Properties

Label 2340.2.u.f.577.1
Level $2340$
Weight $2$
Character 2340.577
Analytic conductor $18.685$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(73,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.u (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,6,0,-8,0,0,0,0,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 260)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 577.1
Root \(-1.61803i\) of defining polynomial
Character \(\chi\) \(=\) 2340.577
Dual form 2340.2.u.f.73.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.23607i q^{5} +(2.61803 + 2.61803i) q^{11} +(-2.00000 + 3.00000i) q^{13} +(2.23607 - 2.23607i) q^{17} +(5.85410 + 5.85410i) q^{19} +(-3.38197 - 3.38197i) q^{23} -5.00000 q^{25} +5.23607i q^{29} +(5.85410 - 5.85410i) q^{31} +9.70820i q^{37} +(-3.76393 + 3.76393i) q^{41} +(-3.85410 - 3.85410i) q^{43} +8.94427i q^{47} +7.00000 q^{49} +(-1.47214 + 1.47214i) q^{53} +(5.85410 - 5.85410i) q^{55} +(3.38197 - 3.38197i) q^{59} +5.70820 q^{61} +(6.70820 + 4.47214i) q^{65} -0.291796 q^{67} +(-2.61803 + 2.61803i) q^{71} +11.7082 q^{73} -3.70820i q^{79} -10.4721i q^{83} +(-5.00000 - 5.00000i) q^{85} +(2.23607 - 2.23607i) q^{89} +(13.0902 - 13.0902i) q^{95} +15.4164 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{11} - 8 q^{13} + 10 q^{19} - 18 q^{23} - 20 q^{25} + 10 q^{31} - 24 q^{41} - 2 q^{43} + 28 q^{49} + 12 q^{53} + 10 q^{55} + 18 q^{59} - 4 q^{61} - 28 q^{67} - 6 q^{71} + 20 q^{73} - 20 q^{85}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.23607i 1.00000i
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.61803 + 2.61803i 0.789367 + 0.789367i 0.981390 0.192023i \(-0.0615050\pi\)
−0.192023 + 0.981390i \(0.561505\pi\)
\(12\) 0 0
\(13\) −2.00000 + 3.00000i −0.554700 + 0.832050i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.23607 2.23607i 0.542326 0.542326i −0.381884 0.924210i \(-0.624725\pi\)
0.924210 + 0.381884i \(0.124725\pi\)
\(18\) 0 0
\(19\) 5.85410 + 5.85410i 1.34302 + 1.34302i 0.893034 + 0.449989i \(0.148572\pi\)
0.449989 + 0.893034i \(0.351428\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.38197 3.38197i −0.705189 0.705189i 0.260331 0.965519i \(-0.416168\pi\)
−0.965519 + 0.260331i \(0.916168\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.23607i 0.972313i 0.873872 + 0.486157i \(0.161602\pi\)
−0.873872 + 0.486157i \(0.838398\pi\)
\(30\) 0 0
\(31\) 5.85410 5.85410i 1.05143 1.05143i 0.0528239 0.998604i \(-0.483178\pi\)
0.998604 0.0528239i \(-0.0168222\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 9.70820i 1.59602i 0.602645 + 0.798009i \(0.294114\pi\)
−0.602645 + 0.798009i \(0.705886\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.76393 + 3.76393i −0.587827 + 0.587827i −0.937043 0.349215i \(-0.886448\pi\)
0.349215 + 0.937043i \(0.386448\pi\)
\(42\) 0 0
\(43\) −3.85410 3.85410i −0.587745 0.587745i 0.349275 0.937020i \(-0.386428\pi\)
−0.937020 + 0.349275i \(0.886428\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.94427i 1.30466i 0.757937 + 0.652328i \(0.226208\pi\)
−0.757937 + 0.652328i \(0.773792\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.47214 + 1.47214i −0.202213 + 0.202213i −0.800948 0.598734i \(-0.795671\pi\)
0.598734 + 0.800948i \(0.295671\pi\)
\(54\) 0 0
\(55\) 5.85410 5.85410i 0.789367 0.789367i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.38197 3.38197i 0.440294 0.440294i −0.451816 0.892111i \(-0.649224\pi\)
0.892111 + 0.451816i \(0.149224\pi\)
\(60\) 0 0
\(61\) 5.70820 0.730861 0.365430 0.930839i \(-0.380922\pi\)
0.365430 + 0.930839i \(0.380922\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.70820 + 4.47214i 0.832050 + 0.554700i
\(66\) 0 0
\(67\) −0.291796 −0.0356486 −0.0178243 0.999841i \(-0.505674\pi\)
−0.0178243 + 0.999841i \(0.505674\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −2.61803 + 2.61803i −0.310703 + 0.310703i −0.845182 0.534479i \(-0.820508\pi\)
0.534479 + 0.845182i \(0.320508\pi\)
\(72\) 0 0
\(73\) 11.7082 1.37034 0.685171 0.728382i \(-0.259728\pi\)
0.685171 + 0.728382i \(0.259728\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 3.70820i 0.417206i −0.978000 0.208603i \(-0.933108\pi\)
0.978000 0.208603i \(-0.0668916\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 10.4721i 1.14947i −0.818341 0.574733i \(-0.805106\pi\)
0.818341 0.574733i \(-0.194894\pi\)
\(84\) 0 0
\(85\) −5.00000 5.00000i −0.542326 0.542326i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.23607 2.23607i 0.237023 0.237023i −0.578593 0.815616i \(-0.696398\pi\)
0.815616 + 0.578593i \(0.196398\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 13.0902 13.0902i 1.34302 1.34302i
\(96\) 0 0
\(97\) 15.4164 1.56530 0.782650 0.622463i \(-0.213868\pi\)
0.782650 + 0.622463i \(0.213868\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.52786i 0.152028i 0.997107 + 0.0760141i \(0.0242194\pi\)
−0.997107 + 0.0760141i \(0.975781\pi\)
\(102\) 0 0
\(103\) −3.85410 3.85410i −0.379756 0.379756i 0.491258 0.871014i \(-0.336537\pi\)
−0.871014 + 0.491258i \(0.836537\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.61803 + 2.61803i 0.253095 + 0.253095i 0.822238 0.569143i \(-0.192725\pi\)
−0.569143 + 0.822238i \(0.692725\pi\)
\(108\) 0 0
\(109\) 4.70820 + 4.70820i 0.450964 + 0.450964i 0.895674 0.444710i \(-0.146693\pi\)
−0.444710 + 0.895674i \(0.646693\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 11.9443 11.9443i 1.12362 1.12362i 0.132430 0.991192i \(-0.457722\pi\)
0.991192 0.132430i \(-0.0422781\pi\)
\(114\) 0 0
\(115\) −7.56231 + 7.56231i −0.705189 + 0.705189i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 2.70820i 0.246200i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.1803i 1.00000i
\(126\) 0 0
\(127\) −0.145898 + 0.145898i −0.0129464 + 0.0129464i −0.713550 0.700604i \(-0.752914\pi\)
0.700604 + 0.713550i \(0.252914\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.41641 0.647975 0.323987 0.946061i \(-0.394976\pi\)
0.323987 + 0.946061i \(0.394976\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 16.4721i 1.40731i −0.710542 0.703655i \(-0.751550\pi\)
0.710542 0.703655i \(-0.248450\pi\)
\(138\) 0 0
\(139\) 23.1246i 1.96140i 0.195509 + 0.980702i \(0.437364\pi\)
−0.195509 + 0.980702i \(0.562636\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −13.0902 + 2.61803i −1.09466 + 0.218931i
\(144\) 0 0
\(145\) 11.7082 0.972313
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −5.94427 5.94427i −0.486974 0.486974i 0.420376 0.907350i \(-0.361898\pi\)
−0.907350 + 0.420376i \(0.861898\pi\)
\(150\) 0 0
\(151\) −0.145898 0.145898i −0.0118730 0.0118730i 0.701145 0.713018i \(-0.252672\pi\)
−0.713018 + 0.701145i \(0.752672\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −13.0902 13.0902i −1.05143 1.05143i
\(156\) 0 0
\(157\) −5.00000 5.00000i −0.399043 0.399043i 0.478852 0.877896i \(-0.341053\pi\)
−0.877896 + 0.478852i \(0.841053\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 4.29180 0.336159 0.168080 0.985773i \(-0.446243\pi\)
0.168080 + 0.985773i \(0.446243\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 13.5279i 1.04682i 0.852082 + 0.523409i \(0.175340\pi\)
−0.852082 + 0.523409i \(0.824660\pi\)
\(168\) 0 0
\(169\) −5.00000 12.0000i −0.384615 0.923077i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 17.1803 + 17.1803i 1.30620 + 1.30620i 0.924138 + 0.382059i \(0.124785\pi\)
0.382059 + 0.924138i \(0.375215\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) 8.29180i 0.616324i 0.951334 + 0.308162i \(0.0997139\pi\)
−0.951334 + 0.308162i \(0.900286\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 21.7082 1.59602
\(186\) 0 0
\(187\) 11.7082 0.856189
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −7.41641 −0.536632 −0.268316 0.963331i \(-0.586467\pi\)
−0.268316 + 0.963331i \(0.586467\pi\)
\(192\) 0 0
\(193\) 3.41641 0.245918 0.122959 0.992412i \(-0.460762\pi\)
0.122959 + 0.992412i \(0.460762\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −12.0000 −0.854965 −0.427482 0.904024i \(-0.640599\pi\)
−0.427482 + 0.904024i \(0.640599\pi\)
\(198\) 0 0
\(199\) −11.4164 −0.809288 −0.404644 0.914474i \(-0.632605\pi\)
−0.404644 + 0.914474i \(0.632605\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 8.41641 + 8.41641i 0.587827 + 0.587827i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 30.6525i 2.12028i
\(210\) 0 0
\(211\) 3.41641 0.235195 0.117598 0.993061i \(-0.462481\pi\)
0.117598 + 0.993061i \(0.462481\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −8.61803 + 8.61803i −0.587745 + 0.587745i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.23607 + 11.1803i 0.150414 + 0.752071i
\(222\) 0 0
\(223\) 7.41641i 0.496639i −0.968678 0.248320i \(-0.920122\pi\)
0.968678 0.248320i \(-0.0798784\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −8.29180 −0.550346 −0.275173 0.961395i \(-0.588735\pi\)
−0.275173 + 0.961395i \(0.588735\pi\)
\(228\) 0 0
\(229\) 8.41641 8.41641i 0.556172 0.556172i −0.372043 0.928215i \(-0.621343\pi\)
0.928215 + 0.372043i \(0.121343\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 7.47214 + 7.47214i 0.489516 + 0.489516i 0.908153 0.418638i \(-0.137492\pi\)
−0.418638 + 0.908153i \(0.637492\pi\)
\(234\) 0 0
\(235\) 20.0000 1.30466
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 8.61803 + 8.61803i 0.557454 + 0.557454i 0.928582 0.371128i \(-0.121029\pi\)
−0.371128 + 0.928582i \(0.621029\pi\)
\(240\) 0 0
\(241\) −2.70820 2.70820i −0.174451 0.174451i 0.614481 0.788932i \(-0.289365\pi\)
−0.788932 + 0.614481i \(0.789365\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 15.6525i 1.00000i
\(246\) 0 0
\(247\) −29.2705 + 5.85410i −1.86244 + 0.372488i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 26.1803i 1.65249i −0.563312 0.826244i \(-0.690473\pi\)
0.563312 0.826244i \(-0.309527\pi\)
\(252\) 0 0
\(253\) 17.7082i 1.11331i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −17.1803 + 17.1803i −1.07168 + 1.07168i −0.0744558 + 0.997224i \(0.523722\pi\)
−0.997224 + 0.0744558i \(0.976278\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −22.0344 + 22.0344i −1.35870 + 1.35870i −0.483182 + 0.875520i \(0.660519\pi\)
−0.875520 + 0.483182i \(0.839481\pi\)
\(264\) 0 0
\(265\) 3.29180 + 3.29180i 0.202213 + 0.202213i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 13.5279i 0.824808i 0.911001 + 0.412404i \(0.135311\pi\)
−0.911001 + 0.412404i \(0.864689\pi\)
\(270\) 0 0
\(271\) −7.56231 7.56231i −0.459377 0.459377i 0.439074 0.898451i \(-0.355307\pi\)
−0.898451 + 0.439074i \(0.855307\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −13.0902 13.0902i −0.789367 0.789367i
\(276\) 0 0
\(277\) −2.70820 + 2.70820i −0.162720 + 0.162720i −0.783771 0.621050i \(-0.786706\pi\)
0.621050 + 0.783771i \(0.286706\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −2.23607 2.23607i −0.133393 0.133393i 0.637258 0.770651i \(-0.280069\pi\)
−0.770651 + 0.637258i \(0.780069\pi\)
\(282\) 0 0
\(283\) −15.8541 15.8541i −0.942429 0.942429i 0.0560021 0.998431i \(-0.482165\pi\)
−0.998431 + 0.0560021i \(0.982165\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 7.00000i 0.411765i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −27.7082 −1.61873 −0.809365 0.587306i \(-0.800189\pi\)
−0.809365 + 0.587306i \(0.800189\pi\)
\(294\) 0 0
\(295\) −7.56231 7.56231i −0.440294 0.440294i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 16.9098 3.38197i 0.977921 0.195584i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 12.7639i 0.730861i
\(306\) 0 0
\(307\) 12.0000i 0.684876i −0.939540 0.342438i \(-0.888747\pi\)
0.939540 0.342438i \(-0.111253\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 2.18034i 0.123636i −0.998087 0.0618179i \(-0.980310\pi\)
0.998087 0.0618179i \(-0.0196898\pi\)
\(312\) 0 0
\(313\) −14.7082 + 14.7082i −0.831357 + 0.831357i −0.987702 0.156346i \(-0.950029\pi\)
0.156346 + 0.987702i \(0.450029\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.70820 0.208273 0.104137 0.994563i \(-0.466792\pi\)
0.104137 + 0.994563i \(0.466792\pi\)
\(318\) 0 0
\(319\) −13.7082 + 13.7082i −0.767512 + 0.767512i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 26.1803 1.45671
\(324\) 0 0
\(325\) 10.0000 15.0000i 0.554700 0.832050i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −15.8541 + 15.8541i −0.871420 + 0.871420i −0.992627 0.121207i \(-0.961324\pi\)
0.121207 + 0.992627i \(0.461324\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0.652476i 0.0356486i
\(336\) 0 0
\(337\) 14.4164 14.4164i 0.785312 0.785312i −0.195410 0.980722i \(-0.562604\pi\)
0.980722 + 0.195410i \(0.0626037\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 30.6525 1.65992
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −7.09017 7.09017i −0.380620 0.380620i 0.490705 0.871326i \(-0.336739\pi\)
−0.871326 + 0.490705i \(0.836739\pi\)
\(348\) 0 0
\(349\) 16.7082 16.7082i 0.894370 0.894370i −0.100561 0.994931i \(-0.532064\pi\)
0.994931 + 0.100561i \(0.0320638\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12.7639i 0.679356i −0.940542 0.339678i \(-0.889682\pi\)
0.940542 0.339678i \(-0.110318\pi\)
\(354\) 0 0
\(355\) 5.85410 + 5.85410i 0.310703 + 0.310703i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 13.0902 13.0902i 0.690873 0.690873i −0.271551 0.962424i \(-0.587537\pi\)
0.962424 + 0.271551i \(0.0875366\pi\)
\(360\) 0 0
\(361\) 49.5410i 2.60742i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 26.1803i 1.37034i
\(366\) 0 0
\(367\) 11.8541 + 11.8541i 0.618779 + 0.618779i 0.945218 0.326439i \(-0.105849\pi\)
−0.326439 + 0.945218i \(0.605849\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −0.416408 + 0.416408i −0.0215608 + 0.0215608i −0.717805 0.696244i \(-0.754853\pi\)
0.696244 + 0.717805i \(0.254853\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −15.7082 10.4721i −0.809014 0.539342i
\(378\) 0 0
\(379\) −3.85410 3.85410i −0.197972 0.197972i 0.601158 0.799130i \(-0.294706\pi\)
−0.799130 + 0.601158i \(0.794706\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 17.8885i 0.914062i −0.889451 0.457031i \(-0.848913\pi\)
0.889451 0.457031i \(-0.151087\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 25.4164 1.28866 0.644332 0.764746i \(-0.277136\pi\)
0.644332 + 0.764746i \(0.277136\pi\)
\(390\) 0 0
\(391\) −15.1246 −0.764884
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −8.29180 −0.417206
\(396\) 0 0
\(397\) 5.12461i 0.257197i −0.991697 0.128598i \(-0.958952\pi\)
0.991697 0.128598i \(-0.0410478\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.23607 2.23607i −0.111664 0.111664i 0.649067 0.760731i \(-0.275159\pi\)
−0.760731 + 0.649067i \(0.775159\pi\)
\(402\) 0 0
\(403\) 5.85410 + 29.2705i 0.291614 + 1.45807i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −25.4164 + 25.4164i −1.25984 + 1.25984i
\(408\) 0 0
\(409\) 3.29180 + 3.29180i 0.162769 + 0.162769i 0.783792 0.621023i \(-0.213283\pi\)
−0.621023 + 0.783792i \(0.713283\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −23.4164 −1.14947
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 21.5967i 1.05507i −0.849533 0.527535i \(-0.823116\pi\)
0.849533 0.527535i \(-0.176884\pi\)
\(420\) 0 0
\(421\) 3.29180 3.29180i 0.160432 0.160432i −0.622326 0.782758i \(-0.713812\pi\)
0.782758 + 0.622326i \(0.213812\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −11.1803 + 11.1803i −0.542326 + 0.542326i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −16.9098 + 16.9098i −0.814518 + 0.814518i −0.985308 0.170790i \(-0.945368\pi\)
0.170790 + 0.985308i \(0.445368\pi\)
\(432\) 0 0
\(433\) −17.0000 17.0000i −0.816968 0.816968i 0.168700 0.985668i \(-0.446043\pi\)
−0.985668 + 0.168700i \(0.946043\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 39.5967i 1.89417i
\(438\) 0 0
\(439\) 20.0000 0.954548 0.477274 0.878755i \(-0.341625\pi\)
0.477274 + 0.878755i \(0.341625\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −0.326238 + 0.326238i −0.0155000 + 0.0155000i −0.714814 0.699314i \(-0.753489\pi\)
0.699314 + 0.714814i \(0.253489\pi\)
\(444\) 0 0
\(445\) −5.00000 5.00000i −0.237023 0.237023i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 10.5279 10.5279i 0.496841 0.496841i −0.413612 0.910453i \(-0.635733\pi\)
0.910453 + 0.413612i \(0.135733\pi\)
\(450\) 0 0
\(451\) −19.7082 −0.928023
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −23.4164 −1.09537 −0.547687 0.836684i \(-0.684491\pi\)
−0.547687 + 0.836684i \(0.684491\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −17.1803 + 17.1803i −0.800168 + 0.800168i −0.983122 0.182953i \(-0.941434\pi\)
0.182953 + 0.983122i \(0.441434\pi\)
\(462\) 0 0
\(463\) 4.29180 0.199457 0.0997283 0.995015i \(-0.468203\pi\)
0.0997283 + 0.995015i \(0.468203\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −16.0344 + 16.0344i −0.741985 + 0.741985i −0.972960 0.230974i \(-0.925809\pi\)
0.230974 + 0.972960i \(0.425809\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 20.1803i 0.927893i
\(474\) 0 0
\(475\) −29.2705 29.2705i −1.34302 1.34302i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −25.7426 + 25.7426i −1.17621 + 1.17621i −0.195510 + 0.980702i \(0.562636\pi\)
−0.980702 + 0.195510i \(0.937364\pi\)
\(480\) 0 0
\(481\) −29.1246 19.4164i −1.32797 0.885312i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 34.4721i 1.56530i
\(486\) 0 0
\(487\) −15.1246 −0.685362 −0.342681 0.939452i \(-0.611335\pi\)
−0.342681 + 0.939452i \(0.611335\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 24.6525i 1.11255i 0.830998 + 0.556275i \(0.187770\pi\)
−0.830998 + 0.556275i \(0.812230\pi\)
\(492\) 0 0
\(493\) 11.7082 + 11.7082i 0.527311 + 0.527311i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −20.9787 20.9787i −0.939136 0.939136i 0.0591150 0.998251i \(-0.481172\pi\)
−0.998251 + 0.0591150i \(0.981172\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 11.6738 11.6738i 0.520507 0.520507i −0.397217 0.917725i \(-0.630024\pi\)
0.917725 + 0.397217i \(0.130024\pi\)
\(504\) 0 0
\(505\) 3.41641 0.152028
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 9.76393 + 9.76393i 0.432779 + 0.432779i 0.889573 0.456794i \(-0.151002\pi\)
−0.456794 + 0.889573i \(0.651002\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −8.61803 + 8.61803i −0.379756 + 0.379756i
\(516\) 0 0
\(517\) −23.4164 + 23.4164i −1.02985 + 1.02985i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −41.1246 −1.80170 −0.900851 0.434128i \(-0.857056\pi\)
−0.900851 + 0.434128i \(0.857056\pi\)
\(522\) 0 0
\(523\) 25.2705 25.2705i 1.10500 1.10500i 0.111205 0.993798i \(-0.464529\pi\)
0.993798 0.111205i \(-0.0354709\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 26.1803i 1.14043i
\(528\) 0 0
\(529\) 0.124612i 0.00541790i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −3.76393 18.8197i −0.163034 0.815170i
\(534\) 0 0
\(535\) 5.85410 5.85410i 0.253095 0.253095i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 18.3262 + 18.3262i 0.789367 + 0.789367i
\(540\) 0 0
\(541\) 14.4164 + 14.4164i 0.619810 + 0.619810i 0.945483 0.325673i \(-0.105591\pi\)
−0.325673 + 0.945483i \(0.605591\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 10.5279 10.5279i 0.450964 0.450964i
\(546\) 0 0
\(547\) −7.56231 7.56231i −0.323341 0.323341i 0.526706 0.850047i \(-0.323427\pi\)
−0.850047 + 0.526706i \(0.823427\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −30.6525 + 30.6525i −1.30584 + 1.30584i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 35.2361i 1.49300i 0.665385 + 0.746500i \(0.268267\pi\)
−0.665385 + 0.746500i \(0.731733\pi\)
\(558\) 0 0
\(559\) 19.2705 3.85410i 0.815056 0.163011i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.09017 1.09017i −0.0459452 0.0459452i 0.683761 0.729706i \(-0.260343\pi\)
−0.729706 + 0.683761i \(0.760343\pi\)
\(564\) 0 0
\(565\) −26.7082 26.7082i −1.12362 1.12362i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 17.1246 0.717901 0.358951 0.933357i \(-0.383135\pi\)
0.358951 + 0.933357i \(0.383135\pi\)
\(570\) 0 0
\(571\) 8.29180i 0.347001i 0.984834 + 0.173500i \(0.0555078\pi\)
−0.984834 + 0.173500i \(0.944492\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 16.9098 + 16.9098i 0.705189 + 0.705189i
\(576\) 0 0
\(577\) −27.1246 −1.12921 −0.564606 0.825360i \(-0.690972\pi\)
−0.564606 + 0.825360i \(0.690972\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −7.70820 −0.319241
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 23.1246 0.954455 0.477227 0.878780i \(-0.341642\pi\)
0.477227 + 0.878780i \(0.341642\pi\)
\(588\) 0 0
\(589\) 68.5410 2.82418
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −16.5836 −0.681007 −0.340503 0.940243i \(-0.610597\pi\)
−0.340503 + 0.940243i \(0.610597\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 41.0132i 1.67575i −0.545861 0.837876i \(-0.683797\pi\)
0.545861 0.837876i \(-0.316203\pi\)
\(600\) 0 0
\(601\) 14.0000 0.571072 0.285536 0.958368i \(-0.407828\pi\)
0.285536 + 0.958368i \(0.407828\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 6.05573 0.246200
\(606\) 0 0
\(607\) −29.2705 29.2705i −1.18805 1.18805i −0.977605 0.210448i \(-0.932508\pi\)
−0.210448 0.977605i \(-0.567492\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −26.8328 17.8885i −1.08554 0.723693i
\(612\) 0 0
\(613\) 13.4164i 0.541884i −0.962596 0.270942i \(-0.912665\pi\)
0.962596 0.270942i \(-0.0873351\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −4.58359 −0.184528 −0.0922642 0.995735i \(-0.529410\pi\)
−0.0922642 + 0.995735i \(0.529410\pi\)
\(618\) 0 0
\(619\) −17.2705 + 17.2705i −0.694160 + 0.694160i −0.963145 0.268984i \(-0.913312\pi\)
0.268984 + 0.963145i \(0.413312\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 21.7082 + 21.7082i 0.865563 + 0.865563i
\(630\) 0 0
\(631\) −29.2705 29.2705i −1.16524 1.16524i −0.983312 0.181929i \(-0.941766\pi\)
−0.181929 0.983312i \(-0.558234\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0.326238 + 0.326238i 0.0129464 + 0.0129464i
\(636\) 0 0
\(637\) −14.0000 + 21.0000i −0.554700 + 0.832050i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 32.9443i 1.30122i 0.759412 + 0.650610i \(0.225487\pi\)
−0.759412 + 0.650610i \(0.774513\pi\)
\(642\) 0 0
\(643\) 43.4164i 1.71218i −0.516830 0.856088i \(-0.672888\pi\)
0.516830 0.856088i \(-0.327112\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.09017 1.09017i 0.0428590 0.0428590i −0.685352 0.728211i \(-0.740352\pi\)
0.728211 + 0.685352i \(0.240352\pi\)
\(648\) 0 0
\(649\) 17.7082 0.695108
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 29.0689 29.0689i 1.13755 1.13755i 0.148666 0.988887i \(-0.452502\pi\)
0.988887 0.148666i \(-0.0474979\pi\)
\(654\) 0 0
\(655\) 16.5836i 0.647975i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 32.0689i 1.24923i 0.780934 + 0.624613i \(0.214743\pi\)
−0.780934 + 0.624613i \(0.785257\pi\)
\(660\) 0 0
\(661\) 10.7082 + 10.7082i 0.416501 + 0.416501i 0.883996 0.467495i \(-0.154843\pi\)
−0.467495 + 0.883996i \(0.654843\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 17.7082 17.7082i 0.685664 0.685664i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 14.9443 + 14.9443i 0.576917 + 0.576917i
\(672\) 0 0
\(673\) 30.1246 + 30.1246i 1.16122 + 1.16122i 0.984209 + 0.177009i \(0.0566423\pi\)
0.177009 + 0.984209i \(0.443358\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0.0557281 + 0.0557281i 0.00214180 + 0.00214180i 0.708177 0.706035i \(-0.249518\pi\)
−0.706035 + 0.708177i \(0.749518\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −35.1246 −1.34401 −0.672003 0.740548i \(-0.734566\pi\)
−0.672003 + 0.740548i \(0.734566\pi\)
\(684\) 0 0
\(685\) −36.8328 −1.40731
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.47214 7.36068i −0.0560839 0.280420i
\(690\) 0 0
\(691\) 34.9787 34.9787i 1.33065 1.33065i 0.425867 0.904786i \(-0.359969\pi\)
0.904786 0.425867i \(-0.140031\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 51.7082 1.96140
\(696\) 0 0
\(697\) 16.8328i 0.637588i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 28.3607i 1.07117i 0.844482 + 0.535584i \(0.179908\pi\)
−0.844482 + 0.535584i \(0.820092\pi\)
\(702\) 0 0
\(703\) −56.8328 + 56.8328i −2.14349 + 2.14349i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −18.4164 + 18.4164i −0.691643 + 0.691643i −0.962593 0.270951i \(-0.912662\pi\)
0.270951 + 0.962593i \(0.412662\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −39.5967 −1.48291
\(714\) 0 0
\(715\) 5.85410 + 29.2705i 0.218931 + 1.09466i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −31.4164 −1.17163 −0.585817 0.810443i \(-0.699226\pi\)
−0.585817 + 0.810443i \(0.699226\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 26.1803i 0.972313i
\(726\) 0 0
\(727\) −21.8541 + 21.8541i −0.810524 + 0.810524i −0.984712 0.174189i \(-0.944270\pi\)
0.174189 + 0.984712i \(0.444270\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −17.2361 −0.637499
\(732\) 0 0
\(733\) 30.0000i 1.10808i 0.832492 + 0.554038i \(0.186914\pi\)
−0.832492 + 0.554038i \(0.813086\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −0.763932 0.763932i −0.0281398 0.0281398i
\(738\) 0 0
\(739\) −7.56231 + 7.56231i −0.278184 + 0.278184i −0.832384 0.554200i \(-0.813024\pi\)
0.554200 + 0.832384i \(0.313024\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 37.3050i 1.36859i −0.729207 0.684293i \(-0.760111\pi\)
0.729207 0.684293i \(-0.239889\pi\)
\(744\) 0 0
\(745\) −13.2918 + 13.2918i −0.486974 + 0.486974i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 11.1246i 0.405943i 0.979185 + 0.202971i \(0.0650599\pi\)
−0.979185 + 0.202971i \(0.934940\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −0.326238 + 0.326238i −0.0118730 + 0.0118730i
\(756\) 0 0
\(757\) −13.2918 13.2918i −0.483099 0.483099i 0.423021 0.906120i \(-0.360970\pi\)
−0.906120 + 0.423021i \(0.860970\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 25.4721 + 25.4721i 0.923364 + 0.923364i 0.997266 0.0739013i \(-0.0235450\pi\)
−0.0739013 + 0.997266i \(0.523545\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3.38197 + 16.9098i 0.122116 + 0.610579i
\(768\) 0 0
\(769\) −5.00000 5.00000i −0.180305 0.180305i 0.611184 0.791489i \(-0.290694\pi\)
−0.791489 + 0.611184i \(0.790694\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 30.6525i 1.10249i 0.834342 + 0.551246i \(0.185848\pi\)
−0.834342 + 0.551246i \(0.814152\pi\)
\(774\) 0 0
\(775\) −29.2705 + 29.2705i −1.05143 + 1.05143i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −44.0689 −1.57893
\(780\) 0 0
\(781\) −13.7082 −0.490518
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −11.1803 + 11.1803i −0.399043 + 0.399043i
\(786\) 0 0
\(787\) 16.5836i 0.591141i 0.955321 + 0.295571i \(0.0955098\pi\)
−0.955321 + 0.295571i \(0.904490\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −11.4164 + 17.1246i −0.405409 + 0.608113i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −26.8885 + 26.8885i −0.952441 + 0.952441i −0.998919 0.0464782i \(-0.985200\pi\)
0.0464782 + 0.998919i \(0.485200\pi\)
\(798\) 0 0
\(799\) 20.0000 + 20.0000i 0.707549 + 0.707549i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 30.6525 + 30.6525i 1.08170 + 1.08170i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 26.1803i 0.920452i −0.887802 0.460226i \(-0.847768\pi\)
0.887802 0.460226i \(-0.152232\pi\)
\(810\) 0 0
\(811\) 3.56231 3.56231i 0.125089 0.125089i −0.641791 0.766880i \(-0.721808\pi\)
0.766880 + 0.641791i \(0.221808\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 9.59675i 0.336159i
\(816\) 0 0
\(817\) 45.1246i 1.57871i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 37.3607 37.3607i 1.30390 1.30390i 0.378154 0.925743i \(-0.376559\pi\)
0.925743 0.378154i \(-0.123441\pi\)
\(822\) 0 0
\(823\) 22.9787 + 22.9787i 0.800988 + 0.800988i 0.983250 0.182262i \(-0.0583420\pi\)
−0.182262 + 0.983250i \(0.558342\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 22.4721i 0.781433i −0.920511 0.390716i \(-0.872227\pi\)
0.920511 0.390716i \(-0.127773\pi\)
\(828\) 0 0
\(829\) −13.7082 −0.476106 −0.238053 0.971252i \(-0.576509\pi\)
−0.238053 + 0.971252i \(0.576509\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 15.6525 15.6525i 0.542326 0.542326i
\(834\) 0 0
\(835\) 30.2492 1.04682
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 22.7984 22.7984i 0.787087 0.787087i −0.193928 0.981016i \(-0.562123\pi\)
0.981016 + 0.193928i \(0.0621230\pi\)
\(840\) 0 0
\(841\) 1.58359 0.0546066
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −26.8328 + 11.1803i −0.923077 + 0.384615i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 32.8328 32.8328i 1.12549 1.12549i
\(852\) 0 0
\(853\) −4.87539 −0.166930 −0.0834651 0.996511i \(-0.526599\pi\)
−0.0834651 + 0.996511i \(0.526599\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 9.65248 9.65248i 0.329722 0.329722i −0.522759 0.852481i \(-0.675097\pi\)
0.852481 + 0.522759i \(0.175097\pi\)
\(858\) 0 0
\(859\) 51.7082i 1.76426i −0.471005 0.882131i \(-0.656109\pi\)
0.471005 0.882131i \(-0.343891\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 34.4721i 1.17345i −0.809788 0.586723i \(-0.800418\pi\)
0.809788 0.586723i \(-0.199582\pi\)
\(864\) 0 0
\(865\) 38.4164 38.4164i 1.30620 1.30620i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 9.70820 9.70820i 0.329328 0.329328i
\(870\) 0 0
\(871\) 0.583592 0.875388i 0.0197743 0.0296614i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 46.8328 1.58143 0.790716 0.612183i \(-0.209709\pi\)
0.790716 + 0.612183i \(0.209709\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 20.0689i 0.676138i 0.941121 + 0.338069i \(0.109774\pi\)
−0.941121 + 0.338069i \(0.890226\pi\)
\(882\) 0 0
\(883\) −27.8541 27.8541i −0.937365 0.937365i 0.0607857 0.998151i \(-0.480639\pi\)
−0.998151 + 0.0607857i \(0.980639\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −21.3820 21.3820i −0.717936 0.717936i 0.250246 0.968182i \(-0.419488\pi\)
−0.968182 + 0.250246i \(0.919488\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −52.3607 + 52.3607i −1.75218 + 1.75218i
\(894\) 0 0
\(895\) 26.8328i 0.896922i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 30.6525 + 30.6525i 1.02232 + 1.02232i
\(900\) 0 0
\(901\) 6.58359i 0.219331i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 18.5410 0.616324
\(906\) 0 0
\(907\) −5.27051 + 5.27051i −0.175004 + 0.175004i −0.789174 0.614170i \(-0.789491\pi\)
0.614170 + 0.789174i \(0.289491\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −50.8328 −1.68417 −0.842083 0.539348i \(-0.818671\pi\)
−0.842083 + 0.539348i \(0.818671\pi\)
\(912\) 0 0
\(913\) 27.4164 27.4164i 0.907351 0.907351i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 35.1246i 1.15865i −0.815095 0.579327i \(-0.803315\pi\)
0.815095 0.579327i \(-0.196685\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −2.61803 13.0902i −0.0861736 0.430868i
\(924\) 0 0
\(925\) 48.5410i 1.59602i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 2.88854 + 2.88854i 0.0947700 + 0.0947700i 0.752902 0.658132i \(-0.228653\pi\)
−0.658132 + 0.752902i \(0.728653\pi\)
\(930\) 0 0
\(931\) 40.9787 + 40.9787i 1.34302 + 1.34302i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 26.1803i 0.856189i
\(936\) 0 0
\(937\) 32.4164 + 32.4164i 1.05900 + 1.05900i 0.998147 + 0.0608510i \(0.0193815\pi\)
0.0608510 + 0.998147i \(0.480619\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 13.3607 13.3607i 0.435546 0.435546i −0.454964 0.890510i \(-0.650348\pi\)
0.890510 + 0.454964i \(0.150348\pi\)
\(942\) 0 0
\(943\) 25.4590 0.829058
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3.05573i 0.0992978i −0.998767 0.0496489i \(-0.984190\pi\)
0.998767 0.0496489i \(-0.0158102\pi\)
\(948\) 0 0
\(949\) −23.4164 + 35.1246i −0.760129 + 1.14019i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 27.7639 + 27.7639i 0.899362 + 0.899362i 0.995380 0.0960177i \(-0.0306105\pi\)
−0.0960177 + 0.995380i \(0.530611\pi\)
\(954\) 0 0
\(955\) 16.5836i 0.536632i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 37.5410i 1.21100i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 7.63932i 0.245918i
\(966\) 0 0
\(967\) 7.12461 0.229112 0.114556 0.993417i \(-0.463455\pi\)
0.114556 + 0.993417i \(0.463455\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −3.70820 −0.118636 −0.0593180 0.998239i \(-0.518893\pi\)
−0.0593180 + 0.998239i \(0.518893\pi\)
\(978\) 0 0
\(979\) 11.7082 0.374196
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 32.2918 1.02995 0.514974 0.857206i \(-0.327802\pi\)
0.514974 + 0.857206i \(0.327802\pi\)
\(984\) 0 0
\(985\) 26.8328i 0.854965i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 26.0689i 0.828942i
\(990\) 0 0
\(991\) −20.5836 −0.653859 −0.326930 0.945049i \(-0.606014\pi\)
−0.326930 + 0.945049i \(0.606014\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 25.5279i 0.809288i
\(996\) 0 0
\(997\) −29.0000 29.0000i −0.918439 0.918439i 0.0784767 0.996916i \(-0.474994\pi\)
−0.996916 + 0.0784767i \(0.974994\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.u.f.577.1 4
3.2 odd 2 260.2.m.b.57.1 4
5.3 odd 4 2340.2.bp.e.1513.2 4
12.11 even 2 1040.2.bg.j.577.2 4
13.8 odd 4 2340.2.bp.e.1477.2 4
15.2 even 4 1300.2.r.b.993.2 4
15.8 even 4 260.2.r.b.213.1 yes 4
15.14 odd 2 1300.2.m.b.57.2 4
39.8 even 4 260.2.r.b.177.1 yes 4
60.23 odd 4 1040.2.cd.j.993.2 4
65.8 even 4 inner 2340.2.u.f.73.2 4
156.47 odd 4 1040.2.cd.j.177.2 4
195.8 odd 4 260.2.m.b.73.1 yes 4
195.47 odd 4 1300.2.m.b.593.2 4
195.164 even 4 1300.2.r.b.957.2 4
780.203 even 4 1040.2.bg.j.593.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
260.2.m.b.57.1 4 3.2 odd 2
260.2.m.b.73.1 yes 4 195.8 odd 4
260.2.r.b.177.1 yes 4 39.8 even 4
260.2.r.b.213.1 yes 4 15.8 even 4
1040.2.bg.j.577.2 4 12.11 even 2
1040.2.bg.j.593.2 4 780.203 even 4
1040.2.cd.j.177.2 4 156.47 odd 4
1040.2.cd.j.993.2 4 60.23 odd 4
1300.2.m.b.57.2 4 15.14 odd 2
1300.2.m.b.593.2 4 195.47 odd 4
1300.2.r.b.957.2 4 195.164 even 4
1300.2.r.b.993.2 4 15.2 even 4
2340.2.u.f.73.2 4 65.8 even 4 inner
2340.2.u.f.577.1 4 1.1 even 1 trivial
2340.2.bp.e.1477.2 4 13.8 odd 4
2340.2.bp.e.1513.2 4 5.3 odd 4