Properties

Label 2349.1
Level 2349
Weight 1
Dimension 48
Nonzero newspaces 3
Newform subspaces 13
Sturm bound 408240
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 2349 = 3^{4} \cdot 29 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 13 \)
Sturm bound: \(408240\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(2349))\).

Total New Old
Modular forms 3104 1560 1544
Cusp forms 80 48 32
Eisenstein series 3024 1512 1512

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 16 0 32 0

Trace form

\( 48 q - 6 q^{4} + 6 q^{7} - 20 q^{10} + 2 q^{13} - 8 q^{16} + 12 q^{19} + 4 q^{22} - 4 q^{25} - 12 q^{28} + 4 q^{34} - 4 q^{40} - 4 q^{43} - 20 q^{46} - 6 q^{49} + 6 q^{52} + 8 q^{55} + 2 q^{58} - 4 q^{61}+ \cdots + 8 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(2349))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2349.1.b \(\chi_{2349}(1538, \cdot)\) None 0 1
2349.1.d \(\chi_{2349}(2348, \cdot)\) None 0 1
2349.1.f \(\chi_{2349}(244, \cdot)\) 2349.1.f.a 2 2
2349.1.f.b 2
2349.1.f.c 2
2349.1.f.d 2
2349.1.h \(\chi_{2349}(782, \cdot)\) 2349.1.h.a 2 2
2349.1.h.b 2
2349.1.h.c 6
2349.1.h.d 6
2349.1.j \(\chi_{2349}(755, \cdot)\) None 0 2
2349.1.n \(\chi_{2349}(1027, \cdot)\) 2349.1.n.a 4 4
2349.1.n.b 4
2349.1.n.c 4
2349.1.n.d 4
2349.1.n.e 8
2349.1.o \(\chi_{2349}(80, \cdot)\) None 0 6
2349.1.q \(\chi_{2349}(161, \cdot)\) None 0 6
2349.1.r \(\chi_{2349}(260, \cdot)\) None 0 6
2349.1.s \(\chi_{2349}(233, \cdot)\) None 0 6
2349.1.x \(\chi_{2349}(163, \cdot)\) None 0 12
2349.1.z \(\chi_{2349}(46, \cdot)\) None 0 12
2349.1.ba \(\chi_{2349}(53, \cdot)\) None 0 12
2349.1.bc \(\chi_{2349}(296, \cdot)\) None 0 12
2349.1.bd \(\chi_{2349}(86, \cdot)\) None 0 18
2349.1.bf \(\chi_{2349}(59, \cdot)\) None 0 18
2349.1.bh \(\chi_{2349}(55, \cdot)\) None 0 24
2349.1.bj \(\chi_{2349}(70, \cdot)\) None 0 36
2349.1.bm \(\chi_{2349}(152, \cdot)\) None 0 36
2349.1.bn \(\chi_{2349}(35, \cdot)\) None 0 36
2349.1.bp \(\chi_{2349}(10, \cdot)\) None 0 72
2349.1.br \(\chi_{2349}(20, \cdot)\) None 0 108
2349.1.bt \(\chi_{2349}(5, \cdot)\) None 0 108
2349.1.bv \(\chi_{2349}(31, \cdot)\) None 0 216

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(2349))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(2349)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(29))\)\(^{\oplus 5}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(81))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(87))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(261))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(783))\)\(^{\oplus 2}\)