Properties

Label 2349.1.n.c
Level $2349$
Weight $1$
Character orbit 2349.n
Analytic conductor $1.172$
Analytic rank $0$
Dimension $4$
Projective image $S_{4}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2349,1,Mod(1027,2349)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2349, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([8, 3])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2349.1027"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2349 = 3^{4} \cdot 29 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2349.n (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.17230371467\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(S_{4}\)
Projective field: Galois closure of 4.0.1975509.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{12} q^{4} + \zeta_{12} q^{5} + \zeta_{12}^{2} q^{7} + \zeta_{12}^{2} q^{16} + ( - \zeta_{12}^{3} + 1) q^{17} - \zeta_{12}^{2} q^{20} + \zeta_{12}^{4} q^{23} - \zeta_{12}^{3} q^{28} - \zeta_{12}^{2} q^{29} + \cdots - \zeta_{12}^{5} q^{92} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{7} + 2 q^{16} + 4 q^{17} - 2 q^{20} - 2 q^{23} - 2 q^{29} - 2 q^{31} + 4 q^{37} - 2 q^{41} + 2 q^{47} + 4 q^{53} + 2 q^{59} + 2 q^{61} - 2 q^{68} - 2 q^{83} + 2 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2349\mathbb{Z}\right)^\times\).

\(n\) \(407\) \(1945\)
\(\chi(n)\) \(\zeta_{12}^{4}\) \(-\zeta_{12}^{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1027.1
0.866025 0.500000i
−0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
0 0 −0.866025 + 0.500000i 0.866025 0.500000i 0 0.500000 0.866025i 0 0 0
1351.1 0 0 0.866025 0.500000i −0.866025 + 0.500000i 0 0.500000 0.866025i 0 0 0
1810.1 0 0 0.866025 + 0.500000i −0.866025 0.500000i 0 0.500000 + 0.866025i 0 0 0
2134.1 0 0 −0.866025 0.500000i 0.866025 + 0.500000i 0 0.500000 + 0.866025i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner
29.c odd 4 1 inner
261.m odd 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2349.1.n.c 4
3.b odd 2 1 2349.1.n.b 4
9.c even 3 1 2349.1.f.c yes 2
9.c even 3 1 inner 2349.1.n.c 4
9.d odd 6 1 2349.1.f.b 2
9.d odd 6 1 2349.1.n.b 4
29.c odd 4 1 inner 2349.1.n.c 4
87.f even 4 1 2349.1.n.b 4
261.l even 12 1 2349.1.f.b 2
261.l even 12 1 2349.1.n.b 4
261.m odd 12 1 2349.1.f.c yes 2
261.m odd 12 1 inner 2349.1.n.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2349.1.f.b 2 9.d odd 6 1
2349.1.f.b 2 261.l even 12 1
2349.1.f.c yes 2 9.c even 3 1
2349.1.f.c yes 2 261.m odd 12 1
2349.1.n.b 4 3.b odd 2 1
2349.1.n.b 4 9.d odd 6 1
2349.1.n.b 4 87.f even 4 1
2349.1.n.b 4 261.l even 12 1
2349.1.n.c 4 1.a even 1 1 trivial
2349.1.n.c 4 9.c even 3 1 inner
2349.1.n.c 4 29.c odd 4 1 inner
2349.1.n.c 4 261.m odd 12 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(2349, [\chi])\):

\( T_{2} \) Copy content Toggle raw display
\( T_{17}^{2} - 2T_{17} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$7$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} - 2 T + 2)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$37$ \( (T^{2} - 2 T + 2)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} - 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$53$ \( (T - 1)^{4} \) Copy content Toggle raw display
$59$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} - 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$67$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$71$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less