Properties

Label 2352.4.a.co
Level $2352$
Weight $4$
Character orbit 2352.a
Self dual yes
Analytic conductor $138.772$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2352,4,Mod(1,2352)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2352, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2352.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2352 = 2^{4} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2352.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,12,0,-8,0,0,0,36,0,-40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(138.772492334\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.391168.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 40x^{2} + 382 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3}\cdot 7 \)
Twist minimal: no (minimal twist has level 1176)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 q^{3} + ( - \beta_1 - 2) q^{5} + 9 q^{9} + (\beta_{3} + \beta_{2} + \beta_1 - 10) q^{11} + ( - \beta_{3} - \beta_{2} - 12) q^{13} + ( - 3 \beta_1 - 6) q^{15} + (2 \beta_{3} + \beta_{2} + 3 \beta_1 - 18) q^{17}+ \cdots + (9 \beta_{3} + 9 \beta_{2} + 9 \beta_1 - 90) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{3} - 8 q^{5} + 36 q^{9} - 40 q^{11} - 48 q^{13} - 24 q^{15} - 72 q^{17} + 32 q^{19} - 8 q^{23} + 164 q^{25} + 108 q^{27} + 144 q^{29} + 48 q^{31} - 120 q^{33} + 48 q^{37} - 144 q^{39} - 72 q^{41}+ \cdots - 360 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 40x^{2} + 382 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -2\nu^{3} - \nu^{2} + 40\nu + 20 ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -2\nu^{2} + 12\nu + 40 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 7\nu^{2} - 140 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 2\beta_{3} + 7\beta_{2} ) / 28 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 3\beta_{3} + 140 ) / 7 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 17\beta_{3} + 70\beta_{2} - 21\beta_1 ) / 14 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.96955
−4.92368
−3.96955
4.92368
0 3.00000 0 −14.6418 0 0 0 9.00000 0
1.2 0 3.00000 0 −14.5121 0 0 0 9.00000 0
1.3 0 3.00000 0 7.81338 0 0 0 9.00000 0
1.4 0 3.00000 0 13.3405 0 0 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2352.4.a.co 4
4.b odd 2 1 1176.4.a.z 4
7.b odd 2 1 2352.4.a.cn 4
28.d even 2 1 1176.4.a.be yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1176.4.a.z 4 4.b odd 2 1
1176.4.a.be yes 4 28.d even 2 1
2352.4.a.cn 4 7.b odd 2 1
2352.4.a.co 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2352))\):

\( T_{5}^{4} + 8T_{5}^{3} - 300T_{5}^{2} - 1456T_{5} + 22148 \) Copy content Toggle raw display
\( T_{11}^{4} + 40T_{11}^{3} - 232T_{11}^{2} - 4704T_{11} + 7056 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T - 3)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 8 T^{3} + \cdots + 22148 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + 40 T^{3} + \cdots + 7056 \) Copy content Toggle raw display
$13$ \( T^{4} + 48 T^{3} + \cdots + 5508 \) Copy content Toggle raw display
$17$ \( T^{4} + 72 T^{3} + \cdots + 695428 \) Copy content Toggle raw display
$19$ \( T^{4} - 32 T^{3} + \cdots + 50872896 \) Copy content Toggle raw display
$23$ \( T^{4} + 8 T^{3} + \cdots - 241264 \) Copy content Toggle raw display
$29$ \( T^{4} - 144 T^{3} + \cdots + 193813056 \) Copy content Toggle raw display
$31$ \( T^{4} - 48 T^{3} + \cdots + 280696384 \) Copy content Toggle raw display
$37$ \( T^{4} - 48 T^{3} + \cdots + 3279104 \) Copy content Toggle raw display
$41$ \( T^{4} + 72 T^{3} + \cdots - 110754684 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 1048085504 \) Copy content Toggle raw display
$47$ \( T^{4} - 160 T^{3} + \cdots + 908321344 \) Copy content Toggle raw display
$53$ \( T^{4} - 536 T^{3} + \cdots + 520036624 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 10001985984 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 2069850492 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 23013868544 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 188096048496 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 21509659836 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 88431606784 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 1047073024 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 1254461582844 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 13301642052 \) Copy content Toggle raw display
show more
show less