\) −5.63409 9.75852i −0.226088 0.391596i
\(622\) 14.6952 8.48425i 0.589222 0.340187i
\(623\) 0 0
\(624\) 2.87367 1.21676i 0.115039 0.0487094i
\(625\) 8.11112 0.324445
\(626\) −3.92997 + 2.26897i −0.157073 + 0.0906863i
\(627\) −5.34095 9.25080i −0.213297 0.369441i
\(628\) −4.67011 + 8.08887i −0.186358 + 0.322781i
\(629\) 1.67072i 0.0666159i
\(630\) 0 0
\(631\) −18.0096 10.3978i −0.716951 0.413932i 0.0966785 0.995316i \(-0.469178\pi\)
−0.813629 + 0.581384i \(0.802511\pi\)
\(632\) 9.19749i 0.365857i
\(633\) −7.74558 + 13.4157i −0.307859 + 0.533228i
\(634\) 14.5933 + 25.2763i 0.579574 + 1.00385i
\(635\) −37.8890 + 21.8752i −1.50358 + 0.868091i
\(636\) −10.4682 −0.415092
\(637\) 0 0
\(638\) 0.569205 0.0225350
\(639\) 14.3544 8.28749i 0.567850 0.327848i
\(640\) −1.85566 3.21409i −0.0733513 0.127048i
\(641\) −3.61897 + 6.26824i −0.142941 + 0.247581i −0.928603 0.371075i \(-0.878989\pi\)
0.785662 + 0.618656i \(0.212323\pi\)
\(642\) 10.0834i 0.397958i
\(643\) −34.7898 20.0859i −1.37198 0.792111i −0.380800 0.924658i \(-0.624351\pi\)
−0.991177 + 0.132547i \(0.957685\pi\)
\(644\) 0 0
\(645\) 14.7110i 0.579245i
\(646\) 0.226747 0.392737i 0.00892124 0.0154520i
\(647\) −7.27561 12.6017i −0.286034 0.495425i 0.686826 0.726822i \(-0.259004\pi\)
−0.972859 + 0.231397i \(0.925670\pi\)
\(648\) 2.44144 1.40956i 0.0959087 0.0553729i
\(649\) −1.33927 −0.0525710
\(650\) −31.3953 3.88344i −1.23142 0.152321i
\(651\) 0 0
\(652\) 3.87746 2.23865i 0.151853 0.0876723i
\(653\) 24.8634 + 43.0646i 0.972978 + 1.68525i 0.686451 + 0.727176i \(0.259168\pi\)
0.286527 + 0.958072i \(0.407499\pi\)
\(654\) −2.48103 + 4.29727i −0.0970159 + 0.168037i
\(655\) 19.0338i 0.743712i
\(656\) 6.51354 + 3.76060i 0.254311 + 0.146827i
\(657\) 10.9243 + 6.30714i 0.426197 + 0.246065i
\(658\) 0 0
\(659\) 15.7988 27.3644i 0.615436 1.06597i −0.374872 0.927076i \(-0.622313\pi\)
0.990308 0.138889i \(-0.0443532\pi\)
\(660\) −9.27500 16.0648i −0.361029 0.625320i
\(661\) 21.5391 12.4356i 0.837775 0.483689i −0.0187325 0.999825i \(-0.505963\pi\)
0.856507 + 0.516135i \(0.172630\pi\)
\(662\) −4.80542 −0.186768
\(663\) 0.528494 + 0.398993i 0.0205250 + 0.0154956i
\(664\) −3.17186 −0.123092
\(665\) 0 0
\(666\) 8.86109 + 15.3479i 0.343360 + 0.594717i
\(667\) −0.122192 + 0.211643i −0.00473130 + 0.00819485i
\(668\) 14.7068i 0.569025i
\(669\) −12.3216 7.11388i −0.476381 0.275039i
\(670\) −41.6868 24.0679i −1.61050 0.929822i
\(671\) 46.3843i 1.79065i
\(672\) 0 0
\(673\) −10.8245 18.7486i −0.417254 0.722705i 0.578408 0.815748i \(-0.303674\pi\)
−0.995662 + 0.0930423i \(0.970341\pi\)
\(674\) −15.3557 + 8.86562i −0.591480 + 0.341491i
\(675\) 39.8747 1.53478
\(676\) 12.6082 + 3.16761i 0.484930 + 0.121831i
\(677\) −14.3935 −0.553187 −0.276594 0.960987i \(-0.589206\pi\)
−0.276594 + 0.960987i \(0.589206\pi\)
\(678\) −12.3823 + 7.14890i −0.475538 + 0.274552i
\(679\) 0 0
\(680\) 0.393765 0.682021i 0.0151002 0.0261543i
\(681\) 4.87367i 0.186759i
\(682\) 11.5565 + 6.67217i 0.442523 + 0.255491i
\(683\) −36.6968 21.1869i −1.40416 0.810694i −0.409346 0.912379i \(-0.634243\pi\)
−0.994817 + 0.101686i \(0.967576\pi\)
\(684\) 4.81045i 0.183932i
\(685\) −17.4307 + 30.1909i −0.665993 + 1.15353i
\(686\) 0 0
\(687\) 20.7796 11.9971i 0.792793 0.457719i
\(688\) −4.57973 −0.174601
\(689\) −34.8037 26.2754i −1.32591 1.00101i
\(690\) 7.96432 0.303196
\(691\) 19.8651 11.4691i 0.755703 0.436305i −0.0720480 0.997401i \(-0.522953\pi\)
0.827751 + 0.561096i \(0.189620\pi\)
\(692\) 6.88286 + 11.9215i 0.261647 + 0.453186i
\(693\) 0 0
\(694\) 16.7048i 0.634105i
\(695\) −48.6654 28.0970i −1.84598 1.06578i
\(696\) 0.0738809 + 0.0426552i 0.00280045 + 0.00161684i
\(697\) 1.59597i 0.0604518i
\(698\) 0.0100237 0.0173616i 0.000379404 0.000657147i
\(699\) 8.70291 + 15.0739i 0.329174 + 0.570146i
\(700\) 0 0
\(701\) 1.70699 0.0644723 0.0322361 0.999480i \(-0.489737\pi\)
0.0322361 + 0.999480i \(0.489737\pi\)
\(702\) −16.2623 2.01157i −0.613780 0.0759216i
\(703\) −16.8266 −0.634627
\(704\) 5.00118 2.88743i 0.188489 0.108824i
\(705\) −14.7050 25.4697i −0.553821 0.959245i
\(706\) 14.9129 25.8299i 0.561255 0.972122i
\(707\) 0 0
\(708\) −0.173833 0.100363i −0.00653304 0.00377186i
\(709\) −15.7730 9.10657i −0.592369 0.342005i 0.173665 0.984805i \(-0.444439\pi\)
−0.766034 + 0.642800i \(0.777772\pi\)
\(710\) 27.3292i 1.02565i
\(711\) −10.3512 + 17.9289i −0.388202 + 0.672385i
\(712\) 5.90833 + 10.2335i 0.221424 + 0.383518i
\(713\) −4.96172 + 2.86465i −0.185818 + 0.107282i
\(714\) 0 0
\(715\) 9.48629 76.6909i 0.354767 2.86808i
\(716\) 15.2787 0.570992
\(717\) −4.96933 + 2.86904i −0.185583 + 0.107146i
\(718\) −9.16753 15.8786i −0.342129 0.592585i
\(719\) −1.79107 + 3.10222i −0.0667956 + 0.115693i −0.897489 0.441037i \(-0.854611\pi\)
0.830694 + 0.556730i \(0.187944\pi\)
\(720\) 8.35373i 0.311325i
\(721\) 0 0
\(722\) 12.4990 + 7.21632i 0.465166 + 0.268564i
\(723\) 1.39942i 0.0520450i
\(724\) 0.833739 1.44408i 0.0309857 0.0536688i
\(725\) −0.432401 0.748941i −0.0160590 0.0278150i
\(726\) 16.7519 9.67172i 0.621722 0.358951i
\(727\) −3.21747 −0.119329 −0.0596647 0.998218i \(-0.519003\pi\)
−0.0596647 + 0.998218i \(0.519003\pi\)
\(728\) 0 0
\(729\) 5.45503 0.202038
\(730\) −18.0122 + 10.3994i −0.666662 + 0.384898i
\(731\) −0.485903 0.841608i −0.0179718 0.0311280i
\(732\) −3.47596 + 6.02053i −0.128475 + 0.222525i
\(733\) 4.79233i 0.177009i −0.996076 0.0885043i \(-0.971791\pi\)
0.996076 0.0885043i \(-0.0282087\pi\)
\(734\) −1.16468 0.672426i −0.0429890 0.0248197i
\(735\) 0 0
\(736\) 2.47940i 0.0913919i
\(737\) 37.4500 64.8653i 1.37949 2.38934i
\(738\) −8.46466 14.6612i −0.311589 0.539687i
\(739\) 9.69853 5.59945i 0.356766 0.205979i −0.310895 0.950444i \(-0.600629\pi\)
0.667661 + 0.744465i \(0.267295\pi\)
\(740\) −29.2208 −1.07418
\(741\) 4.01845 5.32272i 0.147621 0.195535i
\(742\) 0 0
\(743\) −33.1315 + 19.1285i −1.21548 + 0.701757i −0.963947 0.266093i \(-0.914267\pi\)
−0.251531 + 0.967849i \(0.580934\pi\)
\(744\) 1.00000 + 1.73205i 0.0366618 + 0.0635001i
\(745\) −38.2315 + 66.2189i −1.40069 + 2.42607i
\(746\) 11.0715i 0.405357i
\(747\) 6.18297 + 3.56974i 0.226223 + 0.130610i
\(748\) 1.06124 + 0.612704i 0.0388026 + 0.0224027i
\(749\) 0 0
\(750\) −6.06116 + 10.4982i −0.221322 + 0.383342i
\(751\) −0.920125 1.59370i −0.0335758 0.0581551i 0.848749 0.528796i \(-0.177356\pi\)
−0.882325 + 0.470641i \(0.844023\pi\)
\(752\) 7.92907 4.57785i 0.289143 0.166937i
\(753\) 0.438826 0.0159917
\(754\) 0.138566 + 0.327258i 0.00504629 + 0.0119180i
\(755\) −44.3157 −1.61281
\(756\) 0 0
\(757\) 10.5961 + 18.3529i 0.385120 + 0.667048i 0.991786 0.127909i \(-0.0408266\pi\)
−0.606666 + 0.794957i \(0.707493\pi\)
\(758\) −8.40523 + 14.5583i −0.305292 + 0.528780i
\(759\) 12.3926i 0.449823i
\(760\) −6.86895 3.96579i −0.249163 0.143854i
\(761\) 12.2381 + 7.06566i 0.443630 + 0.256130i 0.705136 0.709072i \(-0.250886\pi\)
−0.261506 + 0.965202i \(0.584219\pi\)
\(762\) 10.2030i 0.369617i
\(763\) 0 0
\(764\) 0.0604880 + 0.104768i 0.00218838 + 0.00379038i
\(765\) −1.53515 + 0.886319i −0.0555034 + 0.0320449i
\(766\) 16.5771 0.598955
\(767\) −0.326030 0.769999i −0.0117723 0.0278030i
\(768\) 0.865515 0.0312316
\(769\) 26.5219 15.3124i 0.956405 0.552181i 0.0613401 0.998117i \(-0.480463\pi\)
0.895065 + 0.445936i \(0.147129\pi\)
\(770\) 0 0
\(771\) 4.17206 7.22621i 0.150253 0.260246i
\(772\) 2.75550i 0.0991725i
\(773\) 8.48254 + 4.89740i 0.305096 + 0.176147i 0.644730 0.764411i \(-0.276970\pi\)
−0.339634 + 0.940558i \(0.610303\pi\)
\(774\) 8.92738 + 5.15422i 0.320888 + 0.185265i
\(775\) 20.2743i 0.728273i
\(776\) 7.04093 12.1952i 0.252755 0.437784i
\(777\) 0 0
\(778\) 1.01336 0.585065i 0.0363308 0.0209756i
\(779\) 16.0738 0.575904
\(780\) 6.97836 9.24333i 0.249865 0.330964i
\(781\) −42.5248 −1.52166
\(782\) −0.455634 + 0.263061i −0.0162934 + 0.00940702i
\(783\) −0.223977 0.387940i −0.00800430 0.0138638i
\(784\) 0 0
\(785\) 34.6645i 1.23723i
\(786\) 3.84418 + 2.21944i 0.137117 + 0.0791647i
\(787\) −17.8665 10.3152i −0.636873 0.367699i 0.146536 0.989205i \(-0.453188\pi\)
−0.783409 + 0.621507i \(0.786521\pi\)
\(788\) 15.1253i 0.538818i
\(789\) 3.17911 5.50638i 0.113179 0.196032i
\(790\) −17.0674 29.5616i −0.607230 1.05175i
\(791\) 0 0
\(792\) −12.9985 −0.461883
\(793\) −26.6681 + 11.2917i −0.947013 + 0.400981i
\(794\) 26.1975 0.929713
\(795\) −33.6458 + 19.4254i −1.19330 + 0.688949i
\(796\) 2.65320 + 4.59548i 0.0940402 + 0.162882i
\(797\) −3.88584 + 6.73047i −0.137643 + 0.238405i −0.926604 0.376038i \(-0.877286\pi\)
0.788961 + 0.614444i \(0.210619\pi\)
\(798\) 0 0
\(799\) 1.68252 + 0.971406i 0.0595234 + 0.0343659i
\(800\) −7.59837 4.38692i −0.268643 0.155101i
\(801\) 26.5979i 0.939791i
\(802\) 5.68436 9.84559i 0.200722 0.347660i
\(803\) −16.1816 28.0273i −0.571036 0.989063i
\(804\) 9.72176 5.61286i 0.342860 0.197950i
\(805\) 0 0
\(806\) −1.02278 + 8.26856i −0.0360259 + 0.291248i
\(807\) −19.3478 −0.681074
\(808\) −5.32816 + 3.07622i −0.187444 + 0.108221i
\(809\) −21.2715 36.8433i −0.747866 1.29534i −0.948844 0.315746i \(-0.897745\pi\)
0.200977 0.979596i \(-0.435588\pi\)
\(810\) 5.23134 9.06094i 0.183810 0.318369i
\(811\) 22.1131i 0.776494i 0.921555 + 0.388247i \(0.126919\pi\)
−0.921555 + 0.388247i \(0.873081\pi\)
\(812\) 0 0
\(813\) −7.20880 4.16200i −0.252824 0.145968i
\(814\) 45.4680i 1.59365i
\(815\) 8.30833 14.3905i 0.291028 0.504076i
\(816\) 0.0918298 + 0.159054i 0.00321469 + 0.00556800i
\(817\) −8.47624 + 4.89376i −0.296546 + 0.171211i
\(818\) −23.3314 −0.815763
\(819\) 0 0
\(820\) 27.9135 0.974782
\(821\) 21.0920 12.1775i 0.736115 0.424996i −0.0845401 0.996420i \(-0.526942\pi\)
0.820655 + 0.571424i \(0.193609\pi\)
\(822\) −4.06501 7.04081i −0.141784 0.245576i
\(823\) −2.37957 + 4.12153i −0.0829465 + 0.143668i −0.904514 0.426443i \(-0.859766\pi\)
0.821568 + 0.570111i \(0.193100\pi\)
\(824\) 19.3491i 0.674056i
\(825\) −37.9784 21.9269i −1.32224 0.763395i
\(826\) 0 0
\(827\) 7.00333i 0.243530i 0.992559 + 0.121765i \(0.0388554\pi\)
−0.992559 + 0.121765i \(0.961145\pi\)
\(828\) 2.79042 4.83315i 0.0969738 0.167964i
\(829\) 2.87619 + 4.98170i 0.0998941 + 0.173022i 0.911641 0.410988i \(-0.134816\pi\)
−0.811747 + 0.584010i \(0.801483\pi\)
\(830\) −10.1946 + 5.88588i −0.353861 + 0.204302i
\(831\) −8.80998 −0.305615
\(832\) 2.87757 + 2.17246i 0.0997619 + 0.0753164i
\(833\) 0 0
\(834\) 11.3493 6.55250i 0.392993 0.226894i
\(835\) 27.2908 + 47.2691i 0.944438 + 1.63582i
\(836\) 6.17084 10.6882i 0.213423 0.369659i
\(837\) 10.5018i 0.362994i
\(838\) 10.9709 + 6.33402i 0.378982 + 0.218805i
\(839\) 35.6863 + 20.6035i 1.23203 + 0.711311i 0.967452 0.253054i \(-0.0814350\pi\)
0.264575 + 0.964365i \(0.414768\pi\)
\(840\) 0 0
\(841\) 14.4951 25.1063i 0.499832 0.865735i
\(842\) 13.8312 + 23.9564i 0.476656 + 0.825593i
\(843\) −10.6207 + 6.13184i −0.365795 + 0.211192i
\(844\) −17.8982 −0.616081
\(845\) 46.4018 13.2155i 1.59627 0.454626i
\(846\) −20.6084 −0.708532
\(847\) 0 0
\(848\) −6.04740 10.4744i −0.207669 0.359692i
\(849\) −8.19323 + 14.1911i −0.281191 + 0.487037i
\(850\) 1.86178i 0.0638586i
\(851\) 16.9060 + 9.76069i 0.579530 + 0.334592i
\(852\) −5.51957 3.18673i −0.189097 0.109175i
\(853\) 2.38939i 0.0818113i 0.999163 + 0.0409056i \(0.0130243\pi\)
−0.999163 + 0.0409056i \(0.986976\pi\)
\(854\) 0 0
\(855\) 8.92654 + 15.4612i 0.305281 + 0.528762i
\(856\) 10.0893 5.82506i 0.344845 0.199096i
\(857\) 13.8037 0.471526 0.235763 0.971811i \(-0.424241\pi\)
0.235763 + 0.971811i \(0.424241\pi\)
\(858\) 14.3828 + 10.8584i 0.491020 + 0.370701i
\(859\) 37.7276 1.28725 0.643624 0.765342i \(-0.277430\pi\)
0.643624 + 0.765342i \(0.277430\pi\)
\(860\) −14.7197 + 8.49841i −0.501937 + 0.289793i
\(861\) 0 0
\(862\) −3.20696 + 5.55462i −0.109230 + 0.189191i
\(863\) 25.5180i 0.868643i 0.900758 + 0.434322i \(0.143012\pi\)
−0.900758 + 0.434322i \(0.856988\pi\)
\(864\) −3.93584 2.27236i −0.133900 0.0773072i
\(865\) 44.2443 + 25.5444i 1.50435 + 0.868537i
\(866\) 0.0650270i 0.00220971i
\(867\) 7.33739 12.7087i 0.249191 0.431611i
\(868\) 0 0
\(869\) 45.9983 26.5571i 1.56039 0.900889i
\(870\) 0.316613 0.0107342
\(871\) 46.4103 + 5.74073i 1.57255 + 0.194517i
\(872\) −5.73307 −0.194146
\(873\) −27.4501 + 15.8483i −0.929045 + 0.536384i
\(874\) 2.64941 + 4.58891i 0.0896175 + 0.155222i
\(875\) 0 0
\(876\) 4.85047i 0.163882i
\(877\) 10.7726 + 6.21955i 0.363764 + 0.210019i 0.670731 0.741701i \(-0.265981\pi\)
−0.306966 + 0.951720i \(0.599314\pi\)
\(878\) 31.8505 + 18.3889i 1.07490 + 0.620596i
\(879\) 3.16763i 0.106842i
\(880\) 10.7162 18.5609i 0.361242 0.625689i
\(881\) 11.2710 + 19.5219i 0.379728 + 0.657709i 0.991023 0.133694i \(-0.0426841\pi\)
−0.611294 + 0.791404i \(0.709351\pi\)
\(882\) 0 0
\(883\) −15.1548 −0.509998 −0.254999 0.966941i \(-0.582075\pi\)
−0.254999 + 0.966941i \(0.582075\pi\)
\(884\) −0.0939218 + 0.759300i −0.00315893 + 0.0255380i
\(885\) −0.744954 −0.0250413
\(886\) 7.32989 4.23191i 0.246252 0.142174i
\(887\) 20.8875 + 36.1781i 0.701332 + 1.21474i 0.967999 + 0.250954i \(0.0807443\pi\)
−0.266667 + 0.963789i \(0.585922\pi\)
\(888\) 3.40729 5.90159i 0.114341 0.198044i
\(889\) 0 0
\(890\) 37.9798 + 21.9277i 1.27309 + 0.735017i
\(891\) 14.0990 + 8.14004i 0.472333 + 0.272702i
\(892\) 16.4385i 0.550402i
\(893\) 9.78349 16.9455i 0.327392 0.567060i
\(894\) −8.91597 15.4429i −0.298195 0.516488i
\(895\) 49.1072 28.3521i 1.64147 0.947705i
\(896\) 0 0
\(897\) −7.12498 + 3.01684i −0.237896 + 0.100729i
\(898\) 22.6303 0.755183
\(899\) −0.197248 + 0.113881i −0.00657860 + 0.00379815i
\(900\) 9.87445 + 17.1031i 0.329148 + 0.570102i
\(901\) 1.28324 2.22264i 0.0427509 0.0740468i
\(902\) 43.4339i 1.44619i
\(903\) 0 0
\(904\) −14.3062 8.25971i −0.475818 0.274714i
\(905\) 6.18853i 0.205714i
\(906\) 5.16743 8.95026i 0.171676 0.297352i
\(907\) 2.14376 + 3.71310i 0.0711823 + 0.123291i 0.899420 0.437086i \(-0.143989\pi\)
−0.828237 + 0.560377i \(0.810656\pi\)
\(908\) 4.87655 2.81547i 0.161834 0.0934348i
\(909\) 13.8484 0.459323
\(910\) 0 0
\(911\) −3.87618 −0.128423 −0.0642117 0.997936i \(-0.520453\pi\)
−0.0642117 + 0.997936i \(0.520453\pi\)
\(912\) 1.60191 0.924862i 0.0530445 0.0306252i
\(913\) −9.15853 15.8630i −0.303103 0.524990i
\(914\) 8.15851 14.1310i 0.269859 0.467410i
\(915\) 25.8007i 0.852945i
\(916\) 24.0084 + 13.8613i 0.793260 + 0.457989i
\(917\) 0 0
\(918\) 0.964376i 0.0318291i
\(919\) −22.9524 + 39.7547i −0.757129 + 1.31139i 0.187180 + 0.982326i \(0.440065\pi\)
−0.944309 + 0.329060i \(0.893268\pi\)
\(920\) 4.60091 + 7.96901i 0.151688 + 0.262731i
\(921\) −14.7653 + 8.52476i −0.486534 + 0.280900i
\(922\) 19.2778 0.634882
\(923\) −10.3522 24.4491i −0.340745 0.804752i
\(924\) 0 0
\(925\) −59.8253 + 34.5401i −1.96704 + 1.13567i
\(926\) −1.35109 2.34015i −0.0443995 0.0769022i
\(927\) −21.7762 + 37.7176i −0.715226 + 1.23881i
\(928\) 0.0985660i 0.00323559i
\(929\) −8.51833 4.91806i −0.279477 0.161356i 0.353709 0.935355i \(-0.384920\pi\)
−0.633187 + 0.773999i \(0.718254\pi\)
\(930\) 6.42818 + 3.71131i 0.210788 + 0.121699i
\(931\) 0 0
\(932\) −10.0552 + 17.4161i −0.329368 + 0.570483i
\(933\) 7.34325 + 12.7189i 0.240407 + 0.416397i
\(934\) −15.9267 + 9.19528i −0.521137 + 0.300879i
\(935\) 4.54788 0.148731
\(936\) −3.16435 7.47336i −0.103430 0.244274i
\(937\) −21.5135 −0.702815 −0.351407 0.936223i \(-0.614297\pi\)
−0.351407 + 0.936223i \(0.614297\pi\)
\(938\) 0 0
\(939\) −1.96383 3.40145i −0.0640871 0.111002i
\(940\) 16.9898 29.4272i 0.554147 0.959811i
\(941\) 6.41845i 0.209236i −0.994513 0.104618i \(-0.966638\pi\)
0.994513 0.104618i \(-0.0333619\pi\)
\(942\) −7.00104 4.04205i −0.228106 0.131697i
\(943\) −16.1497 9.32402i −0.525906 0.303632i
\(944\) 0.231914i 0.00754816i
\(945\) 0 0
\(946\) −13.2237 22.9041i −0.429939 0.744675i
\(947\) 6.55812 3.78633i 0.213110 0.123039i −0.389646 0.920965i \(-0.627403\pi\)
0.602756 + 0.797926i \(0.294069\pi\)
\(948\) 7.96057 0.258547
\(949\) 12.1748 16.1263i 0.395209 0.523483i
\(950\) −18.7509 −0.608360
\(951\) −21.8770 + 12.6307i −0.709412 + 0.409579i
\(952\) 0 0
\(953\) −17.9022 + 31.0075i −0.579909 + 1.00443i 0.415580 + 0.909557i \(0.363579\pi\)
−0.995489 + 0.0948754i \(0.969755\pi\)
\(954\) 27.2240i 0.881409i
\(955\) 0.388828 + 0.224490i 0.0125822 + 0.00726432i
\(956\) −5.74147 3.31484i −0.185692 0.107210i
\(957\) 0.492656i 0.0159253i
\(958\) 20.4354 35.3951i 0.660238 1.14357i
\(959\) 0 0
\(960\) 2.78184 1.60610i 0.0897836 0.0518366i
\(961\) 25.6604 0.827754
\(962\) 26.1413 11.0687i 0.842829 0.356868i
\(963\) −26.2231 −0.845027
\(964\) −1.40025 + 0.808433i −0.0450989 + 0.0260379i
\(965\) 5.11326 + 8.85642i 0.164602 + 0.285098i
\(966\) 0 0
\(967\) 32.3876i 1.04152i −0.853704 0.520758i \(-0.825649\pi\)
0.853704 0.520758i \(-0.174351\pi\)
\(968\) 19.3549 + 11.1745i 0.622089 + 0.359163i
\(969\) 0.339920 + 0.196253i 0.0109198 + 0.00630455i
\(970\) 52.2622i 1.67804i
\(971\) 17.2033 29.7969i 0.552079 0.956229i −0.446045 0.895010i \(-0.647168\pi\)
0.998124 0.0612186i \(-0.0194987\pi\)
\(972\) 8.03708 + 13.9206i 0.257789 + 0.446504i
\(973\) 0 0
\(974\) −17.6293 −0.564880
\(975\) 3.36118 27.1731i 0.107644 0.870235i
\(976\) −8.03211 −0.257102
\(977\) 20.0471 11.5742i 0.641364 0.370291i −0.143776 0.989610i \(-0.545924\pi\)
0.785140 + 0.619319i \(0.212591\pi\)
\(978\) 1.93759 + 3.35600i 0.0619571 + 0.107313i
\(979\) −34.1198 + 59.0972i −1.09047 + 1.88876i
\(980\) 0 0
\(981\) 11.1756 + 6.45224i 0.356810 + 0.206004i
\(982\) 16.3332 + 9.42997i 0.521213 + 0.300922i
\(983\) 47.0579i 1.50092i −0.660919 0.750458i \(-0.729833\pi\)
0.660919 0.750458i \(-0.270167\pi\)
\(984\) −3.25485 + 5.63757i −0.103761 + 0.179719i
\(985\) 28.0674 + 48.6142i 0.894303 + 1.54898i
\(986\) −0.0181133 + 0.0104577i −0.000576844 + 0.000333041i
\(987\) 0 0
\(988\) 7.64727 + 0.945931i 0.243292 + 0.0300941i
\(989\) 11.3550 0.361068
\(990\) −41.7785 + 24.1208i −1.32781 + 0.766611i
\(991\) 5.95052 + 10.3066i 0.189025 + 0.327400i 0.944925 0.327286i \(-0.106134\pi\)
−0.755901 + 0.654686i \(0.772801\pi\)
\(992\) −1.15538 + 2.00118i −0.0366834 + 0.0635375i
\(993\) 4.15916i 0.131987i
\(994\) 0 0
\(995\) 17.0553 + 9.84686i 0.540688 + 0.312167i
\(996\) 2.74529i 0.0869879i
\(997\) 6.50714 11.2707i 0.206083 0.356946i −0.744394 0.667740i \(-0.767262\pi\)
0.950477 + 0.310794i \(0.100595\pi\)
\(998\) 1.05371 + 1.82508i 0.0333546 + 0.0577718i
\(999\) −30.9886 + 17.8913i −0.980435 + 0.566055i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1274.2.m.c.491.1 12
7.2 even 3 1274.2.v.d.361.6 12
7.3 odd 6 1274.2.o.d.569.3 12
7.4 even 3 1274.2.o.e.569.1 12
7.5 odd 6 1274.2.v.e.361.4 12
7.6 odd 2 182.2.m.b.127.3 yes 12
13.4 even 6 inner 1274.2.m.c.589.1 12
21.20 even 2 1638.2.bj.g.127.4 12
28.27 even 2 1456.2.cc.d.673.2 12
91.4 even 6 1274.2.v.d.667.6 12
91.17 odd 6 1274.2.v.e.667.4 12
91.30 even 6 1274.2.o.e.459.4 12
91.41 even 12 2366.2.a.bf.1.2 6
91.55 odd 6 2366.2.d.r.337.2 12
91.62 odd 6 2366.2.d.r.337.8 12
91.69 odd 6 182.2.m.b.43.3 12
91.76 even 12 2366.2.a.bh.1.2 6
91.82 odd 6 1274.2.o.d.459.6 12
273.251 even 6 1638.2.bj.g.1135.6 12
364.251 even 6 1456.2.cc.d.225.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.m.b.43.3 12 91.69 odd 6
182.2.m.b.127.3 yes 12 7.6 odd 2
1274.2.m.c.491.1 12 1.1 even 1 trivial
1274.2.m.c.589.1 12 13.4 even 6 inner
1274.2.o.d.459.6 12 91.82 odd 6
1274.2.o.d.569.3 12 7.3 odd 6
1274.2.o.e.459.4 12 91.30 even 6
1274.2.o.e.569.1 12 7.4 even 3
1274.2.v.d.361.6 12 7.2 even 3
1274.2.v.d.667.6 12 91.4 even 6
1274.2.v.e.361.4 12 7.5 odd 6
1274.2.v.e.667.4 12 91.17 odd 6
1456.2.cc.d.225.2 12 364.251 even 6
1456.2.cc.d.673.2 12 28.27 even 2
1638.2.bj.g.127.4 12 21.20 even 2
1638.2.bj.g.1135.6 12 273.251 even 6
2366.2.a.bf.1.2 6 91.41 even 12
2366.2.a.bh.1.2 6 91.76 even 12
2366.2.d.r.337.2 12 91.55 odd 6
2366.2.d.r.337.8 12 91.62 odd 6