Properties

Label 2352.4.a.bw
Level $2352$
Weight $4$
Character orbit 2352.a
Self dual yes
Analytic conductor $138.772$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2352,4,Mod(1,2352)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2352, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2352.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2352 = 2^{4} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2352.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,6,0,-12,0,0,0,18,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(138.772492334\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 294)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 q^{3} + (\beta - 6) q^{5} + 9 q^{9} + (6 \beta - 2) q^{11} + ( - 15 \beta - 24) q^{13} + (3 \beta - 18) q^{15} + ( - 11 \beta - 66) q^{17} + ( - 46 \beta + 60) q^{19} + ( - 102 \beta + 38) q^{23}+ \cdots + (54 \beta - 18) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{3} - 12 q^{5} + 18 q^{9} - 4 q^{11} - 48 q^{13} - 36 q^{15} - 132 q^{17} + 120 q^{19} + 76 q^{23} - 174 q^{25} + 54 q^{27} - 112 q^{29} + 432 q^{31} - 12 q^{33} - 280 q^{37} - 144 q^{39} - 36 q^{41}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
0 3.00000 0 −7.41421 0 0 0 9.00000 0
1.2 0 3.00000 0 −4.58579 0 0 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2352.4.a.bw 2
4.b odd 2 1 294.4.a.l 2
7.b odd 2 1 2352.4.a.bu 2
12.b even 2 1 882.4.a.bb 2
28.d even 2 1 294.4.a.o yes 2
28.f even 6 2 294.4.e.k 4
28.g odd 6 2 294.4.e.m 4
84.h odd 2 1 882.4.a.t 2
84.j odd 6 2 882.4.g.bk 4
84.n even 6 2 882.4.g.be 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
294.4.a.l 2 4.b odd 2 1
294.4.a.o yes 2 28.d even 2 1
294.4.e.k 4 28.f even 6 2
294.4.e.m 4 28.g odd 6 2
882.4.a.t 2 84.h odd 2 1
882.4.a.bb 2 12.b even 2 1
882.4.g.be 4 84.n even 6 2
882.4.g.bk 4 84.j odd 6 2
2352.4.a.bu 2 7.b odd 2 1
2352.4.a.bw 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2352))\):

\( T_{5}^{2} + 12T_{5} + 34 \) Copy content Toggle raw display
\( T_{11}^{2} + 4T_{11} - 68 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T - 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 12T + 34 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 4T - 68 \) Copy content Toggle raw display
$13$ \( T^{2} + 48T + 126 \) Copy content Toggle raw display
$17$ \( T^{2} + 132T + 4114 \) Copy content Toggle raw display
$19$ \( T^{2} - 120T - 632 \) Copy content Toggle raw display
$23$ \( T^{2} - 76T - 19364 \) Copy content Toggle raw display
$29$ \( T^{2} + 112T - 41864 \) Copy content Toggle raw display
$31$ \( T^{2} - 432T + 40824 \) Copy content Toggle raw display
$37$ \( T^{2} + 280T - 45200 \) Copy content Toggle raw display
$41$ \( T^{2} + 36T - 31934 \) Copy content Toggle raw display
$43$ \( T^{2} - 128T - 161792 \) Copy content Toggle raw display
$47$ \( T^{2} + 264T - 211064 \) Copy content Toggle raw display
$53$ \( T^{2} - 268T - 55772 \) Copy content Toggle raw display
$59$ \( T^{2} - 336T - 149384 \) Copy content Toggle raw display
$61$ \( T^{2} - 504T - 185714 \) Copy content Toggle raw display
$67$ \( T^{2} - 384T - 4608 \) Copy content Toggle raw display
$71$ \( T^{2} - 396T - 194724 \) Copy content Toggle raw display
$73$ \( T^{2} - 312T - 683714 \) Copy content Toggle raw display
$79$ \( T^{2} - 848T - 224 \) Copy content Toggle raw display
$83$ \( T^{2} + 648T + 92176 \) Copy content Toggle raw display
$89$ \( T^{2} - 612T + 32386 \) Copy content Toggle raw display
$97$ \( T^{2} - 2184 T + 1157086 \) Copy content Toggle raw display
show more
show less